
Image Filtering in the Compressed Domain

Jayanta Mukherjee1 and Sanjit K. Mitra2

1 Dept. of Computer Science and Engineering
Indian Institute of Technology, Kharagpur, India
2 Dept. of Electrical and Computer Engineering
University of California, Santa Barbara, USA

jay@cse.iitkgp.ernet.in, mitra@ece.ucsb.edu

Abstract. Linear filtering of images is usually performed in the spatial
domain using the linear convolution operation. In the case of images
stored in the block DCT space, the linear filtering is usually performed
on the sub-image obtained by applying an inverse DCT to the block
DCT data. However, this results in severe blocking artifacts caused by
the boundary conditions of individual blocks as pixel values outside the
boundaries of the blocks are assumed to be zeros. To get around this
problem, we propose to use the symmetric convolution operation in such
a way that the operation becomes equivalent to the linear convolution
operation in the spatial domain. This is achieved by operating on larger
block sizes in the transform domain. We demonstrate its applications
in image sharpening and removal of blocking artifacts directly in the
compressed domain.

1 Introduction

Filtering of images is required in various applications of image processing, such
as noise removal, sharpening and edge extraction, anti-aliasing operations in im-
age resizing, etc. These operations are usually performed in the spatial domain.
As in many cases the images are stored in a compressed format, it is of interest
to perform these operations directly in the compressed domain. This reduces the
computational overhead associated with decompression and compression opera-
tions with the compressed stream. As DCT based JPEG standard is widely used
for image compression, a number of algorithms have been advanced to perform
various image processing operations in the DCT space [1]-[8].

In a classic work [9], Martucci has shown how the convolution-multiplication
property of the Fourier transform could be extended to the class of trigonomet-
ric transforms, namely the discrete cosine and sine transforms. He has pointed
out that like the discrete Fourier transform where circular convolution holds
the convolution-multiplication property, in trigonometric transforms symmetric
convolutions have similar properties. Hence, a class of linear filtering operations
which could be mapped to symmetric convolutions of images, could be easily
performed in the transform domain. In our work, we restrict our discussion to
images in the type-II block DCT format. We demonstrate here that the Gaussian
filtering could be performed in this domain and show its application in various

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 194–205, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Image Filtering in the Compressed Domain 195

image processing applications such as smoothing of the blocking artifacts of
highly compressed data, image sharpening, edge extraction, etc.

In the case of images stored in the block DCT space, linear filtering is usually
performed on the sub-image obtained by applying an inverse DCT to the block
DCT data. However, this results in severe blocking artifacts caused by the bound-
ary conditions of individual blocks as pixel values outside the boundaries of the
blocks are assumed to be zeros. On the other hand, the symmetric convolution has
an advantage over the linear convolution operation in this regard, as in this case
due to smooth transitions in the boundaries, the strength of blocking artifacts is
reduced in the processed image. Moreover it does not provide similar boundary
conditions of individual blocks what would have been there in the case of linear
convolution of images in the spatial domain. Our objective in this work is to per-
form filtering with the blocks in the compressed domain in such a way that the
symmetric convolution operation becomes equivalent to the linear convolution in
the spatial domain. This has been achieved by operating on larger block sizes in
the transform domain. To this end, we have used composition and decomposition
of the DCT blocks using the spatial relationship of the DCT coefficients devel-
oped by Jiang and Feng [10]. It may be noted that in [8], Shin and Kang used
the convolution-multiplicationproperty of the DCT for designing anti-aliasing low
pass filters for the purpose of image resizing. However, the approach was restricted
for image halving and image doubling operations with the filtered output in the
type-I DCT space. On the other hand, in our work given an image in the type-II
block-DCT space, the output is also of the same type.

2 Symmetric Convolution and Convolution-Multiplication
Properties in the DCT Domain

In this section we briefly review the concept of symmetric convolution and its
equivalent operation in the DCT domain [9]. For the sake of brevity, we restrict
our discussion to the 1-D case, as the concepts are trivially extended to 2-D.

Let h(n), 0 ≤ n ≤ N, be a sequence of length N + 1. Its N -point 1-D type-I
DCT is defined by

C1e{h(n)} = H
(N)
I (k) =

√
2
N α(k)

∑N
n=0 h(n) cos(nπk

N),
0 ≤ k ≤ N.

(1)

Likewise, x(n), 0 ≤ n ≤ N − 1, be a sequence of length N . Its N -point 1-D
type-II DCT is defined by

C2e{x(n)} = X
(N)
II (k) =

√
2
N α(k)

∑N−1
n=0 x(n) cos((2n+1)πk

2N),
0 ≤ k ≤ N − 1.

