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Abstract. In this paper, a super-resolution algorithm tailored to en-
hance license plate numbers of moving vehicles in real traffic videos is
proposed. The algorithm uses the information available from multiple,
sub-pixel shifted, and noisy low-resolution observations to reconstruct
a high-resolution image of the number plate. The image to be super-
resolved is modeled as a Markov random field and is estimated from the
low-resolution observations by a graduated non-convexity optimization
procedure. To preserve edges in the reconstructed number plate for better
readability, a discontinuity adaptive regularizer is proposed. Experimen-
tal results are given on several real traffic sequences to demonstrate the
edge preserving capability of the proposed method and its robustness to
potential errors in motion and blur estimates. The method is computa-
tionally efficient as all operations are implemented locally in the image
domain.

1 Introduction

Intelligent Transport Systems (ITS) that combine electronics, information, com-
munication, and network technologies are being increasingly used to address
traffic problems in developed as well as developing countries [1]. One of the im-
portant goals of ITS is to decipher the identity of vehicles to enable monitoring
of offenses and crimes on public routes. If a low-resolution video surveillance
system captures an untoward incident on the road, a post-facto analysis of the
stored video may be required. However, due to image degradation, information
about the identity of the vehicles involved in the incident may not be easily
derivable. For improving the readability of license plate text, a method is sug-
gested in [2] that enhances only the character pixels while de-emphasizing the
background pixels. Cui et al. [3] have presented a multi-frame-based binariza-
tion scheme for the extraction and enhancement of characters in license plates.
Sato et al. [4] present a sub-pixel interpolation-based video text enhancement
scheme. But interpolation cannot restore the high frequency components lost
during sampling.

The video quality degrades due to various reasons such as motion blur, dis-
tance to camera, and noise. Cost considerations also dictate the resolution of
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surveillance cameras. Super-resolution is a process in which a high-resolution
(HR) image is constructed from a set of sub-pixel shifted low-resolution (LR)
images. Fundamentally, the task involves dealiasing and deblurring [5]. For the
problem on hand, since there is relative motion between the camera and the ve-
hicle, one can use sub-pixel motion information for enhancing the text in traffic
videos. In [6], a Bayesian super-resolution algorithm based on the simultaneous
autoregressive model developed for text image sequences is used to enhance li-
cense plates. In [7], a method for generating an HR slow-motion sequence from
compressed video is suggested, in which an area of interest such as the license
plate is slowed down and super-resolved. Miravet and Rodriguez [8] use neural
networks to perform super-resolution of license plates. A learning-based frame-
work has been proposed in [9] for zooming the digits in a license plate.

In this paper, our aim is to propose a super-resolution algorithm suitable for
enhancing license plate text in real traffic videos. This is a challenging problem
for several reasons. The distance of the camera to the vehicle is typically large
rendering it difficult for even humans to decipher the text. The low-resolution
images are quite noisy, and blurred. Motion and blur estimates derived from
such degraded images will not be correct. It is well-known fact that the per-
formance of super-resolution algorithms is good only when these parameters
are known accurately. The high-resolution license plate image is modeled as a
Markov Random Field (MRF) and a maximum a posteriori (MAP) estimate of
the super-resolved image is obtained, given the low-quality observations. The
purpose behind modeling by MRF which is a statistical characterization is to
lend robustness to errors in motion and blur estimates during the reconstruction
process. Since our objective is to improve readability of the license plate text,
we propose a discontinuity adaptive MRF (DAMRF) prior in which the degree
of interaction between pixels across edges is adjusted adaptively. Because this
prior is non-convex, we use Graduated Non-Convexity (GNC) which is a deter-
ministic annealing algorithm for performing optimization. All matrix operations
are implemented as local image operations for computational speed-up. The per-
formance of the proposed method is found to be quite good when tested on real
traffic video sequences.

2 Problem Formulation

The relation between a lexicographically ordered low-resolution observation and
the original high-resolution image can be expressed in matrix formulation as

yr = DHrWrx + nr, 1 ≤ r ≤ m (1)

Here, x is the original HR image of dimension N1N2 x 1, yr is the rth LR image
of dimension M1M2 x 1, D is a down-sampling matrix of dimension M1M2 x
N1N2. Matrix Hr is the camera defocus blur matrix, and Wr is the geometric
warping matrix for the rth frame. Each of these matrices is of dimension N1N2

x N1N2. The term nr is the noise in the rth frame. We assume that there are m
number of LR observations i.e., 1 ≤ r ≤ m.
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Solving for x in Eq. (1) given the observations yr is an ill-posed inverse prob-
lem. Because the blur operator may exhibit zeros in the frequency domain ren-
dering the process non-invertible. At high frequencies, there will be excessive
noise amplification since the transfer function of the blurring operator is low-
pass in nature. Moreover, the presence of noise in the observation process can
result in an observation sequence which is inconsistent with any scene. Hence,
it is important to use a priori information about x that will reduce the space
of solutions which conforms to the observed data. The Bayesian MAP formula-
tion allows for incorporation of prior knowledge about x to improve robustness
during the reconstruction process.

