
PACE: Polygonal Approximation of Thick

Digital Curves Using Cellular Envelope

Partha Bhowmick1, Arindam Biswas1, and Bhargab B. Bhattacharya2

1 Computer Science and Technology Department
Bengal Engineering and Science University, Shibpur, Howrah, India

{partha, abiswas}@becs.ac.in
2 Advanced Computing and Microelectronics Unit

Indian Statistical Institute, Kolkata, India
bhargab@isical.ac.in

Abstract. A novel algorithm to derive an approximate cellular envelope
of an arbitrarily thick digital curve on a 2D grid is proposed in this pa-
per. The concept of “cellular envelope” is newly introduced in this paper,
which is defined as the smallest set of cells containing the given curve,
and hence bounded by two tightest (inner and outer) isothetic polygons
on the grid. Contrary to the existing algorithms that use thinning as
preprocessing for a digital curve with changing thickness, in our work,
an optimal cellular envelope (smallest in the number of constituent cells)
that entirely contains the given curve is constructed based on a combi-
natorial technique. The envelope, in turn, is further analyzed to deter-
mine polygonal approximation of the curve as a sequence of cells using
certain attributes of digital straightness. Since a real-world curve/curve-
shaped object with varying thickness and unexpected disconnectedness
is unsuitable for the existing algorithms on polygonal approximation, the
curve is encapsulated by the cellular envelope to enable the polygonal
approximation. Owing to the implicit Euclidean-free metrics and com-
binatorial properties prevailing in the cellular plane, implementation of
the proposed algorithm involves primitive integer operations only, lead-
ing to fast execution of the algorithm. Experimental results including
CPU time reinforce the elegance and efficacy of the proposed algorithm.

1 Introduction

The subject on properties, characterizations, and representations of digital
curves (DC) has been researched continuously since the debut of digitization
of graphical objects and visual imageries [1], [2]. Nevertheless, in the abundance
of various problems and their algorithms related with digital objects, polygonal
approximation of a digital curve/object has received special attention for its effi-
cient representation and for its potential applications in connection with analysis
of digital images [3], [4], [5]. The set of straight edges of the concerned polygon
carries a strong geometric property of the underlying objects, which can be used

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 299–310, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

300 P. Bhowmick, A. Biswas, and B.B. Bhattacharya

for efficient high level description of the objects and for finding the similarity
among different objects in the digital plane.

Since an optimal solution of polygonal approximation targeted to minimize
the number of vertices, and space thereof, is computationally intensive, several
heuristic and meta-heuristic approaches based on certain optimality criterion
have been proposed over the last few decades, and some of these that have
come up in recent times may be seen in [6], [7], [8], [9], [10], [11], etc. Further,
there also exist various studies and comparisons of the proposed techniques, e.g.,
[12], [10], [13], to cite a few. This entire collection of polygonal approximation
algorithms, however, consider the input digital curve to be strictly “irreducible”1

(and connected thereof), failing which the algorithm may produce undesired
results pertaining to polygonal approximation.

Hence, in case of a thick DC, thinning is required to ensure the property of
“irreducibility” to the input DC so that it can qualify for the subsequent process
of polygonal approximation. A thinning procedure, being plagued by asymmet-
ric erosion in thick regions and shifting of junction/end points, and being liable
to slow down the overall run time of the approximation process, is susceptible to
deteriorate the results of approximation. Furthermore, the result goes on wors-
ening if there occurs some missing grid points (pixels) in the input DC — which
splits, therefore, into multiple DC’s — producing several approximate polygons
instead of a single polygon, thereby giving rise to misleading impression, and
more specifically, posing severe problems in the subsequent applications. These
problems have been tackled in our method using the novel concept of cellular
envelope of an arbitrary digital curve whose thickness may vary non-uniformly.
In our method, we consider that all possible thicknesses — including 0 (miss-
ing pixel) and 1 (one pixel thick) — may occur in a DC2 when it is subject to
polygonal approximation. The idea of outer and inner boundaries of polygonal
regions is also present in rounding the intersection of two polygonal regions [14]
and simplification envelopes [15].