(2)

In Eqs. (1) and (2), α(k) is
√

1
2 for k = 0, otherwise its value is 1.

It should be noted that the type-I N−point DCT is defined with (N + 1)
samples, whereas, the type-II DCT is defined with N samples. They can be con-
sidered as generalized discrete Fourier transforms (GDFT’s) [9] of symmetrically

196 J. Mukherjee and S.K. Mitra

extended sequences. After symmetric extensions, the resulting periods in both
the cases are 2N . For the type-I DCT, the symmetric extension of the (N + 1)
samples is carried out as follows:

ĥ(n) =

{
h(n), 0 ≤ n ≤ N,

h(2N − n), N + 1 ≤ n ≤ 2N − 1,
(3)

whereas, for the type-II DCT the symmetric extension of the length-N input
sequence is carried out as follows (before applying GDFT to it):

x̂(n) =

{
x(n), 0 ≤ n ≤ N − 1,

x(2N − 1 − n), N ≤ n ≤ 2N − 1.
(4)

In this paper we refer the symmetric extensions of Eqs. (3) and (4) as type-I and
type-II symmetric extensions, respectively.

The symmetric convolution of two finite-length sequences of appropriate leng-
ths is nothing but the periodic convolution of their symmetrically extended se-
quences (having the same periods). The output resulting from this operation is
observed for a specific interval. This operation is illustrated below.

Let x(n), 0 ≤ n ≤ N − 1, and h(n), 0 ≤ n ≤ N, be two sequences. Denote the
type-II symmetric extension of x(n) as x̂(n) and the type-I symmetric extension
of h(n) as ĥ(n). Symmetric convolution of x(n) and h(n), denoted by the operator
� is then defined as follows.

y(n) = x(n)�h(n)
= x̂(n) �2N ĥ(n)
= Σn

k=0x̂(k)ĥ(n − k) + Σ2N−1
k=n+1x̂(k)ĥ(n − k + 2N),

0 ≤ n ≤ N − 1,

(5)

where the operator �2N denotes the 2N -point circular convolution.
In [9] Martucci has discussed how convolution-multiplication properties hold

for trigonometric transforms with symmetric convolution. In particular, with
respect to Eq. (5) this property is given by:

C2e{x(n)�h(n)} = C2e{x(n)}C1e{h(n)}. (6)

It should be noted that as the N -th coefficient of type-II DCT of x(n) (denoted
by X

(N)
II (N)) is zero, only N multiplications are involved in Eq. (6).

The above concepts could easily be extended to 2-D. Here, the M × N -point
type-I 2-D DCT is defined over (M + 1) × (N + 1) samples and the type-II
2-D DCT is defined over M × N samples. These can also be derived from the
2-D GDFT defined over symmetrically extended sequences as discussed ear-
lier. We denote the type-I and type-II DCTs of x(m, n) by C1e{x(m, n)} and
C2e{x(m, n)}, respectively. Similar convolution multiplication properties hold
also in 2-D and a trivial extension of Eq. (6) to 2-D is as follows:

C2e{x(m, n)�h(m, n)} = C2e{x(m, n)}C1e{h(m, n)} (7)

It should be noted here that Eq. (7) involves M × N multiplications.

Image Filtering in the Compressed Domain 197

3 Filtering in the Block DCT Space

The convolution-multiplication property as expressed by Eq. (7) has a particu-
lar significance in its application to filtering of images represented in the type-II
block DCT space. Given the type-I DCT of the impulse response of a filter,
one can easily compute the filtered output using Eq. (7). In such a situation
both the input (image) and the output (filtered image) remain in the type-II
DCT space. As different compression schemes such as JPEG and MPEG have
adopted the type-II DCT representation of images and videos, filtering in the
transform domain itself can be performed directly using Eq. (7). However, this
filtering operation in the transform domain is equivalent to symmetric convolu-
tion in the spatial (time) domain of an image (signal). Hence, only filters with
impulse responses that are even functions can be supported by this operation.
For performing the symmetric convolution (in this case), specifications for the
first (positive) quadrant (half) of the spatial (time) domain are only required.
This also reduces the storage requirement of the filter.