The MAP estimate of the super-resolved image x given m low-resolution im-
ages is given by

x̂ = arg max
x

{P (x|y1, · · · ym)} (2)

Using Bayes’ rule and taking the logarithm of the posterior probability, the MAP
estimate of x is given by

x̂ = argmax
x

{log[P (y1, · · · ym|x)] + log P (x)} (3)

We need to specify the prior image density P (x) and the conditional density
P (y1, · · · ym|x). Using the observation model in Eq. (1) and the fact that the
noise fields are statistically independent of X and as well as each other, we have

P (y1, · · · ym|x) =
1

(2πσ2)m
M1M2

2

exp

{
−

m∑
r=1

||yr − DHrWrx||2
2σ2

}
(4)

where σ2 is the variance of the observation noise.
Using Eq. (4) in Eq. (3) and neglecting constant terms, the MAP estimate

can be equivalently written as

x̂ = arg min
x

{
m∑

r=1

||yr − DHrWrx||2
2σ2

− log P (x)

}
(5)

3 Discontinuity Adaptive MRF (DAMRF) Prior

We model the super-resolved image to be estimated as a Markov random field
because it provides a foundation for the characterization of contextual con-
straints and the densities of the probability distributions of interacting features in
images.

MRF theory helps in analyzing the spatial dependencies of physical phenom-
ena. Let F be a random field over an N x N lattice of sites L = (i, j) : 1 ≤ i, j ≤ N .
The random field F is said to be an MRF on L with respect to a neighborhood
system η if
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1. P (F = f) > 0, ∀f ∈ F
2. P [Fi,j = fi,j |Fk,l = fk,l, ∀(k, l) �= (i, j)] =

P [Fi,j = fi,j |Fk,l = fk,l, (k, l) ∈ ηi,j ]

where ηi,j is the neighborhood of the site (i, j) and F denotes the configura-
tion space. It is natural to expect that the image intensity at a pixel will not
depend on the image data outside its neighborhood when the image data on its
neighborhood are given. MRF image models even with first order neighborhood
system are known to be powerful.

The practical use of MRF models can be largely ascribed to the equivalence
between MRFs and Gibbs Random Field (GRF) established by Hammersely
and Clifford [10]. The theorem states that F is an MRF on L with respect to
neighborhood η if and only if F is a Gibbs random field on L. i.e.,

P [F = f ] =
1
Z

exp{−U(f)} (6)

where Z is the partition function given by Z =
∑

f exp{−U(f)} and U(f) is the
energy function which is given by

U(f) =
∑
c∈C

Vc(f) (7)

Here, c is called the clique of the pair (L, η) which is a subset of sites in L in
which all pairs of sites are mutual neighbors. The set C is the set of all cliques.
Since we model the HR image X as an MRF, we can write

P [X = x] =
1
Z

exp{−U(x)} (8)

where
U(x) =

∑
c∈C

Vc(x) (9)

The choice of the clique potential Vc(x) is crucial as it embeds important prior
information about the image to be reconstructed. The prior model can be chosen
as ∑

c∈C

Vc(x) =
∑
c∈C

g(dcx)

where dcx is a local spatial activity measure of the image and has a small value
in smooth regions and a large value at edges. A common choice for the prior
model is a Gauss-Markov random field model [11] which has the form

g(n) = n2

However, this image model can result in a blurred estimate of the super-resolved
license plate, particularly along edges due to over-smoothing. Geman and Geman
[10] introduced the concept of line fields which helps in preserving edges. But
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the use of line fields makes the energy function non-differentiable. Schultz et al.
[12] have used a discontinuity preserving model of the form

g(n) =
{

n2, |n| ≤ T
2T (|n| − T ) + T 2, |n| > T

where T is the threshold parameter separating the quadratic and linear regions.
The threshold which is dependent on factors like image content and noise has
to be appropriately tuned for every new case. This threshold when fixed at low
values lets in noise and at high values penalizes weak edges.

To improve the readability of the license plate, we propose to use a discontinu-
ity adaptive MRF (DAMRF) model in which the degree of interaction between
pixels across edges is adjusted adaptively in order to preserve discontinuities. A
necessary condition for any regularization model to be adaptive to discontinuities
[13] is

lim
n→∞ |g′(n)| = lim

n→∞ |2nh(n)| = C (10)

where n is the difference between neighboring pixel values and C ∈ [0,∞) is a
constant. We propose to choose g(n) as

g(n) = γ − γe−n2/γ (11)

Fig. 1 shows the function defined by Eq. (11). It is convex in the band
Bγ =

(
−√

γ/2,
√

γ/2
)

and non-convex outside. The DA function allows the
smoothing strength to increase monotonically as n increases within the band Bγ

thus smoothing out noise. Outside this band, smoothing decreases as n increases
thereby preserving the discontinuities.

