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Abstract. This paper presents a novel image enhancement algorithm using a 
multilevel windowed inverse sigmoid (MWIS) function for rendering images 
captured under extremely non uniform lighting conditions. MWIS based image 
enhancement is a combination of three processes viz. adaptive intensity 
enhancement, contrast enhancement and color restoration. Adaptive intensity 
enhancement uses the non linear transfer function to pull up the intensity of 
underexposed pixels and to pull down the intensity of overexposed pixels of the 
input image. Contrast enhancement tunes the intensity of each pixel’s 
magnitude with respect to its surrounding pixels. A color restoration process 
based on relationship between spectral bands and the luminance of the original 
image is applied to convert the enhanced intensity image back to a color image. 

1   Introduction 

A human observer can clearly see individual objects both in the sunlight and 
shadowed areas, since the eye locally adapts while scanning different regions of the 
scene. The size of pupil is variable to accommodate different levels of radiance from 
different regions in a scene, while the camera aperture is fixed when capturing the 
scene. Current imaging and display devices such as CRT monitors (100:1) and 
printers are limited dynamic range devices. The best photographic prints can provide 
contrasts up to 103:1. But the real world scenes can reach a dynamic range of six 
orders of magnitude (106:1). When attempting to display high dynamic range images 
into low dynamic range devices, either the low intensity areas, which are 
underexposed, or the high intensity areas, which are overexposed, cannot be seen. To 
handle this problem, various image processing techniques such as histogram 
equalization, gamma correction, logarithmic compression and levels/curves method 
were developed. They are usually based on global processing, so they have some 
limitations such as loosing some features during processing, and not enhancing some 
features. More advanced image enhancement techniques have been developed to 
obtain better performance. These techniques are able to compress the dynamic range 
while maintaining or improving local contrast to achieve high visual quality.  

Various techniques were developed to deal with images captured in non uniform 
lighting conditions. Retinex based algorithms developed from E.Land’s theory [1] are 
effective techniques dealing with dynamic range compression and color constancy. 
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Rahman et al. [2-4] modified the Retinex theory with another center/surround method 
(Multi Scale Retinex with Color Restoration - MSRCR) which computes the new 
pixel by a ratio of the treated pixel to the weighted average of the surrounding pixels. 
The drawback of MSRCR is that the color restoration function changes image 
chromatics in an unpredictable fashion. To treat this problem dynamic range and color 
constancy are computed independently. The MSR is only applied to the luminance 
channel to preserve the chromatics of the original image. Luma dependent nonlinear 
enhancement (LDNE) [5] processes only the luminance information of the color 
images instead of all three spectral bands to reduce the processing time. Color noise in 
shadow/dark areas are suppressed by adding the convolution results instead of 
multiplying them. In MSRCR and LDNE, dynamic range compression and contrast 
enhancement are implemented jointly but AINDANE (Adaptive Integrated 
Neighborhood Dependent Approach for Nonlinear Enhancement) [6] and IRME 
(Illuminance-Reflectance Model for Nonlinear Enhancement) [7] use separate 
processes for dynamic range compression and contrast enhancement. 

In computer graphics, the tone mapping solves the problem of reproducing the 
HDR images on LDR devices [8-9]. Larson et al. [10] developed a tone-mapping 
operator based on iterative histogram adjustment and spatial filtering process. The 
aim of this operator is to produce images that preserve visibility in high dynamic 
range scenes. Chiu et al. [11] considered that tone mapping should be neighborhood 
dependent. Schlik [12] developed the Chiu’s algorithm by using a first-degree rational 
polynomial function to map high-contrast scene luminance to display system values. 
This function is not adaptive enough for contrast enhancement for all images. 
Pattanaik et al. [13] presented a tone-mapping algorithm that represents the pattern, 
luminance and color processing in the Human Visual System. This algorithm allows 
not only chromatic adaptation, but also luminance adaptation. However, as other local 
processing algorithms, it is sensitive to strong halo effects. To eliminate the halo 
effects, Tumblin and Turk [14] developed a Low Curvature Image Simplifier (LCIS) 
method. This method can accept inputs from real world image maps and produces 
necessary output for any device. LCIS separates the input scene into large features 
and fine details, compressing the former and preserving the latter. This method 
drastically reduces the dynamic range, but tends to overemphasize fine details. 
Raanan Fattal [15] used the gradient field of the luminance image for HDR 
compression by attenuating the magnitudes of large gradients. 

A new image enhancement technique named MWISE (Multilevel Windowed 
Inverse Sigmoid for Enhancement) is proposed in this paper for enhancing the images 
captured in extremely non-uniform lighting conditions. MWISE is capable of 
compressing bright regions and at the same time enhancing the dark regions by 
preserving the main structure of the illuminance - reflectance modality.  

2   The MWISE Algorithm 

The MWISE algorithm for the enhancement of color images consists of three major 
constituents, namely adaptive intensity enhancement, contrast enhancement and color 
restoration. The structure of MWISE is shown in Fig.1. 
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Fig. 1. Structure of the MWISE algorithm for color image enhancement 

2.1   Adaptive Intensity Enhancement  

First, Color images in RGB color space are converted to intensity (grayscale) images 
using NTSC standard method defined as                            

                   BGRyxI ×+×+×= 114.0587.02989.0),(                          (1) 

where R, G, B are the red, green and blue components of a color image. 

