
Real-Time Streaming and Rendering of Terrains

Soumyajit Deb1,2, Shiben Bhattacharjee1, Suryakant Patidar1,
and P.J. Narayanan1

1 Centre for Visual Information Technology
International Institute of Information Technology Hyderabad

2 Microsoft Research India, Banglore
sdeb@microsoft.com, {shiben@research., skp@research., pjn@}iiit.ac.in

Abstract. Terrains and other geometric models have been traditionally
stored locally. Their remote access presents the characteristics that are a
combination of file serving and realtime streaming like audio-visual me-
dia. This paper presents a terrain streaming system based upon a client
server architecture to handle heterogeneous clients over low-bandwidth
networks. We present an efficient representation for handling terrains
streaming. We design a client-server system that utilizes this represen-
tation to stream virtual environments containing terrains and overlayed
geometry efficiently. We handle dynamic entities in environment and the
synchronization of the same between multiple clients. We also present
a method of sharing and storing terrain annotations for collaboration
between multiple users. We conclude by presenting preliminary perfor-
mance data for the streaming system.

1 Introduction

Traditional graphics applications store all geometry locally in the main memory
itself. Geometry can also be stored remotely and received progressively when
needed and rendered on the fly. Streaming of geometry of large virtual envi-
ronments can be beneficial and difficult if the network bandwidth is low. Such
systems find applications when data cannot be replicated easily. Dynamic envi-
ronments such as those used for battlefield visualization involving real terrains
and multiple players is an example. Different users may read/update parts of
the virtual environment while maintaining a collaborative and consistent system
across heterogeneous users connected from client machines with different capa-
bilities and network bandwidths. A similar situation is presented by massive,
multi-player online games consisting of dynamic persistent worlds.

Geometry cannot be split into frames or chunks unlike media like audio and
video. Some parts of a model cannot be lost unlike video where the loss of a
frame may be acceptable. A complete model is necessary to render geometry.
Each may be used for rendering several frames and hence need to be stored at
the client. In this sense, geometry should be served like files from a file-server.
On the other hand, geometric model should reach in time for real-time rendering
of the final rendered video. Delay can result in the undesirable effects like the
freezing and popping. The real-time constraint makes it possible for us to talk

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 276–288, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Real-Time Streaming and Rendering of Terrains 277

about streaming geometry. The parallel in geometry to the reduced bit-rate
encoding of audio and video is level of detail (LOD), which is the representation
of the shape at different levels of approximations. The server can send a lower
detail model to the client to reduce various resource requirements. Thus, remote
access of geometry is an interesting mix of data serving and content streaming.

In this paper, we address the issue of streaming terrain data over networks.
Real terrain datasets can span multiple gigabytes in size and are difficult to
render interactively using brute force methods. Level of detail methods must be
used to reduce the amount of detail to be rendered. However, if we are to ren-
der terrains remotely, the biggest bottleneck is the available network bandwidth
between the server and the client. We need to optimize the transmitted terrain
data accordingly depending upon client type and and available bandwidth. This
is a hard problem as the system must achieve performance akin to local ren-
dering at the client end. This is compounded by the fact that the system must
keep track of any dynamic entities that exist in the environment and update
the clients accordingly. This work extends to terrains an earlier work on geom-
etry streaming [1]. We propose an optimized terrain representation based upon
tiles for efficient transmission and rendering in Section 3. In Section 4 we look
at the basic requirements of a geometry streaming system and our design and
implementation of the same. Section 5 presents efficient ways of adapting these
techniques for a terrain rendering system including performance improvements
for the system using the ideas of prefetching and caching. Methods to synchro-
nize and render multiple dynamic entities in the environment are discussed in 6
followed by experimental results in 7 and conclusions 8.

2 Related Work

Media streaming over the web has been popular and several standards exist.
Most media streamers allow a specific bitrate to be chosen based upon available
bandwidth and dynamic changing of bitrate to adjust accurately to client pa-
rameters. Google Earth/Maps streams maps and satellite imagery in real-time
over the internet. However it does not address individual client characteristics
which may lead to lags and freezes.

