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Abstract. In this paper we discuss the speckle reduction in images with the  
recently proposed Wavelet Embedded Anisotropic Diffusion (WEAD) and 
Wavelet Embedded Complex Diffusion (WECD). Both these methods are im-
provements over anisotropic and complex diffusion by adding wavelet based 
bayes shrink in its second stage. Both WEAD and WECD produces excellent 
results when compared with the existing speckle reduction filters. The compara-
tive analysis with other methods were mainly done on the basis of Structural 
Similarity Index Matrix (SSIM) and Peak Signal to Noise Ratio (PSNR). The 
visual appearance of the image is also considered. 

1   Introduction 

Speckle noise is a common phenomenon in all coherent imaging systems like laser, 
acoustic, SAR and medical ultrasound imagery [1]. For images that contain speckle, 
the goal of enhancement is to remove the speckle without destroying important image 
features [2]. Synthetic Aperture Radar (SAR) images are corrupted by speckle noise 
due to the interference between waves reflected from microscopic scattering through 
the terrain. Because of its undesirable effect, speckle noise reduction turns out to be a 
key pre-processing step in order to interpret SAR images efficiently [3]. In medical 
imaging, the grainy appearance of 2D ultrasound images is due mainly to speckle. 
Here the speckle phenomenon results from the constructive-destructive interference of 
the coherent ultrasound pulses back scattered from the tiny multiple reflector that 
constitute biological materials. Speckle typically has the unfortunate aspect of falling 
into the high sensitivity region of human vision to spatial frequency. The frequency 
spectrum of speckle is also similar to the imaging system modulation transfer func-
tion. Speckle can therefore obscure the diagnostically important information.[4]. In 
certain applications, however the removal of speckle may be counter productive. 
Examples in which speckle preservation is important include feature tracking in ultra-
sonic imaging [5] and detection of features that are the same scale as the speckle  
patterns (e.g., coagulation damage) [6]. The source of speckle noise is attributed to 
random interference between the coherent returns. Fully developed speckle noise has 
the characteristic of multiplicative noise [7]. Speckle noise follows a gamma distribu-
tion and is given as 
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where g is the gray level and α is the variance. Below figure shows the plot of 
speckle noise distribution. 

 

Fig. 1. Plot of speckle noise distribution 

A number of methods are proposed in the literature for removing speckle from ul-
trasound images. Popular methods among them are Lee, Frost, Kuan, Gamma and 
SRAD filters. The Lee and Kuan filters have the same formation, although the signal 
model assumptions and the derivations are different. Essentially, both the Lee and 
Kuan filters form an output image by computing a linear combination of the center 
pixel intensity in a filter window with the average intensity of the window. So, the 
filter achieves a balance between straightforward averaging (in homogeneous regions) 
and the identity filter (where edges and point features exist). This balance depends on 
the coefficient of variation inside the moving window[2]. 

The Frost filter also strikes a balance between averaging and the all-pass filter. In 
this case, the balance is achieved by forming an exponentially shaped filter kernel that 
can vary from a basic average filter to an identity filter on a point wise, adaptive ba-
sis. Again, the response of the filter varies locally with the coefficient of variation. In 
case of low coefficient of variation, the filter is more average-like, and in cases of 
high coefficient of variation, the filter attempts to preserve sharp features by not aver-
aging. The Gamma filter is a Maximum A Posteriori (MAP) filter based on a Bayes-
ian analysis of the image statistics [1]. Speckle Reducing Anisotropic Diffusion 
(SRAD) is an edge sensitive diffusion method for speckled images [2]. 

Wavelet Embedded Anisotropic Diffusion (WEAD) [8] and Wavelet Embedded 
Complex Diffusion (WECD)[9] are extensions of non linear Anisotropic and Com-
plex diffusion by adding Bayesian shrinkage at its second stage. The methods increase 
the speed of processing and improve the quality of images than their parent methods.  

The paper is organized as follows. Section 2 deals with diffusion techniques for 
removing noise from images. It mainly discusses anisotropic and complex diffusion. 
Section 3 explains the recently proposed WEAD and WECD and its capability to 
remove speckle noises. Experimental results and comparative analysis with other 
popular methods is shown in Section 4. Finally conclusion and remarks are added in 
Section 5. 
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2   Noise Removal with Diffusion Techniques 

Diffusion is a physical process that equilibrates concentration differences without 
creating or destroying mass [10]. This physical observation, the equilibrium property 
can be expressed by Fick’s law 

uDj ∇−= .                                                             (2) 

This equation states that a concentration gradient ∇u causes a flux j, which aims to 
compensate for this gradient. The relation between ∇u and j is described by the diffu-
sion tensor D, a positive definite symmetric matrix. The case where j and ∇u are par-
allel is called isotropic. Then we may replace the diffusion tensor by a positive scalar 
valued diffusivity g. In the general case i.e., anisotropic case, j and  ∇u are not paral-
lel. The observation that diffusion does only transport mass without destroying it or 
creating new mass is expressed by the continuity equation 

judt div−=                                                           (3) 

where t denotes the time. If we apply the Fick’s law into the continuity equation we 
will get the diffusion equation. i.e., 
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This equation appears in many physical transport process. In the context of heat trans-
fer, it is called the heat equation [10]. When applied to an image, the linear diffusion 
will generate scale space images. Each image will be more smoothed than the previ-
ous one. By smoothing an image, to some extend noise can be removed. This is why 
linear diffusion is used for noise removal. But one problem with this method is its 
inability to preserve image structures.         

