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Abstract. Visibility culling of a scene is a crucial stage for interactive
graphics applications, particularly for scenes with thousands of objects.
The culling time must be small for it to be effective. A hierarchical rep-
resentation of the scene is used for efficient culling tests. However, when
there are multiple view frustums (as in a tiled display wall), visibility
culling time becomes substantial and cannot be hidden by pipelining
it with other stages of rendering. In this paper, we address the prob-
lem of culling an object to a hierarchically organized set of frustums,
such as those found in tiled displays and shadow volume computation.
We present an adaptive algorithm to unfold the twin hierarchies at ev-
ery stage in the culling procedure. Our algorithm computes from-point
visibility and is conservative. The precomputation required is minimal,
allowing our approach to be applied for dynamic scenes as well. We show
performance of our technique over different variants of culling a scene to
multiple frustums. We also show results for dynamic scenes.

1 Introduction

Visibility culling of a scene is central to any interactive graphics application.
The idea is to limit the geometry sent down the rendering pipeline to only the
geometry with a fair chance of finally becoming visible. It is important for the
culling stage to be fast for it to be effective; otherwise the performance gain
achieved will be overshadowed. Hierarchical scene structures are commonly used
to speed up the process. Hierarchical culling of bounding boxes to a view frustum
is fast and sufficient in most applications. Assarsson et al. [1] described several
optimizations for view frustum culling. Bittner et al. [2] exploited temporal co-
herence to minimize the number of occlusion queries for occlusion culling to a
view frustum.

Fast frustum culling is particularly crucial for rendering to multiple frustums
simultaneously. (1) CAVE [3] is a multi-display virtual-reality environment which
requires visibility culling to multiple frustums. (2) Another application using
multiple frustums involves occlusion culling of a scene by eliminating objects in
the frustum shadows formed by all principal occluders, as proposed by Hudson
et al. [4]. (3) Cluster-based tiled displays require fast culling to multiple frus-
tums corresponding to each tile in the display (Figure 7). (4) Multi-projector
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display systems [5] use several overlapping frustums corresponding to each of
the projectors. (5) Multiple frustums are also required to compute visibility for
architectural environments [6,7,8].

Any real-world interactive visualization application typically deals with scenes
with millions of triangles. An effective way of arranging the scene involves scene
graphs. The spatial hierarchy of a scene graph greatly reduces the number of
checks for visibility culling. Similarly, when the number of frustums is large, it
is natural to also treat them hierarchically. In the most general case, we would
want to cull any general object hierarchy to any general frustum hierarchy.

In this paper, we use a hierarchical representation of view frustums to cull the
scene to all the frustums coherently. Our method adaptively merges the two hi-
erarchies – the scene hierarchy and the frustum hierarchy – for visibility culling.
To this end, we present an algorithm which determines which hierarchy to tra-
verse and when. To our knowledge, this is the first work which considers this
decision to be important and effective for coherent culling to multiple frustums.
Here, we address the specific problem of culling an object hierarchy to a frustum
hierarchy for a tiled display wall (Figure 7). Our tiled display wall system [9] uses
a number of commodity systems in a cluster, each powering a tile. The system
uses a scene graph (Open Scene Graph [10]) representation of a massive scene.
The network resources limit the amount of data that can be transmitted, thereby
making efficient visibility culling an important requirement. The individual frus-
tums in the display wall have a fixed arrangement with respect to each other
and have a common viewpoint. Such a tight arrangement of frustums motivates
our visibility culling algorithm to perform coherent computations which are both
fast and scalable. We are able to bring down the culling time for a hierarchical
version of UNC’s power plant model for a 4×4 tiled display from about 14 ms
using the traditional approach to about 5 ms using our adaptive algorithm.

Our visibility culling approach performs from-point visibility as opposed to
from-region visibility performed by several other culling techniques [11,12]. Be-
sides, our culling approach is conservative, as opposed to other probabilistic or
approximate culling techniques [13,14,15], which can lead to serious rendering
artifacts. This is critical for the kind of applications in which the multiple frus-
tums come into use. For a cluster-based tiled display wall, for instance, the load
on the network needs to be minimized and the interactivity needs to be pre-
served. Culling determines the geometry that will be cached on the rendering
nodes. Approximate culling techniques lead to probabilistic prefetching, often
leading to freezes during rendering.