A Filtering Example. We illustrate next the implementation of a Gaussian
filter in the block DCT domain. A Gaussian filter has an impulse response that
is an even function and performs low-pass filtering. For a symmetric convolution
in 2-D, specifications in the first quadrant of the discretized image space are
required. The 2-D Gaussian impulse response in the first quadrant of the spatial
domain is given by

h(m, n) = 1
2πσxσy

e
− 1

2 (m2

σ2
x

+ n2

σ2
y

)
,

0 ≤ m ≤ M, 0 ≤ n ≤ N.
(8)

Let HI(k, l), 0 ≤ k ≤ M, 0 ≤ l ≤ N, denote the type-I DCT of h(m, n). Given a
M × N type-II DCT block B = {BII(k, l), 0 ≤ k < M, 0 ≤ l < N}, the output
F in the transform domain is then computed as follows:

F = {FII(k, l) = BII(k, l).HI(k, l), 0 ≤ k < M, 0 ≤ l < N}. (9)

In our work we have assumed σx = σy , and henceforth both are referred to as σ.

Boundary Conditions. Filtering in the spatial domain is implemented by a
linear convolution of an image with a finite length impulse response with the
boundaries of the image zero-padded. Because of the sharp transitions at the
boundaries, blocking artifacts occur at the boundaries. In a symmetric convo-
lution, symmetric extensions at the boundaries of a block results in smoother
transitions at the boundaries. As a result, the symmetric convolution results in
better boundary conditions than that obtained using the linear convolution. To
arrive at a smoother transition at the boundaries, with the help of Eq. (9), the
symmetric convolution is applied to an independent block (of size 8 × 8 in the
present case). It is of interest to compare its performances to that of a linear
convolution operation. In Table 1 the PSNR values of the images obtained using

198 J. Mukherjee and S.K. Mitra

the symmetric convolution operation have been computed by considering the
images obtained via a linear convolution as the reference. It is observed that
the quality of the filtered images obtained by symmetric convolution of 8 × 8
blocks suffer heavily due to blocking artifacts. This is also reflected by the low
PSNR values in Table 1. One of the objectives of the present work is to outline

Table 1. PSNR Values of Gaussian Filtered Images

PSNR (dB)
σ Pepper Mandrill Lena

2.0 28.73 28.89 28.65
3.0 26.10 27.12 26.43
4.0 24.91 26.17 25.41
5.0 24.85 26.09 25.40

filtering in the block DCT domain so that the operation becomes equivalent to
filtering of the whole image by a linear convolution with the impulse response
of the filter. Consider a block of size N in 1-D. Let the effective length of the
impulse response1 be K (beyond (K − 1)-th position sample values are zero).
Hence, the convolved output response (through symmetric or circular convolu-
tion) between the sample positions K and (N − 1 − K) will be the as same as
those obtained from linear convolution with the complete input sequence. This
implies that the smaller the value of K, the closer the result is to that of linearly
convolved output. This may be observed from the PSNR values in Table 1. In-
creasing values of σ make the effective length of the filter longer. For example,
effective half length of a Gaussian impulse response with σ will be around 2σ.
As can be seen in Table 1, PSNR values get degraded with increasing σ. Hence,
one should keep effective half length small to get performance similar to that of
the corresponding linear convolution operation. However, small value of N (e.g.
8) places a severe restriction on the filter design. In addition, filter response also
deviates largely from its desirable characteristics due to the truncation errors.
As a result, one should consider larger block sizes for this purpose. One could
form blocks of larger sizes from smaller sizes directly in the transform domain
following the technique of Jiang and Feng [10]. After performing filtering oper-
ation with larger blocks, the filtered blocks are decomposed into their original
sizes to get back the results in the specified block DCT domain.

Composition and Decomposition of the DCT Blocks. For convenience, we
discuss the spatial relationships of the DCT blocks in 1-D. Let C

(N)
i , 0 ≤ i ≥ M −

1, the i-th N -point DCT block of a sequence {x(n)}, n = 0, 1,, M × N − 1.
Jiang and Feng [10] showed that a block DCT transformation is nothing but an
orthonormal expansion of the sequence {x(n)} with a set of M × N basis vectors,
each of which is derived from the basis vectors of N -point DCT. Hence, there exists
1 For symmetric convolution, impulse response is defined for positive half only. In this

case we refer K as the effective half filter length.