2.1   Anisotropic Diffusion  

To avoid the defects of linear diffusion (especially the inability to preserve edges and 
to impel inter region smoothing before intra region smoothing) non-linear partial 
differential equations can be used. In [11] Perona and Malik has given 3 necessary 
conditions for generating multiscale semantically meaningful  images  

1. Causality : Scale space representation should have the property that no spurious 
detail should be generated passing from finer to coarser scale. 

2. Immediate Localization : At each resolution, the region boundaries should be sharp 
and coincide with the semantically meaningful boundaries at that resolution. 

3. Piecewise Smoothing : At all scales, intra region smoothing should occur preferen-
tially over inter region smoothing.  

Linear diffusion is especially not satisfying the third condition, which can be over-
come by using a non linear one. Among the non linear diffusion , the one proposed by  
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Perona and Malik [11] and its variants are the most popular.  They proposed a nonlin-
ear diffusion method for avoiding the blurring and localization problems of linear 
diffusion filtering. There has been a great deal of interest in this anisotropic diffusion 
as a useful tool for multiscale description of images, image segmentation, edge detec-
tion and image enhancement [12]. The basic idea behind anisotropic diffusion  is to 
evolve from an original image ),(

0
yxu , defined in a convex domain RRΩ ×⊂ , a 

family of increasingly smooth images u(x,y,t) derived from the solution of the fol-

lowing partial differential equation [11] : 
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where ∇u is the gradient of the image u, div is the divergence operator and c is the 
diffusion coefficient. The desirable diffusion coefficient c(.) should be such that equa-
tion (5) diffuses more in smooth areas and less around less intensity transitions, so 
that small variations in image intensity such as noise and unwanted texture are 
smoothed and edges are preserved. Another objective for the selection of c(.) is to 
incur backward diffusion around intensity transitions so that edges are sharpened, and 
to assure forward diffusion in smooth areas for noise removal [12]. Here are some of 
the previously employed diffusivity functions[13] : 

A. Linear diffusivity [14]:   1)( =sc ,                                               (6) 

B. Charbonnier diffusivity [15]:        
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C. Perona–Malik diffusivity [11] :   
2

1

1
)(

⎟
⎠
⎞

⎜
⎝
⎛+

=

k

s
sc                                    (8) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

2

exp)(
k

s
sc                              (9) 

D. Weickert diffusivity[10] :  
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 E. TV diffusivity [16] :   
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F. BFB diffusivity [17]:   
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2.2   Complex Diffusion 

In 1931 Schrodinger explored the possibility that one might use diffusion theory as a 
starting point for the derivation of the equations of quantum theory. These ideas were 
developed by Fuerth who indicated that the Schrodinger equation could be derived 
from the diffusion equation by introducing a relation between the diffusion coefficient 
and Planck’s constant, and stipulating that the probability amplitude of quantum the-
ory should be given by the resulting differential equation [18]. It has been the goal of 
a variety of subsequent approaches to derive the probabilistic equations of quantum 
mechanics from equations involving probabilistic or stochastic processes. The time 
dependent Schrodinger equation is the fundamental equation of quantum mechanics. 
In the simplest case for a particle without spin in an external field it has the form [19]  
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where ),( xtψψ = is the wave function of a quantum particle, m is the mass of the 

particle, is Planck’s constant, V(x) is the external field potential, Δ  is the Laplacian 

and 1−=i . With an initial condition )(| 00 xt ψψ == , requiring that 2),( Lt ∈⋅ψ for 
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corresponding power series, and the higher order terms are defined recursively by 
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called the Schrodinger operator, is interpreted as the energy operator of the particle 
under consideration. The first term is the kinetic energy and the second is the potential 
energy. The duality relations that exist between the Schrodinger equation and the 
diffusion theory have been studied in [9]. The standard linear diffusion equation is as 
in (4). From (13) and  (4) we can derive the following two equations. 

00|, IIICICI tRIxxIRxxRRT =−= =                                (15) 

0, 0| =+= =tIIxxRRxxIIT IICICI                                  (16) 

where RTI  is the image obtained at real plane and ITI  is the image obtained at imagi-

nary plane at time T  and  )cos(θ=RC , )sin(θ=IC .  The relation IxxRxx II θ>> holds 

for small theta approximation[8]: 

RxxRT II ≈ ;      RxxIxxIt III θ+≈                              (17)  

In (17) RI is controlled by a linear forward diffusion equation, whereas II is affected 

by both the real and imaginary equations. The above said method is linear complex 
diffusion equation. 
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A more efficient nonlinear complex diffusion can be written as in eqn. (18) [19] 
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where k is the threshold parameter Non linear complex diffusion seems to be more 
efficient than linear complex diffusion in terms of preserving edges. 