A brief outline of the paper is as follows. In Sec. 2, we present a combinatorial
algorithm to derive the cellular envelope of an arbitrary DC (stage I) using
its inner and outer isothetic polygons [16], [17], [18], [19]. Sec. 3 enumerates
some digital geometric properties of cellular straight segments (CSS), followed
by the motivation and underlying principle for their extraction (stage II) from
the cellular envelope of the input DC obtained in stage I. In Sec. 4, we present
our method PACE and the two algorithms corresponding to stage I and stage II.
Sec. 5 exhibits some test results on a curve-shaped object with varying curve
thickness. Finally in Sec. 6, we summarize its strength and point out the future
scope of improvements.

1 A digital curve C is said to be “irreducible” if and only if removal of any grid point
p in C makes C disconnected.

2 Henceforth, in this paper, we use the term “DC” to denote a digital curve (reducible
or irreducible) as well as a curve-shaped object that may contain multiple discon-
nected segments producing the impression of a single object.

PACE: Polygonal Approximation of Thick Digital Curves 301

Fig. 1. Cellular envelope E(C,G) of a real-world (thick, rough, and reducible) curve-
shaped object C for cell size g = 8

2 Cellular Envelope

If C be a given DC, and G = (H,V , g) be a set of uniformly spaced horizontal grid
lines (H) and vertical grid lines (V) with spacing g, then the cellular envelope
of C, corresponding to the cellular plane defined by G, is given by

E(C,G) = Eout(C,G) \ Ein(C,G) if C is closed or contains a closed part,
= Eout(C,G) if C is open,

(1)

where Eout(C,G) and Ein(C,G) represent the respective outer and inner envelopes
of C w.r.t. G, such that (i) each point p ∈ C should lie inside Eout(C,G) and outside
Ein(C,G); (ii) each vertex of E(C,G) (and of Eout(C,G) and Ein(C,G), thereof) is
in G; and (iii) area of E(C,G) is minimized.

The cellular envelope of a DC (curve-shaped object) C, which is rough, not
irreducible, and disconnected (since it has uneven thickness and stray pixels)
has been shown in Fig. 1. Note that, the cellular envelope E(C,G) shown in this
figure is for cell size g = 8, and the envelope “tightly encloses” all the points of
C with no points lying outside E(C,G).

2.1 Combinatorial Properties of a Cellular Envelope

Let I be the 2D image plane having height h and width w, and containing the
entire object C. Let α(i, j) be the point of intersection of the horizontal grid line
lH : x = i ∈ H and the vertical grid line lV : y = j ∈ V . Let SLT, SRT, SLB, and
SRB be the respective left-top, right-top, left-bottom, and right-bottom square
cells with the common grid point α(i, j), and let α′(i, j + g) and α′′(i + g, j) be
the respective grid points lying immediate right and lying immediate below α,
as shown in Fig. 2. We construct a binary matrix Ae (edge matrix) that contains(
(w/g)(h/g + 1)

) × (
(h/g)(w/g + 1)

)
entries, each entry being in one-to-one

correspondence with a particular edge of a particular cell. If an edge e(α, β)
connecting two neighbor grid points α and β is intersected by the object C, then
the corresponding entry in Ae is ‘1’, otherwise ‘0’.

Now, from Ae, we construct another binary matrix Ac (cell matrix) of size
(h/g)× (w/g), in which each entry corresponds to a unique cell — the entry is

302 P. Bhowmick, A. Biswas, and B.B. Bhattacharya

α"

α’
S S

SS

H

RB

RTLT

LB

α

Vl

l

g

g

y

x

Fig. 2. Four cells with common vertex α

‘1’ if at least one of the four edges of the concerned cell is intersected by the
object C, and is ‘0’ otherwise — which is checked from the correspondence of its
edge information in Ae.