Image Filtering in the Compressed Domain 199

an invertible linear transformation from M blocks of N -point DCT transform to
the usual MN -point DCT transform. In other words, for a sequence of N -point
DCT blocks {C(N)

i }, i = 0, 1,M −1, the corresponding composite DCT C(MN)

(MN -point DCT), there exists a matrix A(M,N) of size MN × MN such that2

C(M.N) = A(M,N).[C
(N)
0 C

(N)
1C

(N)
M−1]

T (10)

The above analysis in 1-D can also be extended to 2-D. For details one may
refer the discussion made in [6]. It should be noted that the conversion matri-
ces and their inverses are sparse [10]. Hence, lesser number of multiplications
and additions of two matrices is required than those required in usual matrix
multiplications.

4 Filtering with Block Composition and Decomposition

In our technique L×M number of 8×8 blocks are merged into a single block (say,
B

(LN×MN)). Then, the resulting block is subjected to the filtering operation. Let
h(m, n), 0 ≤ m ≤ 8L, 0 ≤ n ≤ 8M , be the filter response specified in the first
quadrant of the image space. Let HI(k, l), 0 ≤ k ≤ 8L, 0 ≤ l ≤ 8M , denote
the type-I DCT of h(m, n) (i.e., C1e(h(m, n)) = HI(k, l)). The filtered response
(say, B

(LN×MN)
f)is computed by multiplying an element of B

(LN×MN) with the

corresponding element of H (refer Eq. (9)). Finally, B
(LN×MN)
f is decomposed

into L × M blocks (of size 8 × 8). We refer this algorithm in our work as the
Block Filtering on Composition Decomposition (BFCD) algorithm.

We have performed the same Gaussian filtering given by Eq. (9) using the
BFCD algorithm. Table 2 lists the PSNR values of the images obtained using
the BFCD algorithm with the Gaussian filtered image obtained via linear con-
volution in the spatial domain as the reference for different values of L and M .
In our simulations we have kept the values of L and M same. It can be seen that
the PSNR values increases with increasing block sizes. It is also observed that
blocking artifacts are also less visible in the filtered images. One may interest-
ingly note that it is expected that the larger the block size, the closer the result
is to that obtained using the convolution. However, in Table 2 it can be seen that
for L(= M) = 4, the PSNR values are lower for all values of σ compared to that
obtained in the case of neighboring L and M values. In fact, the degradation
in the PSNR values happens when the block sizes are integral multiples of the
image size. In that case, a block at the right and bottom boundaries gets totally
fitted within the image. Hence the boundary effect of symmetric convolution is
felt from all sides of the block. When the block sizes are not integral multiple of
image sizes, a boundary block (containing right and bottom margin of the im-
age) contains a fraction of the image pixel data and the rest are assumed to be
zeros. In such a case, the distortion due to the boundary conditions of symmetric
convolution is less.
2 The transpose of a matrix X is denoted here by XT .

200 J. Mukherjee and S.K. Mitra

Table 2. PSNR values obtained using Gaussian filtering with BFCD

4.1 Computational Costs

In this section we compare the computational costs of the transform domain
technique with that of the spatial domain technique. If the costs of a single
multiplication and a single addition are M and A, respectively, then the total
cost for an operation requiring a number of multiplications and b number of
additions is aM + bA. We have also considered the cost of a multiplication
operations is three times of the cost of addition for providing a combined cost
measure following the similar practice used in an earlier work [13].

Computational Cost with Spatial Domain Operations. Costs associated
with spatial domain operation are due to computations involved in: (i) IDCT
of individual blocks, (ii) Convolution of the image with a (2K − 1) × (2K − 1)
mask, and (iii) DCT of individual blocks. It should be noted that the effective
filter size is (2K − 1) × (2K − 1). Outside this support, the filter’s impulse
response samples are taken as zeros. As a result, per pixel, one has to perform
(2K − 1)2 multiplications and ((2K − 1)2 − 1) additions. However, exploiting
the symmetry in the impulse response in the spatial domain (for the class of
filters under consideration of this paper), the number of multiplications could be
reduced to K2. In addition there are costs involved due to DCT and IDCT. We
make use of the computationally efficient algorithm developed by Loeffer et al
which computes 8× 8 DCT (as well as IDCT) with 176 multiplications and 464
additions [11]. Additionally 5.5 multiplications and 14.5 additions per pixel are
needed for performing the 8× 8 DCT and IDCT. Typically for K = 8, numbers
of multiplications and additions per pixel are 69.5 and 238.5, respectively.

Computational Cost with BFCD. Costs associated with BFCD are due to
computations involved in: (i) Composition of L×M blocks into a single block, (ii)
Element to element multiplications between DCT coefficients of composed block
and type-I DCT coefficient of the impulse response, and (iii) Decomposition of
the filtered block into L × M blocks of 8 size.