3   WEAD and WECD 

Both WEAD  and WECD are improvements of anisotropic and complex diffusion by 
adding BayesShrink [20] at the second stage. In the case of WEAD, Bayesian Shrink-
age of the non-linearly diffused signal is taken. The equation can be written as  

)( '
1−= nsn IBI                                               (20) 

and in the case of WECD the Bayesian Shrinkage of the real part of the non-linearly 
complex diffused signal is taken. The equation can be written as 

))(( '
1−= ncsn IRBI                                             (21) 

where Bs  is the bayesian shrink and '
1−nI  is anisotropic diffusion as shown in (5) at (n-1)th 

time and )( '
1−nc IR  is the real part of the non linearly diffused complex diffusion. 

Numerically (20) and (21) can be written as 

( )nnsn tdIBI Δ+= −1                                     (22) 

and 

))(( 1 nncsn tdIRBI Δ+= −                                 (23) 

respectively. 
The intention behind these two methods is to decrease the convergence time of the 

anisotropic diffusion and complex diffusion respectively. It is understood that the 
convergence time for denoising is directionally proportional to the image noise level. 
In the case of diffusion, as iteration continues, the noise level in image decreases (till 
it reaches the convergence point), but in a slow manner. But in the case of Bayesian 
Shrinkage, it just cut the frequencies above the threshold and that in a single step. An 
iterative Bayesian Shrinkage will not incur any change in the detail coefficients from  
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             (a)                                     (b)                                        (c)  

Fig. 2. Working of WEAD & WECD (a) Shows the convergence of a noisy image (conver-
gence at P). If this P can be shifted towards left, image quality can be increased and time com-
plexity can be reduced. Illustrated in (b). (c) shows the signal processed by WEAD & WECD. 
It can be seen that the convergence point is shifted to left and moved upwards.  

the first one. Now consider the case of WEAD and WECD, here the threshold for 
Bayesian shrinkage is recalculated each time after diffusion, and since as a result of  
two successive noise reduction step, it approaches the convergence point much faster 
than anisotropic diffusion or complex diffusion. 

As the convergence time decreases, image blurring can be restricted, and as a result 
image quality increases. The whole process is illustrated in Fig. 2. Fig. 2(a) shows the 
convergence of the image processed by diffusion methods. The convergence point is 
at P. i.e. at P we will get the better image, with the assumption that the input image is 
a noisy one. If this convergence point P can be shifted towards y-axis, its movement 
will be as in the figure shown in Fig 2 (b).i.e. if we pull the point P towards y-axis, it 
will move in a left-top fashion. Here the Bayesian shrinkage is the catalyst, which 
pulls the convergence point P of the anisotropic or complex diffusion towards a better 
place.   

4   Experimental Results and Comparative Analysis 

Experiments were carried out on various types of standard images. Comparisons and 
analysis were done on the basis of MSSIM (Mean Structural Similarity Index Matrix) 
[21] and PSNR (Peak Signal to Noise Ratio). SSIM is used to evaluate the overall 
image quality and is in the range 0 to 1. The SSIM works as follows, suppose x and y 
be two non negative image signals, one of the signals to have perfect quality, then the 
similarity measure can serve as a quantitative measure of the quality of the second 
signal. The system separates the task of similarity measurement into three compari-
sons: luminance, contrast and structure. The PSNR is given in decibel units (dB), 
which measure the ratio of the peak signal and the difference between two images. 

Fig.3 shows the performance of various filters against speckle noise. It can be seen 
that the image processed by WEAD and WECD given a better result than the other 
three speckle filters. Table 1 shows a comparative analysis of popular speckle filters 
with WEAD and WECD. Various levels of noise are added to image for testing its 
capability. In all the cases the performance of WEAD and WECD was superior to 
others. 
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                    (d)                                            (e)                                             (f) 

 
                     (g)                                             (h)                                              (i) 

 
                     (j)                                              (k)                                            (l) 

 
 

Fig. 3. Speckle affected image processed with various filters (a) Image with speckle noise 
(PSNR 18.85), (b) Image processed with Frost Filter (PSNR : 22.37), (c) Image Processed with 
Kuan Filter (PSNR : 23.12), (d) Image processed with SRAD (PSNR: 23.91), (e) Image proc-
essed with WEAD (PSNR : 25.40), (f) Image Processed with WECD (PSNR :24.52), (g), 
(h),(i), (j),(k),(l) shows the 3D plot of  (a),(b),(c),(d),(e),(f) 
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Table 1. Comparative analysis of various speckle filters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5   Conclusion 

In this paper a comparative analysis of Wavelet Embedded Anisotropic Diffusion 
(WEAD) and Wavelet Embedded Complex Diffusion (WECD) with other methods is 
done. When compared with other methods it can be seen that the complexity and 
processing time of WEAD and WECD is slightly more but the performance is supe-
rior. The hybrid concept used in WEAD and WECD can be extended to other PDE 
based methods. 
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