Next, the candidature of α as a vertex of the (inner or outer) envelope is
checked by looking at the combinatorial arrangements (w.r.t. object contain-
ments) of the four cells having common vertex α. There exist 24 = 16 different
arrangements of these four cells, since each cell has 2 possibilities (‘0’/‘1’). These
16 arrangements can be further reduced to 5 cases, where, a particular case Cq,
q = 0, 1, . . . , 4, includes all the arrangements where exactly q out of these four
cells has/have object containments (i.e., contain(s) parts of the object C), and
the remaining (i.e., 4 − q) ones have not. That is, the case in which the sum of
the 4 bits in the corresponding entries in Ac is equal to q is represented by Cq.
Further, out of these 5 cases, cases C1 and C3 always and case C2 conditionally
produce vertices of the inner/outer envelope, as explained below.

Case C1.
(
4
1

)
= 4 arrangements are possible where only one cell with vertex α

contains C, i.e., exactly one of the corresponding four entries in Ac is ‘1’ and each
other is ‘0’. The envelope will have its one edge ending at α and the next edge
starting from α. Hence, if α lies inside C, then it is a 2700 vertex of Ein(C,G),
and if α lies outside C, then it is a 900 vertex of Eout(C,G) (the angle 900/2700

of a vertex means its internal angle in the corresponding envelope).

Case C2.
(
4
2

)
= 6 arrangements are possible in which exactly two of the four

cells contain C. If the cells containing C are diagonally opposite (2 out of 6
arrangements), then α is a vertex (900 for Ein(C,G) and 2700 for Eout(C,G));
otherwise α is an ordinary point on the envelope perimeter.

Case C3.
(
4
3

)
= 4 arrangements are possible for q = 3, where, out of the four

cells, only one cell is free. In each such arrangement, α would be a 900 vertex
for Ein(C,G)) and a 2700 vertex for Eout(C,G)).

For case C0:
(
4
0

)
= 1 arrangement, α is just an ordinary grid point lying out-

side Eout(C,G) or inside Ein(C,G)), whereas for case C4:
(
4
4

)
= 1 arrangement,

α is a grid point included in C (since no two traversable edges are incident
on it).

PACE: Polygonal Approximation of Thick Digital Curves 303

3 Cellular Straight Segments

There exist several works on constructs, properties, and applications of cell com-
plexes and cellular straight segments (CSS), e.g., [20], [21], [22], [2], [23], in which
the primal as well as many alternative definitions of CSS are found. For example,
as indicated in [2], a CSS C can be defined as the minimal set of cells c specified
by a real straight line segment L such that

L ∩ c �= ∅, ∀ c ∈ C; (2)
and L ⊂ C, (3)

which makes its primal definition.
Another definition of CSS involving the Euclidean metric space is given in [20],

in which it has been shown that a cellular curve C is a CSS if and only if there
exists a direction θ and a pair of (parallel) lines in the real plane (tangential
to and) containing C, such that the distance between, and measured in the
direction (say, θ⊥) perpendicular to, this pair of lines does not exceed the distance
(along θ⊥) between the closest pair of parallel lines containing the square formed
by (2 × 2 =) 4 cells sharing a common vertex.

In a recent work [21], an Euclidean-free definition of CSS has been given
in terms of “fully partitioned (finite) strings” (S(0)) and “higher order derived
strings” (S(j) : j ≥ 1), the latter being derived iteratively from the preceding
string (i.e., S(j−1)) by replacing the majority symbol substrings of S(j−1) by
its length, and by deleting the minority symbols of S(j−1). Subsequently, it has
been shown that a string S (= S(0)) represents a CSS, provided the jth order
derived string of S exists for all j ≥ 0.

Alternatively, in the perspective of digital straightness, if we consider the
center points of these edge-connected cells as grid points, then it follows that a
family of cells is edge-connected if and only if the set of center points of these cells
is 4-connected. Thus CSS provides a suitable option — apart from that provided
by digital straight line segments (DSS) [24] — for adjudging the straightness of a
curve in the digital plane, as indicated in a contemporary work [2]. A linear off-
line algorithm for CSS recognition, based on convex hull construction, is briefly
sketched in [22]. In our work, we have designed an on-line algorithm to derive the
set of CSS’s from the cellular envelope of a curve-shaped object, which cannot
be subject to direct DSS extraction/polygonal approximation due to its inherent
nature of possessing varying thickness, as mentioned in Sec. 1.