Following a similar approach for efficient computation of block composition
and decomposition of type-II DCT as discussed in [6], numbers of per pixel
operations for the BFCD algorithm are presented in Table 2 for different values

Image Filtering in the Compressed Domain 201

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Gaussian filtering with σ = 2.0 : (a)-(c): Filtering in the spatial domain using
linear convolution, (d)-(f) Filtering in the DCT domain using the BFCD algorithm for
L = M = 5 and (g)-(i): Filtering in the DCT domain using the OBFCD algorithm

of L (or M). Comparing the computational cost of the BFCD algorithm with
the corresponding spatial domain operation, it is evident that the BFCD is
a faster operation. For example for L = M = 5, the number of equivalent
addition operations for the BFCD algorithm is 393.45, while the requirement
for spatial domain approach (for K = 8) is 447. It may be noted however that
the BFCD algorithm provides an approximate solution. For L = M = 5, the
approximate Gaussian filtered image with σ = 2.0 maintains quite high PSNR
values (typically 35.56 dB, 33 dB and 33.14 dB for the images Pepper, Mandrill,
and Lena, respectively and refer Figures 1(d)-(f)) with respect to the filtered
image obtained through spatial convolution. For obtaining the exact solution,
we outline an overlapping block filtering approach in the compressed domain as
described in the following subsection.

4.2 Filtering with Overlapping Blocks

One way of removing the boundary effects is to apply BFCD in overlapping
set of blocks and retain the results of those blocks which are not affected by

202 J. Mukherjee and S.K. Mitra

Table 3. Performances of Gaussian Filtering with OBFCD

the boundary conditions due to the symmetric extension. For example, if the
effective half filter size is K × K (in spatial domain), BFCD could be ap-
plied to L × M number of blocks producing only the (L − 2�K

8 �) × (M −
2�K

8 �) central blocks as the output. Naturally, this will increase the redundancy
in the computation and there will be an increase in the number of multipli-
cations and additions as a consequence. We refer this algorithm as Overlap-
ping Block Filtering on Composition Decomposition (OBFCD). Figures 1(g)-(i)
show the results using OBFCD for L = 3 and M = 3. It can be seen that the
filtered images are almost the same as those obtained by the linear convolution
(Figures 1(a)-(c)). Table 3 presents the PSNR values obtained by OBFCD. In
this case, PSNR values are significantly higher (around 300 dB). This implies
that the OBFCD operation is equivalent to the spatial domain convolution. Ta-
ble 3 also includes the computational cost associated with OBFCD. In this case,
it can be seen that as OBFCD requires more computations than BFCD, it is
marginally faster than the corresponding spatial domain operation. Typically,
for L = M = 3, OBFCD requires 431.64 equivalent number of addition opera-
tions per pixel of the image, whereas for the spatial domain approach for K = 8,
the required number is 447. It is also observed from Table 3 that it is not neces-
sary to increase the value of L(= M) beyond 3. Output response does not vary
significantly with increasing L(≥ 3). It remains close to the spatially convolved
output. However this depends upon the effective half filter size (K × K). We
summarize our observations in the following lemma:

Lemma 1: The minimum value of L for effective half filter size K × K is given
by Lmin = 2�K

8 � + 1.

Proof: As (L − 2�K
8 �) > 0, L > 2�K

8 �. Hence, Lmin = 2�K
8 � + 1. �

5 Applications of Image Filtering

In this section we demonstrate two specific image processing applications of the
proposed image filtering.

Image Filtering in the Compressed Domain 203

(a) (b) (c)

Fig. 2. Image sharpening using OBFCD filtering with λ = 0.7, σ = 2.0, L = M = 3
and K = 8: (a) Peppers, (b) Mandrill, and (c) Lena.

(a) (c) (e)

(b) (d) (f)

Fig. 3. Removal of blocking artifacts of highly compressed JPEG images using OBFCD
filtering with σ = 2.0, L = M = 3 and K = 8. Images are compressed with JPEG
compression scheme with the quality factor 10.0:(a) Peppers: JPEG compressed, (b)
Peppers: After OBFCD filtering, (c) Mandrill: JPEG compressed, (d) Mandrill: After
OBFCD filtering, (e) Lena: JPEG compressed, and (f) Lena: After OBFCD filtering.

5.1 Image Sharpening

One approach to image sharpening operation is carried out by adding a fraction
of the high-pass filtered output to the original image. Let Bf be the low-pass
filtered block using BFCD or OBFCD in the transform domain. Let B be its
corresponding original block in the transform domain. Hence the sharpened block
in the transform domain is computed as follows:

Bs = B + λ(B − Bf). (11)

In Eq. (11) λ (> 0) is the parameter controlling the amount of image sharpening.
Figure 2 shows the sharpened images for λ = 0.7.