Illumination Estimation. Illumination in an image is characterized by two com- 
ponents: illumination ),( yxL  and reflectance ),( yxR , and is defined as: 

                     ),().,(),( yxLyxRyxI =                                                   (2) 

Illumination represents the low frequency components of the image and reflectance 
represents the high frequency components. Hence a Gaussian low-pass filtered result 
of the intensity image is considered as illumination, which is obtained as: 

∑∑
−

=

−

=

++=
1

0

1

0

),(),(),(
N

n

M

m

ynxmFnmIyxL                            (3) 

where F is the 2D Gaussian function with size M×N and can be defined as: 
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Averaging Illumination and Intensity for Bright Pixels. The estimated illumination 
is smooth in the parts of the image illuminated from the same luminous source, but 
however, it can also present abrupt variation when the scene is illuminated by 
different light sources in the case of background lights. So, the illumination 
estimation: for less than 80% of the highest gray scale value (i.e. 255 for 8-bit image) 
is the illumination which is obtained in (3) and for the other gray scale values, a 
weighted averaging of illumination and intensity values are given by: 
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This averaging produces minimum halo effect in bright regions by reducing the 
influence of dark neighboring pixels. After obtaining new illumination estimation, the 
reflectance estimation can be obtained by (2). 

Enhancing Dark Illumination and Compressing Bright Illumination. The new 
illumination value ),( yxL′ is normalized to the range [0 10] using (6) and then 

treated by an enhancement and compression process to increase the illumination 
values of low-illumination (dark) pixels, and to reduce the illumination values of 
high-illumination (bright) pixels using the MWIS transfer function. 
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Then normalized illumination values are treated by this process also normalizes the 
illumination values to the range [0 1]. This transfer function can be defined as 
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where α is a parameter to adjust the curve for dark pixels and β  is a parameter to 

adjust the curve for bright pixels. For adaptive-ness of MWIS transfer function, 
intensity image is divided into sub images of sizes based on the image enhancement 
experiments and can be expressed as: 

 0.0625 0.0625m M n N= × = ×                    (8) 

where m and n define the size of the sub image, M and N define the size of the 
intensity image.  The parametersα and β can be determined based on the mean of 

the darkest sub-image Lm_min and mean of the brightest sub image Lm_max as: 
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A dark image can be determined as an image which has no bright sub image (i.e. 

max_mL is less than 127) and a bright image can be determined as an image which has 

no dark sub-image (i.e. 
min_mL is more than 127) For these images the shapes of the 

curves are adjusted according to the value of the image’s global mean as:  

               5.1
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Where mI is the global mean of the image. For some type of images, it is desired to 

pull up and pull down the illuminations very much at the same time, but at the 
expense of color consistency. In this situation, the shapes of the curves can be 
adjusted manually. In Fig.2, the shape of the curve for very dark images obtained 
by 5.0=β  and α is tuned with respect to the global mean of the image, and shape of 

the curve for very bright image with 5.0=α  and β  is tuned according to the global 

mean of the image.  

Combination of Enhanced-Illumination and Reflectance. The visually significant 
image features (high frequency components) are combined with enhanced 

 

 

Fig. 2. Various curves of MWIS transfer function 
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illumination to obtain illumination and reflectance components during contrast 
enhancement.  

  ),(),(),( yxRyxLyxI enhenh ′′=                                        (13) 

During this process, a few bright pixels which are surrounded by dark pixels leave out 
the range [0 1].  

2.2   Contrast Enhancement 

A surrounding pixel-dependent contrast enhancement technique is used to obtain 
sufficient contrast, even higher than that of the original image. 

Obtaining Intensity Information of Surrounding Pixels. For a M×N intensity 
image, 2D discrete spatial convolution with a Gaussian kernel is used to obtain the 
intensity information of surrounding pixels and is expressed as 

 ∑∑
−

=

−

=

++=
1

0

1

0

),(),(),(
N

n

M

m
conv ynxmFnmIyxI                      (14) 

Where Gaussian function can be obtained as 
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Where ∫∫ == 1),( dxdyyxFK  and c is the scale or Gaussian surround space 

constant which determines the size of the neighborhood.   