We have considered the center of each cell for extracting the longest line
segment iteratively in (a part of) a cellular envelope E(C,G) corresponding to
the given curve C and given cell size g imposed by the grid G. We have used
some digital geometric properties of DSS formulated and explained in [2], [24].
Before explaining our algorithm, the DSS properties (defined w.r.t. chain codes
[25]) relevant to our work, which were established in [24], and later (see [2])
correlated with the other straightness options such as cellular straightness, are
mentioned below.

304 P. Bhowmick, A. Biswas, and B.B. Bhattacharya

(a) (b) (c)

Fig. 3. Examples of cellular curves considered to explain the significance of straightness
properties (R1)–(R4). Note that the directed path that traces the ordered set of centers
of the cells shows the digital curve (DC) corresponding to a cellular curve. The curves
in (a) and (b) are CSS’s (the dashed lines show the corresponding real lines); but the
curve in (c) is not, since there does not exist any real line that can pass through the
set of cells defining this curve (see text for explanation).

(R1) The runs have at most two directions, differing by 900,3 and for one of
these directions, the run length must be 1.

(R2) The runs can have only two lengths, which are consecutive integers.
(R3) One of the run lengths can occur only once at a time.
(R4) For the run length that occurs in runs, these runs can themselves have

only two lengths, which are consecutive integers; and so on.
Few examples of cellular curves/envelopes are shown in Fig. 3 to explain the

significance of properties (R1)–(R4). For the curve in (a), if we consider the
center of each cell as a grid point, as mentioned earlier, then its chain code is
000200020002000 = 03203203203, which consists of codes 0 and 2 only, and con-
tains consecutive 0’s but no two consecutive 2’s, thereby satisfying property (R1).
Regarding (R2), (R3), and (R4), since there is only one run length (of 0’s), this
curve trivially satisfies these three properties, and becomes a CSS. Similarly,
since the curve in (b) has chain code 03203203202, which obeys (R1)–(R4), it
is a CSS. On the contrary, the curve in (c) has chain code 03203205201, which
satisfies (R1), but violates (R2) as 0 has non-consecutive run lengths (3 and 5)
— even if we do not consider the leftmost and the rightmost run lengths (which
are 3 and 1, respectively), and so it is not a CSS.

In our method for extraction of CSS from the cellular envelope E(C,G), we
have adhered to the properties (R1–R4). In addition, we have considered that
also the leftmost and the rightmost run lengths of a CSS should follow prop-
erty (R2) (which is not mandatory as suggested in [24]).

4 Proposed Method (PACE)

The method on finding the (cellular) polygonal approximation of an object C
consists of stage I and stage II. In stage I, we construct the cellular envelope
E(C,G) based on the combinatorial arrangement of the cells containing C (Sec. 2).

3 In our work, we have considered 4-connectivity of a DSS, i.e., having chain codes
lying in the set {0, 2, 4, 6}, since the cells in the cellular envelope E(C,G) obtained for
the curve C (Sec. 2) are connected in 4-neighborhood. In a DSS with 8-connectivity,
however, the runs would have directions differing by 450 as stated in [24].

PACE: Polygonal Approximation of Thick Digital Curves 305

step 1. Initialize each entry in Ae and each entry in Ac with ‘0’.
step 2. DFS-Visit on C starting from p using 8-connectivity to reach the nearest

cell edge ep of G.
step 3. DFS-Visit on Ae starting from the entry Ae(ep) corresponding to ep in

Ae using 4-connectivity (of ‘1’s in Ae) to assign:
‘1’ to the entry in Ae corresponding to each cell edge e intersected by C,
and
‘1’ to the entry in Ac corresponding to each of the two cells with e as the
common edge.