We present experimental results from our visibility culling algorithm for the
Fatehpur Sikri model and UNC’s Power plant model. We have focused only
on fast culling to multiple frustums, and have therefore not discussed the later
stages in the rendering pipeline. We compare the results with different variants
for culling to multiple frustums. We also investigate the performance of our
culling technique for a dynamic scene, when many objects change position. This
involves additional overheads in updating the bounding boxes at many nodes
before the culling can be performed.
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2 Related Work

Visibility determination has been a fundamental problem in computer graphics
[16] since the scene is typically much larger than the graphics rendering capabili-
ties. Cláudio et al. [17] and Durand et al. [18] have presented comprehensive visi-
bility surveys. View-frustum culling algorithms avoid rendering geometry that is
outside the viewing frustum. Hierarchical techniques have been developed [19],
as well as other optimizations [1,14]. Funkhouser et al. [20] described the first
published system that could support models larger than main memory, based
on the from-region visibility algorithm of Teller and Sequin [6]. Aliaga et al. [12]
described MMR, the first published system to handle models with tens of mil-
lions of polygons at interactive frame rates, although it did require an expensive
high-end multi-processor graphics workstation.

Assarsson et al. [1] presented several optimizations for fast view frustum
culling, using different kinds of bounding boxes and bounding sphere. For their
octant test, they split the view frustum in half along each axes, resulting in eight
parts, like the first subdivision of an octree. Using bounding sphere for objects,
it is sufficient to test for culling against the outer three planes of the octant in
which the center of the bounding sphere lies. This can be extended to general
bounding volumes as well [21]. Our frustum hierarchy approach is inspired by
this idea of subdividing the view-frustum into octants. However, Assarsson et
al. divide the view-frustum only once, whereas we complete this procedure to
construct a full frustum hierarchy. Bittner et al. [2] used hardware occlusion
query techniques to exploit temporal coherence and reduce CPU-GPU stalls for
occlusion culling. Since the occlusion culling information holds good for all frus-
tums for our specific case of tiled display walls, separate occlusion culling for
each frustum is not necessary.

Another way to look at occlusion relationships is to use the fact that a viewer
cannot see the occludee if it is inside the shadow generated by the occluder.
Hudson et al. [4] proposed an approach based on dynamically choosing a set
of occluders, and computing their shadow frusta, which is used for culling the
bounding boxes of a hierarchy of objects. Bittner et al. [22] improved this method
by combining the shadow frusta of the occluders into an occlusion tree. This
method has an advantage over Hudson et al. as the comparison in the latter
is done on a single tree as opposed to each of the m frustums individually,
hence improving the time complexity from O(m) to O(log m). Our approach
of constructing a tree of view frustums resembles this technique of handling
frustums. We go even further to combine the frustum hierarchy with object
hierarchy.

3 Object Hierarchy and Frustum Hierarchy

We work with two hierarchies in our culling technique. The first is the spatial
hierarchy of the scene, represented using a scene graph (OpenGL Performer
[23], Open Scene Graph [10]). In the Object Hierarchy (OH), each node has a
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bounding volume such that the bounding volume of an internal node entirely
encloses the bounding volumes of all its children. Only leaf nodes contain actual
geometry. A well-formed scene graph would have compact geometry nodes so
that bounding volumes can be used to provide accurate visibility tests.

Fig. 1. Frustum Hierarchy (FH). White boxes represent view frustums. Their hierar-
chical grouping for 3 levels is shown on the right. The bisection plane at each internal
node is also shown. Note that near and far planes are not shown.

The second hierarchy we deal with is that of view frustums (Figure 1). Our
frustum Hierarchy (FH) is analogous to a BSP-like division. In the most general
scenario, a number of independent view frustums in 3D are grouped together
hierarchically. Every internal node’s bounding volume encloses that of its chil-
dren. A plane bisects each internal node’s volume into half-spaces containing
its children. The leaf nodes in the hierarchy correspond to individual view frus-
tums. For a tiled display wall application, each rendering node corresponds to
one view-frustum. The root node in the frustum hierarchy corresponds to the
primary view-frustum (shown in Figure 1). The case of overlapping view frus-
tums, commonly used for multi-projector displays, is easily handled by treating
the overlapping regions as additional independent frustums.

4 Adaptive Traversal of Object and Frustum Hierarchies

Ideal traversal through OH and FH is crucial for optimal performance. The
preprocessing step required is discussed in Section 4.1. In Section 4.2, we first
discuss several schemes for traversing these hierarchies, and then present our
adaptive algorithm.