Using the DA prior function and assuming a first-order neighborhood for
MRF, we can write

∑
c∈C

Vc(x) =
N1∑
i=1

N2∑
j=1

4 ∗ γ − γ exp{−[x(i, j) − x(i, j − 1)]2/γ}

−γ exp{−[x(i, j) − x(i, j + 1)]2/γ} − γ exp{−[x(i, j) − x(i − 1, j)]2/γ}
−γ exp{−[x(i, j) − x(i + 1, j)]2/γ} (12)

Using Eqs. (12), (9), and (8) in Eq. (5) and finding the gradient at the nth

iteration, we get

grad(n) =
1
σ2

m∑
r=1

WT
r Hr

T DT (DHrWrx − yr) + λG(n) (13)

where λ is the regularization parameter and the gradient at (k, l) is given by

G(n)(k, l) = 2[x(i, j) − x(i, j − 1)] exp{−[x(i, j) − x(i, j − 1)]2/γ} +
2[x(i, j) − x(i, j + 1)] exp{−[x(i, j) − x(i, j + 1)]2/γ} +
2[x(i, j) − x(i − 1, j)] exp{−[x(i, j) − x(i − 1, j)]2/γ} +

2[x(i, j) − x(i + 1, j)] exp{−[x(i, j) − x(i + 1, j)]2/γ} (14)



30 K.V. Suresh and A.N. Rajagopalan

n→ 0 

γ
 

−Bγ 
Bγ 

g(n)↑ 

Fig. 1. A discontinuity adaptive function

4 Optimization Using Graduated Non-convexity

The DA function is non-convex and annealing can be used to overcome the
problem of local minima. There are two types of annealing: deterministic and
stochastic. We use a deterministic annealing method called Graduated Non-
Convexity (GNC) algorithm for optimization [13]. The idea of GNC is to start
with a strictly convex cost function by choosing a large value for γ and to find
a unique minimum using gradient descent in the first phase. This value is then
used as the initial value for the next phase of minimization with a smaller γ.
These steps are repeated by lowering the value of γ until convergence. It finds a
good solution with much less computational cost.

Algorithm. Super-resolution using GNC

Require: Observations {Yi}, blur kernels, and motion parameters.
1: Calculate X(0) as the average of the bilinearly up-sampled and aligned images.
2: Choose a convex γ(0) = 2v, where v is the maximum value of the gradient along

the x and y directions in the initial estimate X(0).
3: n = 0
4: Do a. Update X(n) using X(n+1) = X(n) − α grad(n)

b. Set n = n + 1;
c. If (norm(X(n) − X(n−1)) < ε) set γ(n)=max [γtarget, kγ(n−1)];

UNTIL (norm(X(n) − X(n−1)) < ε) and (γ(n) = γtarget);

5: Set X̂ = X(n)

where α is the step size, ε is a constant for testing convergence, and k is a factor
that takes γ(n) slowly towards γtarget.

Calculation of the gradient in Eq. (13) involves operations on large matrices
which can be computationally very intensive. The matrices Wr, Hr, and D, and
their transposes are implemented using only simple local image operations as
follows thereby yielding a considerable speed-up.
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– D is implemented by averaging q2 pixels in the higher dimension to calculate
each pixel in the lower dimension where q is the resolution factor.

– Hr is implemented by convolving the image with the respective blur kernels.
– Wr is implemented by warping the image using bilinear interpolation.
– DT is implemented by spreading equally the intensity value in the lower

dimension to the q2 pixels in the higher dimension.
– HT

r is implemented by convolution of the image with the flipped kernel.
i.e., if h(i, j) is the imaging blur kernel, then the flipped kernel ĥ satisfies
ĥ(i, j) = h(−i,−j), ∀(i, j).

– WT
r is implemented by backward warping if Wr is implemented by forward

warping.

Note that for implementation of matrix D in image domain, we need (q2 − 1)
additions and one multiplication (by 1

q2 ) whereas DT needs one multiplication
(by 1

q2 ) to calculate each pixel. The warping operation is typically performed
using bilinear interpolation. Each pixel value in the warped image is calculated
from its four neighboring pixels using the interpolation coefficients. Hence to
implement matrices Wr and WT

r in image domain, we need 7 additions and 8
multiplications (except at the borders) to determine each pixel. The number of
computations for blurring an image depends on the size of the blur kernel. If
we denote the kernel size as bl size, then we need bl size2 multiplications and
(bl size2 − 1) additions to compute each pixel.