step 4. DFS-Visit on Ac starting from some cell (e.g., cp, the left adjacent cell
of ep) of the cellular envelope formed by the ‘1’s obtained in step 3 using
4-connectivity (of ‘1’s in Ac); and check whether the entry Ac(c) corre-
sponding to the cell c currently under DFS-Visit satisfies at least one of
the following two conditions:
(i) both the left and the right adjacent entries of Ac(c) are ‘1’s;
(ii) both the bottom and the top adjacent entries of Ac(c) are ‘1’s.
If (i) or/and (ii) is/are true, then terminate the DFS-Visit, since the
current cell c lies either on a horizontal edge/part (when (i) satisfies) or
on a vertical edge/part (when (ii) satisfies) of the cellular envelope of C;
and declare c as the seed cell c0 for stage II.

step 5. If no seed cell c0 is found in step 4, then the cell size is not sufficiently
large compared to the (minimum) thickness of the input curve C. Hence
the user may be asked to increase the cell size (i.e., grid separation g);
alternatively, an arbitrary cell of the envelope may be considered to be
the seed cell c0.

Fig. 4. Algorithm Find-Cellular-Envelope(C,G, p) in stage I

In stage II, we analyze the cells of E(C,G) to extract the straight pieces from
E(C,G), considering the center of each cell of E(C,G) as a grid point and using
the straightness properties (Sec. 3).

4.1 Stage I: Finding the Cellular Envelope

We consider any point p ∈ C as the start point defining the object C. For the
time being, consider that C is connected in 8-neighborhood. Then using DFS-
Visit (Depth First Search algorithm [26]), we can reach the nearest edge ep

of a cell that intersects C. Starting from ep, using DFS-Visit on the edges
of the cells, we visit those cell edges that are intersected by E ; this procedure
helps us in constructing the edge matrix Ae and the cell matrix Ac (Sec. 2),
which are finally used to obtain E(C,G). The major steps of the algorithm Find-
Cellular-Envelope(C,G, p) to find the cellular envelope of a connected (and
of uniform or non-uniform thickness) object C w.r.t. the cellular array imposed
by the grid G is given in Fig. 4.

In case C has some missing points/pixels, i.e., possesses disconnectedness, then
it may happen that none of the edges of a cell is intersected by C, although C is

306 P. Bhowmick, A. Biswas, and B.B. Bhattacharya

step 1. Traverse (cell-wise) towards left and towards right from c0 to extract all
possible pairs of CSS starting from c0, such that
(i) the chain code of each CSS, and
(ii) the combined chain code of the two CSS’s
in each pair are in conformity with properties (R1)–(R4);

step 2. Find a/the pair of CSS that has maximum sum of lengths;
merge this pair into a single CSS, namely C1;
declare c0 and c1 as the left and the right terminal cells of C1;
store (the centers of) c0 and c1 in the ordered set T .

step 3. Start from c1 to extract the next (longest) CSS, C2 := (c1, c2), with
terminal cells c1 and c2;
store c2 in T; and mark the cells defining C2 as visited.

step 4. Repeat step 3 starting from the last entry (i.e., terminal cell) in T to get
the CSS’s defining E until all cells of E are visited (using DFS-Visit).
Note: (i) If a CSS has both its terminal cells in the 4-neighborhood of
another (longer) CSS, then the former (shorter) CSS is not included in
T (Fig. 6(a)). (ii) For a bifurcating/branching CSS, we store both its
terminal cells in T (Fig. 6(b)).

step 5. Declare T as the polygonal approximation of the cellular envelope E .

Fig. 5. Algorithm Find-CSS(E , c0) in stage II

contained in that cell. To circumvent this problem, we have to directly construct
the cell matrix Ac, without constructing Ae, which would, however, increase the
time complexity (and the run time, thereof) of stage I. Further, if the curve
possesses too much gap/disconnectedness, so that the gap is even larger than
the cell size, then this may result to gap (in the edge-connectivity) of the cells
constituting the envelope E(C,G), which gets fragmented into two or more pieces,
thereby producing faulty results. Choosing an appropriate cell size is, therefore,
necessary to obtain the desired cellular envelope of a disconnected DC in stage I.