Djurcilov and Earnshaw added compression of models to VRML and devel-
oped an integrated visualization system, where the basic selection of data is
done by the user [2,3]. However even after revisions of VRML which included
geometry compression (Li et al.) [4], it is not usable for web-based serving since
data needs to be transmitted before rendering can begin. Commercial products
for remote visualization includes VisServer software from Silicon Graphics which
allows rendering of any OpenGL application on remote clients by transmission of
individual frames. Funkhouser describes a system based upon client server archi-
tecture for multi-user virtual environments [5]. The WireGL/Chromium project
is a system that provides the familiar OpenGL API to each node in a cluster,
virtualizing multiple graphics accelerators into a sort-first parallel renderer with
a parallel interface [6]. [7] uses a crude model at the client for navigation and

278 S. Deb et al.

streams actual high quality views from the server using viewing parameters to
protect high detail content.

Among geometry based approaches, Schneider and Martin describe a frame-
work which adapts to the client characteristics including network bandwidth and
the client’s graphics capabilities [8]. Martin describes an Adaptive Rendering
and Transmission Environment (ARTE) framework that facilitates the delivery
of 3D models while monitoring the resources available [9]. This uses MPEG4
stream compression which may lead to lag in response to user input. Teler de-
scribes a remote rendering system utilizing path prediction and bandwidth based
level of detail reduction [10]. This system fails to dynamically change/adapt pa-
rameters during the course of the walk-through which may lead to suboptimal
performance. Deb and Narayanan develop a system to stream general polygonal
models between a server and client in [1]. However this approach is suitable for
only tessellated models and may not be the optimal for terrains.

In recent terrain rendering approaches, Lossaso and Hoppe[11] describe how
terrains can be broken into geometric clipmaps of varying metric sizes and that
these clipmaps can be used as Level of Details. This is however not the most opti-
mal representation for streaming. Their method also calculates the blend/morph
factor on a per vertex basis because of inhomoegeneous tile sizes which may slow
down lower end clients. Wagner [12] divides the terrain into regular square tiles for
rendering. However the view frustum culling approach used by [12] fails in cases
when the terrain has large variations in heights. The ground plane is unable to
include the projection of tiles, which are near to the camera looking at horizon,
since they are out of that projection but inside the view frustum. Pouderoux and
Marvie [13] design an out of core terrain rendering system based upon a heuristic
metric. However they do not address the problem of network streaming.

In our system, we follow a technique similar to Wagner [12] for dividing the
terrain into square tiles to make it easy for the geometry streaming system to
select regular data to be transmitted to the client. We can calculate blending
factors on a per tile basis because of the use of a regular tile structure thus
reducing the amount of computation. Given the tile indices, their object space
location is easily computable making query systems on the terrain efficient. How-
ever regular tiles become very small at the extremities of the viewing frustum.
We take care of this problem by using very low levels of detail for such tiles in
view. We tweak Wagner’s frustum culling technique by having the projection on
realtime average height of terrain in the view and not simply the ground plane.

3 Terrain Rendering

We describe the various steps involved in first creating our terrain representa-
tion and then rendering it. Before rendering the tiles, we must store them in
a data structure that is suitable for both rendering and also for transmission.
View frustum culling is required to select only the necessary entities in the view
frustum. VFC is very useful for streaming as it allows us to select only a small
portion of the entire terrain for transmission.

Real-Time Streaming and Rendering of Terrains 279

3.1 Data Organization

Terrain data consists of a height value for every point x, y on a rectangular
grid. We divide it into tiles of equal size for rendering. By equal we mean they
cover the same rectangular area on the heightmap. To handle levels of detail,
we arrange the data in a specific way. For a tile with size 2n × 2n height values,
we store m number of LODs, m ≤ n, m is a user defined number based upon
characteristics and size of the terrain. We also keep the distance between adjacent
heights in x, y as sx, sy Fig 1. For an LOD l we have 2n−l+1+1×2n−l+1+1 (l > 0)
number of height values and 2n + 1× 2n + 1 for l = 0. Note the extra heights at
the end corners of the tiles, they are the height values at the starting corners of
the next tile; kept as they help in stitching (see Section 3.5). This means l = 0
holds highest detail and l = m holds lowest detail as illustrated in Fig. 1. For
l > 0 we keep original height values h at (2i, 2j) locations, 0 ≤ i, j ≤ 2n−l. We
replace the height values at (2i, 2j + 1) locations with avg(h2i,2j , h2i,2j+2), at
(2i + 1, 2j) locations with avg(h2i,2j , h2i+2,2j), at (2i + 1, 2j + 1) locations with
avg(h2i,2j , h2i+2,2j+2); where i, j vary as bounded. This is done so that while
rendering when LOD l with alternate height values dropped, we don’t see any
change in the structure.