Intensity Transformation Process. Surrounding intensity information is compared 
with the intensity value of the center pixel and the result is used to identify the value 
of corresponding enhanced intensity pixel by 

 ( , )( , ) 255 ( , )E x y
enhS x y I x y= ×                                         (16) 

where ),( yxS is the pixel intensity value after contrast enhancement and ),( yxE is 

the ratio of the surrounding intensity information over input image, 
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2.3   Color Restoration 

In the MWISE algorithm, a basic linear color restoration process based on the 
chromatic information of the input image is applied. This process can be expressed as 
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where j = r, g, b represents red, green, blue spectral band respectively. 
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3   Experimental Results and Discussion 

The MWIS algorithm was applied to process a large number of images consisting of 
very dark and bright parts. The main beneficial point of the MWISE algorithm over 
MSRCR, LDNE, AINDANE and IRME is the enhancement of the overexposed 
regions. In Fig.3 the image is composed of only bright regions. For this type of 
images, curvature of the second inverse sigmoid is large. In Fig.4 the image is 
composed of only dark regions. For this type of images, curvature of first inverse 
sigmoid is large. MWISE is also tested on daylight images (Fig.5) that do not have 
extremely dark and bright regions. While most of the images are well enhanced, some 
type of images that have mostly blue-sky turns to gray. The brightness of the sky 
misguides the parameter β , so the curve of the second inverse sigmoid function 
shapes more than required. 

   
   (a)                                                   (b)                                                  (c) 

Fig. 3. Image under “over illumination”; (a)Original image; (b) Enhanced image with 
5.0=α  and 5.1=β ; (c) Enhanced image with 5.0=α  and 5.3=β  

      (a)                                              (b)                                                 (c) 

Fig. 4. Image under “low illumination”; (a) Original image; (b) Enhanced image with 
4020.1=α  and 5.0=β ; (c) Enhanced image with 5.3=α  and 5.0=β  

In Figure 6, a sample image is processed for comparison among the 
performancesof the MWISE, MSRCR, AINDANE, and IRME techniques. The 
original image in Fig. 6(a) has some overexposed regions near the lamp and some  
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                   (a)                                               (b)                                                  (c)             

Fig. 5. Image on “daylight”;  (a) Original image; (b) Enhanced image with 28.1=α  and 
3627.1=β ; (c) Enhanced image with 28.1=α  and 5.0=β  

dark regions at the corners. The enhancement result with MSRCR introduced 
unnatural color or artifacts in dark areas as illustrated in Fig. 6(b). Also, the bright 
region near the lamp still cannot be seen. It can be observed that the images processed 
with AINDANE (Fig. 6(c)) and IRME (Fig. 6(d)) have a higher visual quality than 
those processed by MSRCR. They yield higher color accuracy and a better balance 
between the luminance and the contrast across the whole image. But, they are not 
sufficient to enhance overexposed regions. The result of the proposed algorithm is 
illustrated in Fig. 6(e). MWISE produced sufficient luminance enhancement in both 
dark and bright regions and also demonstrate high contrast, since it has flexibility and 
adaptiveness of AINDANE and IRME. Another comparison among these algorithms 
is also performed on different sample image shown in Fig. 7(a). Figures 7(b), 7(c), 
7(d) and 7(e) illustrate the enhancement results of MSRCR, AINDANE, IRME and 
MWISE algorithms, respectively. All of the algorithms performed well for dark 
regions. MSRCR has lack of good contrast for this image. MSRCR and AINDANE 
did not perform well on overexposed regions (middle region of the hurricane). For 
this image, although IRME has the capability to enhance bright region due to the 
shape of the transfer function, the contrast of bright region is not sufficient. 

3.1   Quantitative Evaluation 

The visibility in original images and enhanced images are evaluated by using a 
statistical method [16], which is a connection between numerical and visual 
representations. A large number of images are tested over this statistical method. The 
evaluation of different images and their corresponding enhanced images are plotted 
(in Fig.8). The points, which are expressed with squares, represent the original images 
and the points, which are expressed with circles, represent the enhanced images.  

Effects of the MWISE algorithm are depicted by transferring images towards the 
visually optimal region (rectangle). Since the original images had very dark and/or 
very bright properties, the enhanced images have not moved inside the visually 
optimal region, but they are moving towards this region. 
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(a) Original image (b) Enhanced image with MSRCR 

  

(c) Enhanced image with AINDANE (d) Enhanced image with IRME 

 

(e) Enhanced image with MWIS algorithm (α =0.8, β=2) 

Fig. 6. Performance comparisons of the proposed technique 
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(a) Original image (b) Enhanced image with MSRCR           

  

(c) Enhanced image with AINDANE  (d) Enhanced image with IRME          

 

(e) Enhanced image with MWIS algorithm((α =1, β=1.5) 

Fig. 7. Performance comparisons of the proposed technique 
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Fig. 8. Image quality evaluations 

4   Conclusion  

A new image enhancement algorithm for extremely non- uniform lighting images 
based on a multilevel windowed inverse sigmoid transfer function has been presented 
in this paper. The intensity enhancement, contrast enhancement and color restoration 
issues were considered separately to make the algorithm more adaptable to image 
characteristics. The input intensity image was separated into the illumination and 
reflectance components preserving the important features of the image. The adaptive 
ness of the transfer function, depending on the statistical information of the input 
image and its sub images, makes the algorithm more flexible and easier to control.  To 
reduce the halo effects in bright regions, neighborhood average of illumination and 
intensity for bright regions was used as estimated illumination. It is observed that the 
MWISE algorithm yields visually optimal results on images captured under extremely 
non uniform lighting conditions. This algorithm would be a promising image 
enhancement technique that can be useful in further image analysis for pattern 
recognition applications. 
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