4.1 Preprocessing

Oriented bounding boxes (OBB) give a compact representation of object’s ge-
ometry and orientation in space. It is desirable that culling be performed to
OBBs only as opposed to the whole geometry since it is fast and conservative.
During the preprocessing stage, the scene graph is loaded into main memory. For
a set of 3D points, their eigen vectors represent their orientation. Therefore, at
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the leaf nodes of OH, the eigen vectors of the geometry points provide oriented
bounding boxes. However, at the internal nodes, we compute the eigen vectors
using just the children’s bounding box vertices. This is a fast approximation of
an oriented bounding box for the internal node.

A Frustum hierarchy, FH, is constructed, with each internal node having
a bisection plane. Beginning at the root node, root in OH, call Algorithm 1
as preprocess(root). Preprocessing takes place in a bottom-up fashion. The
bounding box information thereby computed is stored with each of the nodes in
the scene graph.

Algorithm 1. preprocess(OH Node)
1: G ⇐ φ
2: if not leaf(OH Node) then
3: for all child c of OH Node do
4: preprocess(c)
5: G ⇐ G+ bounding box vertices of c
6: end for
7: else
8: G ⇐ G+ OH Node.getGeometry()
9: end if

10: e ⇐ compute eigen vectors of G
11: BBOX ⇐ compute OBB from e
12: OH Node.save bbox(BBOX)

4.2 Frustum Culling Approaches

Our culling procedure involves a first level culling to the primary view frustum,
so as to eliminate objects completely outside the view. The next step involves
classifying these n objects to m view frustums. A naive approach involves testing
each of these objects with all the view frustums. The expected time complexity
for this approach is O(mn). We now discuss several other hierarchical variations
to this approach, followed by our adaptive algorithm.

OH without FH: This is a commonly used approach, wherein the scene graph is
culled to all the view frustums one by one. It does not exploit any hierarchical
arrangement of frustums, and therefore performs poorly with large number of
view frustums. This approach has a average time complexity of O(m log n).

FH without OH: If the frustum hierarchy only is utilized, each object has to be
tested against it, beginning from the root. For every internal node in the FH, if
an object is present entirely on one side of its bisection plane, its visibility can
be safely eliminated from all frustums lying in the other half-space. Therefore,
we can potentially eliminate half the number of frustums at each node in the
hierarchy. Hence, the average case time complexity is O(n log m).



Culling an Object Hierarchy to a Frustum Hierarchy 257

Adaptive OH and FH: In both the above cases, the two hierarchies (OH and FH)
are used independent of each other, i.e. when the OH is traversed, frustums are
treated non-hierarchically and when FH is traversed, objects are treated non-
hierarchically. Hence, adaptive merging of the two hierarchies leads to substantial
reduction in computations. Consider the different cases:

– At leaf nodes in OH, only FH traversal remains.
– At leaf nodes in FH, only OH traversal remains.
– At all internal nodes, decide whether to further traverse FH or OH.

The precomputed data stored during preprocessing stage (Section 4.1) is utilized
to arrive at the above decision. If an OH-node is not intersected by an FH-node’s
bisection plane, the frustum hierarchy should be unfolded further, keeping the
OH intact. Unfolding OH here leads to a large number of OH-nodes to deal with
in the next iteration. If the bisection plane of an FH-node intersects the bounding
box of an OH-node, OH should be unfolded, thereby breaking the object to
its constituents. We classify the children into three groups (L=Left, C=Cuts,
R=Right) depending on their position with respect to the FH-node’s bisection
plane. The group L contains all the children lying completely in negative half-
space, R contains those lying in the positive and C contains the rest (the objects
that cut the plane).

For each node OH_Node determined to be visible in the primary frustum, the al-
gorithm adaptive_OHandFH_Cull(OH_Node, FH_root) (Algorithm 2) is called,
where FH_root is the FH root. ClassifyLCR() is an accessory function which
categorizes OH_Node’s children into the sets L, C and R according to their posi-
tion with respect to an FH node’s current bisection plane. The algorithm recurses
for the members in L and R to the corresponding child-frustum (Algorithm 2:
lines 11, 14) while the members of C is recursed for both the child-frustums
(Algorithm 2: lines 7–8). When the FH is exhausted, the remaining objects are
marked to be visible in the corresponding view frustum. The objects in set C
need to be checked with both the half-spaces. However, the number of frustums
under consideration get reduced by half for objects in set L and R, thereby po-
tentially halving the computations. The number of children to deal with might
increase because classifyLCR() breaks up an OH node into its children. At this
stage, there are two options. We can carry on with each object independently
or can regroup the objects in sets L and R into pseudo-groups. This involves re-
computing the bounding box for the pseudo-group. Pseudo-groups do not really
exist in the scene graph but can reduce the computations required for further
stages. Our experiments show that this regrouping is advantageous only for scene
graphs with very high branching factor. Otherwise, the overhead of forming the
pseudo-group overshadow the gain achieved. Note that pseudo regrouping is not
shown in Algorithm 2.