o o o o o

o o o o o

o o o o o

o o o o o

o o o o o

o o o o oo o o o
o o o o oo o o o
o o o o oo o o o
o o o o oo o o o
o o o o oo o o o
o o o o oo o o o
o o o o oo o o o
o o o o oo o o o
o o o o oo o o o

o o o

o o o

o o o

o o

o o
Sx Sx

l=0
2 +1 x 2 +1

All heights original

SxSx

33
l=1

2 +1 x 2 +1
Alternative heights

interpolated

33
l=2

2 +1 x 2 +1
Alternative heights

interpolated

22
l=3

2 +1 x 2 +1
Alternative heights

interpolated

11

Fig. 1. Data organization: An e.g. with n = 3 and m = 3, blue circled height values
are original, rest are interpolated. Note that, they occupy the same area on ground.

3.2 View Frustum Culling

In each frame, we query the graphics API for view frustum equations and calcu-
late the projection P of the frustum (generally a trapezoid) on the base plain.
This base plain is z = ah, ah is the approximated average height of the terrain
in view of previous frame. This is because we haven’t accessed the terrain data
yet and thus will be using the data from previous frame assuming that the view
hasn’t changed much. We then calculate orthogonal bounding rectangle of P .
We can directly map the coordinates of the bounding rectangle to tile indices.
Using these tile indices, we find other tiles that are inside P (Fig.2). We keep
the indices that return positive in a tile buffer Bt for use in rendering. We do not

280 S. Deb et al.

Bounding rectangle

Projection of view
frustum on the

base plain

Distances separated by
LOD transition distance

Base Line

Tiles rejected out of
projection

Tiles assigned with l=2

Tiles assigned with l=1

Tiles assigned with l=0

Fig. 2. View frustum culling and LOD assignment

need to do 3D view frustum culling as terrains are injective functions on x, y,
and thus can be reduced to 2D in turn to reduce number of required calculations.

3.3 LOD and Blending Factor Calculation

Using the camera parameters we calculate a base line, that is perpendicular to
the view vector and parallel to the ground plane. For each tile in Bt, we calculate
the perpendicular distance d of its mid point from this line (Fig.2). This distance
d is used to calculate LOD l as �d/lt� where lt is the LOD transition distance. We
choose this distance d instead of the direct distance of the tile from the camera
because if the field of view of the camera is high, we shall end up rendering tiles
at the corner of screen that are actually close to camera in screen space but far
in object space in very low level of detail. The value frac(d/lt) is the blending
factor α. α is used for smooth level of detail changes of tiles as explained in
Section 3.4. We save l and α in Bt along with the tile indices.

3.4 Rendering

With all data in place, the tiles can be rendered from Bt. For all tile indices
in Bt, we load the level l and l + 1 of that tile. The index is clamped to m to
avoid memory exceptions. The distance between adjacent heights for l can be
calculated as (sxl

, syl
) = (sx, sy)2l Fig 1. We calculate the heights h for l > 0 as

h = h(2i,2j)l
(1 − α) + h(i,j)(l+1)

α

l = 0 is a special case: h = h(i,j)0
(1−α) + h(i,j)1

α, i, j vary as bounded. We can
now see that when α is 0, h = h(2i,2j)l

, and when α is 1, h = h(i,j)(l+1)
. Thus

this blending factor is able to smoothly change between the two height values
of 2 different LODs of the same tile as we move the camera. On the fly, we also
calculate the average of the heights at the mid point of these tiles, ah, which will
be used in the next frame for view frustum culling (See Section 3.2).

Real-Time Streaming and Rendering of Terrains 281

i,j

i+1,j

i,j+1

i,j

i+1,j

i,j+1

Fig. 3. Tile Stitching: tile i, j is stitched only to i, j + 1 and i + 1, j

3.5 Tile Stitching

Since every tile is getting assigned l and α independently, we find un-tessellated
areas near the corner of each of the tiles. We assume that a tile on the ground
with LOD l can have a nearby tile whose LOD can be only l − 1 or l + 1. This
makes tile stitching easy and smooth blending of LODs works perfectly. Our
assumption remains true iff lt is always more than the maximum distance a tile
can extend on the ground, i.e., the tile is never able to skip an LOD in between.
So for a tile index ti, tj in Bt, we get the l and α of t(i+1), tj and ti, t(j+1), and
use them for the corner heights of ti, tj Fig 3. Note that we are not looking
at (i − 1, j), (i, j − 1) indices of tiles since those corners are already stitched by
earlier tiles.