The overall computational advantage that can be derived by implementing
the proposed algorithm using local image domain operations instead of large
matrix multiplications is given in Table 1. The table gives comparisons for im-
plementation of D, Hr, Wr, and their transposes. We assume the dimension of
the HR image to be N × N and that of the LR image to be M × M . The blur
kernel size is denoted by bl size and q is the resolution factor. Note that, there
is a substantial gain in implementing using local image operations.

Table 1. Computations required for Wr, Hr, D, and their transposes

Operation Matrix domain computations Image domain computations

Wr, W T
r N2 × N2 multiplications N2 × 8 multiplications

N2 × (N2 − 1) additions N2 × 7 additions

Hr, HT
r N2 × N2 multiplications N2 × bl size2 multiplications

N2 × (N2 − 1) additions N2 × (bl size2 − 1) additions

D M2 × N2 multiplications M2 × 1 multiplications
M2 × (N2 − 1) additions M2 × (q2 − 1) additions

DT N2 × M2 multiplications M2 × 1 multiplications
N2 × (M2 − 1) additions -Nil-

5 Experimental Results

In this section, we demonstrate the performance of the proposed method for
super-resolving license plates and also compare it with other techniques. In our



32 K.V. Suresh and A.N. Rajagopalan

experiments, we considered resolution improvement by a factor of 2. The values
chosen for the various parameters were λ = 0.005, γ(0) = 300, γtarget = 10,
k = 0.95, and α = 6. We considered real data for testing our method. For this
purpose, video frames (25 frames/second) of a busy traffic way were captured
using a SONY handycam. The data was gathered from a flyover of height about
20 feet. The viewing angle of the camera relative to the ground was about 45o.
The movement of vehicles was away from the camera. Because we use successive
frames, scaling is negligible and is ignored. Since the vehicles were moving away
from the camera and roughly along a straight line there was no rotation. Our
objective is to go beyond the resolution of the camera to enhance the license
plate region by using the motion information in the captured observations.

In the first example, the license plate (of size 16 × 58 pixels) of a moving car
was cropped from four consecutive frames of the traffic video and these low-
quality frames are shown in Figs. 2(a)-2(d). The sub-pixel motion corresponding
to LR frames was computed using [14]. The resultant motion estimates were fed
as input to different super-resolution techniques, namely the LS method [15],
the GMRF method [11], the HMRF method [12], and the proposed method.
Note that these motion estimates are not accurate since they are computed
from noisy, and aliased observations. The assumption of Gaussian PSF for the
camera defocus blur is also an approximation. Results corresponding to each
of the above methods is shown in Fig. 2. The reconstructed image using the
LS technique (Fig. 2(e)) is poor as it is very sensitive to errors in motion and
blur estimates. The output of the GMRF algorithm (Fig. 2(f)) is quite blurred
and some of the numbers are not at all discernible. HMRF performs relatively
better (Fig. 2(g)) but some of the numbers are not easily readable. For example,
the second digit ‘3’ can be confused with ‘9’ while the last digit ‘4’ can be
misinterpreted as ‘6’. In comparison, the proposed DAMRF algorithm yields the
best result with distinctly defined edges as shown in Fig. 2(h). The license plate
number (K 8354) can be read clearly without any ambiguity.

In the next example, the license plate of another car was cropped from four
consecutive frames (Figs. 3(a)-3(d)). Note that the visual quality of these plates
is very poor. The output corresponding to different super-resolution methods is
given in Figs. 3(e)-3(h). We again observe that the reconstructed image using
DAMRF is significantly better compared to existing methods. The text on the

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. (a)-(d) Cropped license plates. Super-resolved image using (e) LS, (f) GMRF,
(g) HMRF, and (h) DAMRF.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a)-(d) Cropped license plates. Super-resolved image using (e) LS, (f) GMRF,
(g) HMRF, and (h) DAMRF.

(a) (b) (c) (d) (e)

Fig. 4. (a)–(d) Low resolution observations. (e) Super-resolved images using the pro-
posed method.

license plate comes out clearly in the super-resolved image using the proposed
method.

In Fig. 4 we have given results corresponding to the license plates of some more
cars. Note that in all the cases, the readability of the number plate improves sig-
nificantly after performing super-resolution on the captured video frames using
the proposed method.

6 Conclusions

A robust super-resolution algorithm using a discontinuity adaptive prior is pro-
posed to enhance the license plate text of moving vehicles. The algorithm fuses
the information available from multiple observations of a vehicle to obtain a
high quality license plate image. The high-resolution image is modeled as an
MRF and is estimated using graduated non-convexity. The effectiveness of the
proposed method was demonstrated on many real traffic video sequences. The
proposed DAMRF method is robust to errors in motion and blur estimates and
preserves the edges in the reconstructed license plate text.
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