4.2 Stage II: Finding the Cellular Straight Segments

In stage II, the algorithm Find-CSS(E , c0)4, given in Fig. 5, extracts the ordered
set of CSS’s from the cellular envelope E as follows. W.l.o.g., since in stage I,
the seed cell c0 lies on a horizontal part (or on a vertical part, or on a thick
part) of E , we negotiate two traversals (step 1) — one towards left and the
other towards right of c0 — to obtain two CSSs with complying straightness
such that the sum of their lengths is maximal, and merge these two to get the
first CSS, C1, to be included in the ordered set T of terminal cells (step 2). The
starting cell for extracting the next CSS (step 3) from the cellular envelope is,
therefore, considered to be the right terminal cell c1 of C1. We use the algorithm
DFS-Visit [26] to explore the cells constituting the envelope and to extract the
CSSs, whose terminal cells are finally reported in T .

4 Now onwards, we denote the cellular envelope of C by E for simplicity.

PACE: Polygonal Approximation of Thick Digital Curves 307

c’

longer CSS

shorter CSS

c

c’

c"

C ’CSS:

CSS: C "
c

(a) A short CSS with each of its terminal cells
lying at 4-N of a longer CSS is not consid-
ered as a valid CSS (Note (i) of step 4 in
Fig. 5).

(b) For a branching CSS, C′′, each of its ter-
minal cells (one is c′′ and the other not
shown) is stored in T (Note (ii) of step 4
in Fig. 5).

Fig. 6. Inclusion and exclusion of terminal cell(s) of CSS in T

Time complexity. If N be the number of points defining the curve C, then its
envelope E consists of O(N/g) cells. Due to DFS-Visits, therefore, the time
complexity in stage I is bounded by O(N/g). In stage II, extraction of each CSS
Ci takes O(|Ci|) time, where |Ci| is the number of cells defining Ci. Hence, the
time complexity to extract all CSS’s in step II is O (

∑ |Ci|) = O(N/g), which
gives the total time complexity of PACE as O(N/g).

5 Experiments and Results

We have implemented the two algorithms, namely Find-Cellular-Envelope
and Find-CSS, that make the proposed method PACE for polygonal approx-
imation of an arbitrarily thick DC, in C in SunOS Release 5.7 Generic of
Sun Ultra 5 10, Sparc, 233 MHz, and have tested various digital curves of ar-
bitrary shape, changing thickness, and irregular connectedness. It may be men-
tioned here that, since the concept of a cellular polygon introduced in this work
is entirely new, and no other work on cellular polygon exists at present, we could
not have a comparative study of our method in this paper.

The result for an (non-thinned) edge map of a “duck” is shown in Fig. 7, which
testifies the elegance of PACE in deriving the cellular polygon corresponding to
a DC. It may may be noticed in this figure that, some of the cells in the envelope
E have not been included in any CSS; because in the algorithm Find-CSS, we
have considered the (terminal cells of) each locally longest CSS to be included in
P (see the Note in step 4). But when there is a bifurcation/self-intersection (e.g.,
in and around the root of its tail) or a sharp bend (e.g., at the tip of its beak),
the cellular envelope (Fig. 7(b)) contains several cells across its thickness, which
may cause error in the polygonal approximation as manifested in Fig. 7(d) in
the part of the polygon corresponding to the region in and around the tail root.
Hence a proper value of the cell size, g, is mandatory to ensure a good cellular
envelope corresponding to a DC, and a good polygonal approximation thereof.

The major strength of the proposed method is the inherent nature of Euclidean-
free metrics and operations involved in both the stages. This imparts high

308 P. Bhowmick, A. Biswas, and B.B. Bhattacharya

(a) Since the curve is not one-pixel
thick, the conventional algorithms
on polygonal approximation cannot
be applied on it.

(b) Cellular envelope E(C,G) obtained
in stage I of the algorithm PACE.
The cells of the envelope are con-
nected in 4-neighborhood, which
are, therefore, 4-cells.