4 General Geometry Streaming

The basic objective of a geometry streamer is to provide each client with data
appropriate to it as quickly and efficiently as possible. The server must allow the
highest quality rendered output possible for the client and transmit geometry
and assets that allow the client to maintain an acceptable frame-rate. Changing
latencies should not cause the system to freeze or hang for long durations during
the walkthrough. The server should adapt to the different client parameters such
as graphics capability, network bandwidth and connection latency. Ideally, these
must be met strictly. We briefly outline the basic requirements of a Client-Server
geometry streaming system. The basic architecture of the system is similar to
the system in [1] which may be referred to for further information.

Transparency: A transparent streaming system treats remote and local ob-
jects without distinction. The architecture of the system allows a user program
to include remote models from multiple servers into its local virtual environment.
The client API will handle the necessary tasks such as server interaction, data
caching and management etc., transparently. The streamed data will match with
the client machine’s capabilities and the network properties.

Support for varying clients and networks: No client should receive a
model that it cannot handle at interactive rates. A suitable level of detail is sent
to each client based on capabilities of rendering hardware. Multiple levels of

282 S. Deb et al.

detail may be used for improved performance on low-end clients. The heightmap
and model detail can be reduced to handle different connection speeds to avoid
freezing. A model matching the client’s capabilities may be sent subsequently
by progressively refining the original heightmap or model. Frequent updates to
the model at the client can be avoided by sending the client more information
than immediately necessary. Continuous connection monitoring and adjustment
of detail is essential for good streaming performance.

Support for dynamic objects and local modifications: The server mod-
ule should keep track of the static and dynamic objects transmitted to the client
for each of the connected clients. Changes to an existing model in the virtual
environment are notified to all clients possessing the same. All clients must have
access to dynamic objects and their state information. User programs can have
local control of transmitted model. It can mix and match remote models with
local models, and can modify local copies of remote models.

The system consists of the Server Module, the Client Module and the Terrain
Renderer (User Program) as shown in shown in Fig 4.

Fig. 4. Geometry Streaming System Block Diagram

The basic functions of the server module include managing a database of
heightmaps and models, accepting incoming connections from different clients,
serving the clients appropriately and quickly and handling dynamic objects in
the virtual environment. Server receives requests for transmission from clients.
In response, it generates and transmits a representation of the model suitable
for the client. Each client request is translated into a model optimized based on
available bandwidth, client capabilities and viewer speed. Low quality models
will suffice when the user is moving fast, which may be progressively refined
when the user slows down.

The client module interfaces with the user program on one side and the server
module on the other. It provides a client API to the user program through which,
the user program communicates with the client module, provides an initial set
of client parameters and receives data. The amount of data transmitted is to be
minimized by the system to avoid wasteful use of available bandwidth.

Real-Time Streaming and Rendering of Terrains 283

A local model and a remotely served heightmap/model should appear the
same to the user for transparent streaming. A handle to the remote heightmap
or model is returned to the user program by the client module. This is used by
the Terrain Renderer (User Program) directly. The user program is responsible
for the interaction with the user and the navigation control in the virtual envi-
ronment. The user program passes the motion parameters to the client module
on user movement in the virtual environment.

5 Terrain Streaming

In our system, the terrain data exists on the server and must be transmitted
to the client on demand. The renderer described in Section 3 is completely
based on the client side. Instead of loading the data from local storage, the
renderer issues an API call LoadRemoteTile() to the client module. This call
requests for a particular tile in the terrain at a desired level of detail. The
client module maintains a local cache of tiles which is typically much larger
than the number of tiles in the viewing frustum. The cache maintains tiles at
varying levels of detail depending upon initially negotiated client parameters and
available network bandwidth. If the tile does not exist in the client cache, the
client module streams it from the server. Until the tile is actually received, an
upsampled version of the existing data for the same location in the heightmap
is used if available.