204 J. Mukherjee and S.K. Mitra

5.2 Blocking Artifacts Removal

Blocking artifacts are often visible in images reconstructed from highly com-
pressed data. These blocking artifacts can be masked by applying low pass fil-
tering directly in the compressed domain. We present here examples of such
filtering of JPEG compressed images (with quality factor =10.0). Blocking arti-
facts are clearly visible in Figures 3(a), (c), and (e), respectively. Their visibility
has been substantially reduced in the filtered images shown in Figures 3(b), (d),
and (f), respectively.

6 Concluding Remarks

In this paper we have described filtering in the block DCT space using the
convolution-multiplication properties of trigonometric transforms [9]. We have
made use of the block composition and decomposition methods of [10] for sat-
isfying the boundary conditions as in the case of linear convolution. We have
demonstrated the application of the proposed algorithm in performing two spe-
cific image processing operations such as enhancement, and removal of blocking
artifacts, in the transform domain.

Acknowledgment

This work was supported in part by a University of California MICRO grant with
matching support from Intel Corporation, Qualcomm Corporation and Xerox
Corporation.

References

1. B.C. Smith and L. Rowe, “Algorithms for manipulating compressed images,” IEEE
Comput. Graph. Applicat. Mag., vol. 13, pp. 34–42, September 1993.

2. A. Neri, G. Russo, and P. Talone, “Inter-block filtering and downsampling in DCT
domain,” Signal Processing: Image Commun., vol. 6, pp. 303–317, August 1994.

3. H.W. Park, Y.S. Park, and S.K. Oh, “L/M-image folding in block DCT domain
using symmetric convolution,” IEEE Trans. on Image Processing, vol. 12, pp.
1016–1034, September 2003.

4. J. Tang and E. Peli, “Image enhancement using a contrast measure in the com-
pressed domain,” IEEE Signal Processing Letters, vol. 10, pp. 289–292, October
2003.

5. B. Shen, I.K. Sethi, and V. Bhaskaran, “DCT convolution and its application in
compressed domain,” IEEE Trans. on Circuits and Systems for Video Technology,
vol. 8, pp. 947–952, December 1998.

6. J. Mukherjee and S.K. Mitra, “Arbitrary resizing of images in the DCT space,”
IEE Proc.: Vision, Image and Signal Processing, vol. 152, no. 2, pp. 152-164.

7. Y.S. Park and H.W. Park, “Design and analysis of an image resizing filter in the
block-DCT domain,” IEEE Trans. on Circuits and Systems for Video Technology,
vol. 14, pp. 274–279, February 2004.

Image Filtering in the Compressed Domain 205

8. G.S. Shin and M.G. Kang, “Transform domain enhanced resizing for a discrete-
cosine-transform-based codec,” Optical Engineerring., vol. 42, pp. 3204–3214,
November 2003.

9. S.A. Martucci, “Symmetric convolution and the discrete sine and cosine trans-
forms,” IEEE Trans. on Signal Processing, vol. 42, pp. 1038–1051, May 1994.

10. J. Jiang and G. Feng, “The spatial relationships of DCT coefficients between a block
and its sub-blocks,” IEEE Trans. on Signal Processing, vol. 50, pp. 1160–1169, May
2002.

11. C. Loeffer, A. Ligtenberg, and G.S. Moschytz, “Practical fast 1-D DCT algorithms
with 11 multiplications,” Proc. IEEE Int. Conf. Accoustics, Speech and Signal
Processing, vol. 2, pp. 988–991, May 1989.

12. R. Dugad and N. Ahuja, “A fast scheme for image size change in the compressed
domain,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 11, pp.
461–474, April 2001.

13. B. Shen, I.K. Sethi, and V. Bhaskaran, “Adaptive motion vector resampling for
compressed video downscaling, ” IEEE Trans. on Circuits and Systems for Video
Technology, vol. 9, pp. 929-936, September, 1999.

	Introduction
	Symmetric Convolution and Convolution-Multiplication Properties in the DCT Domain
	Filtering in the Block DCT Space
	Filtering with Block Composition and Decomposition
	Computational Costs
	Filtering with Overlapping Blocks

	Applications of Image Filtering
	Image Sharpening
	Blocking Artifacts Removal

	Concluding Remarks