Our adaptive algorithm follows an O(m nlogp q+(p−q) log m) time complexity,
on a quick analysis, where p is the average branching factor of OH and q is the
average number of nodes in set C. Exact analysis is difficult as it depends on
the goodness of the branching and the spatial separation of child nodes at each
level. Hence, p and q depend heavily on the scene structure, the view frustums
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arrangement and the viewpoint. The average case time complexity follows a sub-
linear pattern. In the worst case, the complexity becomes O(m n) when q = p,
when all OH leaves fall in all FH leaves, and the hierarchy is inconsequential.
In the best cast, the complexity is O(log m) when q = 0. This is the situation
when only one FH leaf contains the entire OH. In practice, the algorithm is able
to adapt to variations in complexity of the visible scene, which is very common
during interactive walkthroughs.

Algorithm 2. adaptive OHandFH Cull(OH Node, FH Node)
1: if leaf(FH Node) then
2: Mark OH Node as visible to FH Node
3: return
4: end if
5: [L, C, R] ⇐ ClassifyLCR(OH Node, FH Node.plane)
6: for all c in set C do
7: adaptive OHandFH Cull(c, FH Node.neg)
8: adaptive OHandFH Cull(c, FH Node.pos)
9: end for

10: for all l in set L do
11: adaptive OHandFH Cull(l, FH Node.neg)
12: end for
13: for all r in set R do
14: adaptive OHandFH Cull(r, FH Node.pos)
15: end for

Fig. 2. Hierarchy of objects as visible to a 2×2 tiled arrangement of view frustums.
The grouping of objects is shown. F1, F2, F3 and F4 represent view frustums. Their
adaptive culling is shown in Figure 3.

Line 2 of Algorithm 2 marks the OH_node as visible to the FH_node. Line 5
performs the classification of the object node to L, C and R. Lines 7, 8 recurses
for every child in C, the set of objects cut by the plane. Lines 11 and 14 recurse
to the next stage of FH.

The algorithm can easily deal with dynamic scenes as well, since the preprocess-
ing stage involves cheap eigen-vector calculations only. The visibility determina-
tion remains unchanged. Besides, very little extra data is stored for the
algorithm execution. Note that bisection using a plane is possible in Algorithm 2
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Fig. 3. Adaptive culling of the scene structure in Figure 2. The object and frustum
hierarchies are shown along with already determined visibility list. Working nodes are
shown as light-gray. Dark gray objects are the ones that need to be recursed further. (a)
OH root is classified as per the bisection plane of the FH root. L, C, R classification is
shown. (b) Continuing culling for set C. (c) Continuing culling for set L. (d) Continuing
culling for set R.

for an application such as tiled display walls because the tile sizes are uniform
and the frustum space ultimately divides to form the individual tile frustums. This
might not be true for non-uniform frustums. However, a hierarchy of frustums can
still be built. Only, in such a case, the terminal frustum in line 2 of Algorithm 2
will further involve a check for visibility before marking an object as visible.

5 Experimental Results

We perform several walkthrough experiments on models of different scene com-
plexities to test the performance of the adaptive algorithm. We used a hierar-
chical model of Fatehpur Sikri, which has 1.6 M triangles spread over 770 nodes
(288 internal + 482 leaf), with an average branching factor of 2.67. We also used
a hierarchical model of UNC’s power plant, which has geometry spread over 5037
nodes (1118 internal + 3919 leaf), with an average branching factor of 4.5.

Figure 4(a) shows a logarithmic plot of culling time taken by various algo-
rithms discussed in Section 4.2 for a 4000 frame walkthrough on the Fatehpur
model. The walkthrough is such that the entire scene is visible. This is a worst-
case situation; typical walkthroughs perform better. Our adaptive algorithm
(Algorithm 2) takes the least time almost throughout the walkthrough. This is
followed by the FH without OH approach. The OH without FH approach per-
forms worse than both these two.