Tile Transmission: At the start of the walkthrough, the system transmits a
very low resolution heightmap for the entire terrain dataset. As the viewer moves
around over the terrain, higher quality data is streamed to the client depending
upon viewer position. The renderer will have a bare minimum representation of
the entire terrain available to it. The renderer requests for newer data as and
when required. To transmit the tile, the last transmitted resolution of the tile is
checked and only the residue between the high resolution tile and the supersam-
pled version of the low resolution tile is transmitted to the client by the server.
The residue is compressed using the wavelet based PTC codec [14] before trans-
mission. At the client end, the client module decompresses the representation
and generates the high resolution tile. We use geomorphing to smoothly blend
across tiles without any visible artifacts.

Tile Selection: Selecting the optimal set of tiles to be streamed is difficult
problem. We need to not only select the tiles to stream but also the level of
detail of the tiles to be streamed. We only need to stream tiles that are visible
or would become potentially visible in the near future. This is done by taking
multiple square sets of tiles around the viewing frustum. The inner squares have
the higher levels of detail than the outer squares. Once the frustum moves, newer
higher resolution tiles must be streamed to the client.

Object Selection: Objects present on the tiles are selected in a similar man-
ner as the tiles. The objects are anchored to a particular point on the terrain.
The discrete levels of detail of the object are precomputed. When selecting a par-
ticular level of detail of an object, we check the level of detail of the underlying

284 S. Deb et al.

tile and select the LOD of the object accordingly. The entire model must be
transmitted as there is no easy way of creating a general polygonal model from
a residue and lower level of detail in real-time. We maintain a list of transmitted
objects on the server and never retransmit the same or lower level of detail.

The client module performs caching and prediction needed for better perfor-
mance and interfaces with the server. The client module prefetches data based on
predicted motion depending on the latency between the server and the client. The
client caches already transmitted data so that requests can be avoided when the
viewer retraces the navigation path. A balance is established so that the amount
of data prefetched is enough to cover the potential areas in the virtual environ-
ment that the viewer might visit until the time of the next request. Caching
and prefetching are transparent to the renderer. The organization of the cache is
important as a cache miss is extremely expensive as data must be fetched from
the remote server before it can be rendered in full detail. Each heightmap and its
corresponding geometry is timestamped when the cache is updated. The object
tracker logs the objects moving in and out of the cache along with their LOD.

Using the positions of the viewer in the past, the motion parameters are ex-
tracted. These are then used to estimate future motion This method of prediction
works when the motion of the user in the world is smooth and continuous. Good
performance from the prefetching algorithm is absolutely necessary to maintain
a smooth walkthrough. Formally, we average the motion in the last 5 frames to
generate the motion parameters for the next frame. We use a prediction scheme
similar to [15]. However we assume that the rate of change of acceleration is con-
stant. Assuming a constant acceleration may not be the right thing in case an
object is experiencing rotational motion. If ai is the acceleration, vi the velocity
and Pi the position vector in the ith frame which takes ti time to render, assum-
ing that the change in acceleration is smooth, we get the following relationships:
ai − ai−1 = ai+1 − ai or ai+1 = 2ai − ai−1. Knowing that ai = vi−vi−1

ti−ti−1
and

vi = Pi−Pi−1

ti−ti−1
, this reduces to vi+1 = vi + (ti+1 − ti)(2ai −ai−1) and finally to

Pi+1 = Pi + c1(ti+1 − ti)vi + c2(ti+1 − ti)2(2ai − ai−1), for some constants c1

and c2. The right hand side of this equation consists of known quantities other
than ti+1. Pi+1 can be written completely in terms of earlier samples of P and
frame time t. We do not reproduce the same here for the sake of brevity. Nor-
malizing Pi+1 will yield us the position vector of the point for which data needs
to be prefetched. Since we do not know the value of ti+1, we must estimate it
from older known values of frame times. Once we know the future position of
the viewer, we can prefetch data corresponding to that particular position. The
amount of data prefetched depends directly on the size of the cache. We can
control the bounds of the area of the terrain to be prefetched depending upon
the cache size.

6 Dynamic Entities and Collaborative Environments

An environment or mode is defined as dynamic if its objects can change in
form, position or appearance or if there is any addition or deletion of objects.

Real-Time Streaming and Rendering of Terrains 285

Synchronization of the state of a dynamic object in all clients is essential to
avoid inconsistencies. The magnitude of the amount of data to be transmitted
depends upon the type of change occurring in the dynamic environment. The
different types of dynamic events that may occur in the VE are:

– Change in the position of an object in the VE: This is the simplest case as
only the new position needs to be sent. If motion is parametric, the positions
can be computed by the user if initialized properly. No data needs to be
transmitted since the position of the object maybe calculated by the client
provided such a motion model is known to the client.

– Change in form/shape of the object: The model of the newly changed shape
needs to be streamed.

– Addition of a new object to the VE: The server needs to calculate which
clients need the object based on the view frustums and notify the clients
accordingly.

– Deletion of an object from the VE: Notify the clients who possess the object.
They in turn can delete the object from their client cache.

To handle dynamic data efficiently, the client must be notified of the changes
immediately. There are two ways in which this can done. One way is to send the
changed data directly. The other way is to inform the clients about the change
and allow them to initiate data transmission. The approach of lazy updates is
preferable since data need not be sent unless needed. When the dynamic object
comes into view at the client’s end, data can be requested for and transmit-
ted. The difference in this scenario over a typical static VE is that the server
needs to initiate the transmission of individual objects in the VE without apply-
ing visibility calculations. This is an additional requirement to handle dynamic
environments. A typical sequence of events during a walk-through of an environ-
ment with dynamic objects is as follows: (1) Dynamic Object is introduced into
the VE or an existing object changes form. (2) Server Module checks the type
of change and the clients affected by it. (3) Server notifies the affected clients
of the change. (4) Clients request and download the required information when
they need it.

Online mapping applications are becoming all pervasive. We have witnessed
web based mapping applications such as Windows Live Local and Google Maps
gain popularity over the past few years. The next step in evolution of such ap-
plications is a real 3D interface with community editing and sharing features.
Our current system allows annotations of the terrain as basic collaborative fea-
tures. Once a user annotates a particular position in the heightmap, the renderer
passes this information to the server. Henceforth these annotations are treated
in the same manner as dynamic objects. The only difference is that we allow
serialization of the annotations at the server side in a database. The entry for
each annotation includes the coordinates of anchor point in the heightmap as
an index for retrieval. Currently we use flat text files but extending it to a real
database instead is easy. The data is preserved across sessions of work. We intend
to improve upon this feature and allow multiple options.

286 S. Deb et al.

7 Results

Our test client system consisted of a Pentium M 2GHz laptop with 2GB of
memory and 6800 Ultra graphics. For the low end test, we used a Pentium
4 1.5GHz machine with 256MB memory and onboard Intel 845G graphics. The
server was an AMD Opteron CPU running at 2.8GHz with 2GB of main memory.
Please do note that the clock speeds of the CPUs are not comparable. The
laptop CPU is significantly faster than the low end client because of a better
architecture. The client and server were connected over a 100BaseT LAN. The
lower bandwidth conditions were simulated over this network by limiting network
traffic. The terrain was a 10000x10000 heightmap which was around 300MB of
data. We use the Quality factor metric from [1] to measure the performance of
the system. This metric is 1.0 when the client is rendering at its best LOD.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Time (sec)

D
a

ta
 T

ra
n

s
fe

rr
e

d
 (

K
B

)

High End Client, High BW

Low End Client, High BW

High End Client, Low BW

Low End Client, Low BW

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Time (sec)

Q
u

a
li
ty

 F
a
c
to

r

High End Client, High BW

Low End Client, High BW

High End Client, Low BW

Low End Client, Low BW

(a) (b)

Fig. 5. (a) Data transferred during Walkthrough and (b) Achieved Quality Factor

The data transfer graph is indicated in Fig.5. We find that the data transfer
graph is especially smooth. This implies that the walkthrough is free of hitches
and popping. Fig 6 shows the number of high resolution tiles submitted com-
pared to lower resolution tiles. We find that the high resolution tiles account
for the majority of the data transmitted to the client. This is because we use a
lower compression ratio for high resolution tiles as they are close to the viewer.
We find the quality factor 5 to be extremely high as expected with the sys-
tem achieving a high framerate 6. The quality factor seems to degrade with
client type and available bandwidth. The higher end client is worse affected by
lower available bandwidth than the lower end client as a larger amount of data
needs to be transmitted in case of the higher end client. The low end client,
we find that the system is initially unable to cope with the amount of data
causing poor frame rates. The system consequently reduces the highest level of
detail transmitted to the client and henceforth the walkthrough experience is
acceptably smooth. The amount of data transmitted also flattens to a plateau
indicating a smooth walkthrough experience without hitches. The quality factor

Real-Time Streaming and Rendering of Terrains 287

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Time (sec)