Figure 4(b) shows the culling time for a walkthrough on the power plant
model. The plots for OH without FH and FH without OH approaches coincide, as
opposed to lagging performance by OH without FH approach in Figure 4(a). This
is because the high branching factor in OH makes the OH without FH approach
more significant. However, the adaptive algorithm performs significantly better
than all the other approaches.
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(a) A 4000 frame walkthrough on the
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model

Fig. 4. Culling performance for various approaches. The lower the time, the better.
Our adaptive algorithm outperforms others almost throughout the walkthrough.
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Fig. 5. Culling scalability performance on the Fatehpur Sikri model

We conducted scalability tests with respect to the tile size for different config-
urations of tiled displays. Figure 5 shows the plots for our adaptive algorithm for
an 11000 frame walkthrough of the Fatehpur Sikri model. The algorithm takes
about 11 ms, on an average, for culling to an 8×8 configuration, thereby making
the culling applicable for setting up display walls of such configuration. Other-
wise culling time limits the overall frame rate achievable on a server-managed
display wall such as ours(Figure 7, [9]), where the rendering is done by client
machines and data-transmission can be performed in parallel with the culling of
the next frame.

Figure 6 shows the performance of our adaptive algorithm for a dynamic
scene. Different percentages of the scene is changed prior to every update. Dy-
namic scenes have objects moving in space. The bounding boxes of these objects
and their parents till the OH root need to be recomputed. Fast OBB com-
putations (Section 4.1) permit dynamic scenes to be culled at interactive frame
rates. Although speed can be further increased with axis-aligned bounding boxes
(AABB), it comes at the cost of poor visibility culling. In an optimal situation,



Culling an Object Hierarchy to a Frustum Hierarchy 261

0  1000 2000 3000 4000 5000 6000 7000 8000 9000
0

10

20

30

40

50

60

70

80

Frame number

C
ul

lin
g 

T
im

e 
(m

s)
, a

ve
ra

ge
d 

ov
er

 5
0 

fr
am

es

(a) OBBs used at dynamic nodes

0  1000 2000 3000 4000 5000 6000 7000 8000 9000
0

10

20

30

40

50

60

70

80

Frame number

C
ul

lin
g 

T
im

e 
(m

s)
, a

ve
ra

ge
d 

ov
er

 5
0 

fr
am

es

Static Scene

0.1% objects changed per update

0.2% objects changed per update

0.3% objects changed per update

0.6% objects changed per update

(b) AABBs used at dynamic nodes

Fig. 6. Culling performance on the power plant scene for different percentages of dy-
namic objects. The model has a total of 5037 objects. The performance with AABB is
better than with OBB but at the cost of over-conservative visibility culling.

Fig. 7. A 4×4 display wall rendering of UNC’s Powerplant. The combined resolution
is 12 MPixels. Efficient rendering to a display wall requires fast visibility culling of
the scene to all the frustums. Adaptive culling by merging of the object and frustum
hierarchies makes this possible for even bigger tile configurations.

a hybrid of both OBBs and AABBs should be used. It is beneficial to compute
AABBs for dynamic portions of the scene. Note that the percentage of dynamic
objects shown in Figure 6 are extreme case situations. In practice, the scenes
are less dynamic and so the adaptive algorithm performs even better.

6 Conclusions and Future Work

We presented a conservative, from-point visibility culling approach for culling a
large scene to a hierarchy of view-frustums. We presented an adaptive algorithm
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which determines the optimal path, merging object and frustum hierarchies.
The algorithm performs logarithmically in practice. Due to this, it can scale well
for large number of frustums which is critical for the application scenario of a
tiled display wall. The performance gain by our algorithm is shown on several
walkthrough experiments. The algorithm makes culling for very large tile display
setups feasible. Huge models can be handled at interactive frame rates. We also
showed that the adaptive algorithm is applicable for dynamic scenes as well.

Though we showed the performance on a two-dimensional, tight-fit array of
frustums, the results can be extended to other hierarchies of frustums. We are
currently extending it to other typical situations like a 2D array of frustums
with small overlap used in multi-projector displays. We are also working on
culling to general frustum hierarchies needed for applications like shadow volume
computations. A BSP-tree like partitioning of the frustums, very similar to our
current approach, will be needed in such cases.
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