N
u

m
b

e
r

o
f

F
u

ll
 D

e
ta

il
 T

il
e

s

High End Client, High BW

Low End Client, High BW

High End Client, Low BW

Low End Client, Low BW

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Time (sec)

F
ra

m
e
 R

a
te

High End Client, High
BW
Low End Client, High
BW
High End Client, Low
BW
Low End Client, Low BW

(a) (b)

Fig. 6. (a) Number of Highest LOD tiles transferred and (b) Achieved Framerate of
Walkthrough

Fig. 7. (a)Output on Real Dataset (b)Dynamic Objects (c) High LOD terrain (d) Low
LOD terrain

is lower for the low-end client than the high end client but still quite acceptable.
From the low bandwidth tests, we cap the maximum available bandwidth to 100
KB/s. We observe that the network bandwidth is always utilized for progressive
refinement.

288 S. Deb et al.

8 Conclusions and Future Work

We presented a Terrain Streaming and Rendering system which renders data
received from a remote server and appropriately adapts to client characteristics
and network bandwidth. The system utilizes a tile representation for efficient
transmission. It uses a combination of visibility culling, clientside caching, spec-
ulative prefetching, motion prediction and deep compression to achieve perfo-
mance similar akin to local rendering. The system supports dynamic entities in
the environment allowing the content developer to create collaborative 3D virtual
environments. It also supports shared annotations as a preliminary collaborative
feature. We intend to include support for realistic terrain deformations at the
client end in future versions along with more collaboration support. Streaming
systems that serve terrains are especially suitable for applications like Virtual
Earth which must transmit large amounts of terrain information. Multiplayer
games and flight simulators shall also benefit by utilizing streaming to incorpo-
rate new content.

References

1. Deb, S., Narayanan, P.: Design of a geometry streaming system. In: ICVGIP.
(2004) 296–301

2. Djurcilov, S., Pang, A.: Visualization products on-demand through the web. In:
VRML. (1998) 7–13

3. Earnshaw, R.: The Internet in 3D Information, Images and Interaction. Academic
Press (1997)

4. Li, J.: Progressive Compression of 3D graphics. Ph.D Dissertation, USC (1998)
5. Funkhouser, T.A.: Ring: A client-server system for multi-user virtual environments.

I3D (1995) 85–92
6. Humphreys, G., Eldridge, M., Buck, I., Stoll, G., Everett, M., Hanrahan, P.:

WireGL: A scalable graphics system for clusters. In: SIGGRAPH. (2001) 129–140
7. Koller, D., Turitzin, M., et al, M.L.: Protected interactive 3d graphics via remote

rendering. In: SIGGRAPH. (2004) 695–703
8. Schneider, B., Martin., I.M.: An adaptive framework for 3D graphics over networks.

Computers and Graphics (1999) 867–874
9. Martin, I.M.: Arte - an adaptive rendering and transmission environment for 3d

graphics. In: Eighth ACM international conference on Multimedia. (2000) 413–415
10. Teler, E., Lischinski, D.: Streaming of Complex 3D Scenes for Remote Walk-

throughs. EuroGraphics (2001) 17–25
11. Losasso, F., Hoppe, H.: Geometry clipmaps: terrain rendering using nested regular

grids. ACM Trans. Graph. 23 (2004) 769–776
12. Wagner, D.: Terrain geomorphing in the vertex shader. ShaderX2, Shader Pro-

gramming Tips and Tricks with DirectX 9, Wordware Publishing (2003)
13. Pouderoux, J., Marvie, J.E.: Adaptive streaming and rendering of large terrains

using strip masks. In: Proceedings of ACM GRAPHITE 2005. (2005) 299–306
14. Malvar, H.S.: Fast progressive image coding without wavelets. In: DCC ’00: Pro-

ceedings of the Conference on Data Compression, Washington, DC, USA, IEEE
Computer Society (2000) 243–252

15. Guthe, M., Borodin, P., Klein, R.: Real-time out-of-core rendering. To appear in
the International Journal of Image and Graphics (IJIG) (2006)

	Introduction
	Related Work
	Terrain Rendering
	Data Organization
	View Frustum Culling
	LOD and Blending Factor Calculation
	Rendering
	Tile Stitching

	General Geometry Streaming
	Terrain Streaming
	Dynamic Entities and Collaborative Environments
	Results
	Conclusions and Future Work