(c) The set of CSS’s extracted in
stage II of the algorithm PACE
from the envelope E(C,G) shown
in (b). The CSS’s have been colored
gray with the terminal cell of each
CSS shown in black.

(d) Final polygonal approximation (in
thin black lines) superimposed
on the (faded) cellular envelope
E(C,G).

Fig. 7. Results of algorithm PACE for cell size g = 4 on a curve-shaped digital object
C of nonuniform thickness representing the edge map of a “duck”

execution speed to the implementation of PACE, which is reflected in the re-
spective CPU times presented in Table 1. Further, with increase in the cell size
g, the compression ratio (CR) improves consistently, but the quality of approx-
imation deteriorates, as evidenced by the average errors (measured w.r.t. both

PACE: Polygonal Approximation of Thick Digital Curves 309

Table 1. Results of PACE on the “duck” image (1748 pixels), shown in Fig. 7, for
different grid sizes (g)

avg. error CPU time (secs.)

g
∣∣E

∣∣ ∣∣P
∣∣ CR d

(E)
⊥ d

(P)
⊥ E P total

2 703 130 0.074 0.87 0.92 0.026 0.227 0.253

3 445 93 0.053 1.25 1.34 0.019 0.142 0.161

4 382 53 0.030 1.49 1.97 0.014 0.129 0.143

8 191 22 0.013 2.85 3.36 0.006 0.108 0.114

12 125 18 0.010 4.03 5.58 0.004 0.071 0.075

∣∣E
∣∣ = number of cells in E ;

∣∣P
∣∣ =

number of terminal cells in P ;
CR (=

∣
∣P

∣
∣/

∣
∣C

∣
∣) = compression ra-

tio; d
(E)
⊥ = isothetic error aver-

aged over (centers of) all cells of
E from (their corresponding near-

est points of) C; d
(P)
⊥ = isothetic er-

ror averaged over all terminal cells
in P from C, where max{|x1 −
x2|, |x2, y2|} is the isothetic dis-
tance between two points (x1, y1)
and (x2, y2).

E and P) of the curve C in this table. This again indicates that the cell size g
should be suitably chosen to get an acceptable tradeoff in the approximation.

6 Conclusion and Future Work

We have presented here the novel concept of approximating a curve-shaped dig-
ital object by a cellular polygon. The algorithm is marked by its (i) indifference
to change in thickness of the input DC, (ii) innovative combinatorial approach to
construct the optimum cellular envelope for the given DC, (iii) use of straight-
ness properties inherited from digital geometry, (iv) independency to Euclidean
paradigm, and (v) realization without any floating point operation, which col-
lectively make it robust, speedy, and efficient. Presently, we are experimenting
on the nature of variation of the cellular envelope and the resulting polygon of
a DC with its registration (both translation and rotation) w.r.t. grid, which will
be reported shortly.

References

1. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Image
Analysis. Morgan Kaufmann (2004)

2. Klette, R., Rosenfeld, A.: Digital straightness: A review. Discrete Applied Math-
ematics 139 (2004) 197–230

3. Aken, J.R.V., Novak, M.: Curve-drawing algorithms for raster display. ACM Trans.
Graphics 4 (1985) 147–169

4. Attneave, F.: Some informational aspects of visual perception. Psychological Re-
view 61 (1954) 183–193

5. Imai, H., Iri, M.: Computational geometric methods for polygonal approximations
of a curve. CVGIP 36 (1986) 31–41

310 P. Bhowmick, A. Biswas, and B.B. Bhattacharya

6. Perez, J.C., Vidal, E.: Optimum polygonal approximation of digitized curves. PRL
15 (1994) 743–750

7. Schröder, K., Laurent, P.: Efficient polygon approximations for shape signatures.
In: Proc. ICIP. (1999) 811–814

8. Schuster, G.M., Katsaggelos, A.K.: An optimal polygonal boundary encoding
scheme in the rate distortion sense. IEEE Trans. Circuits and Systems for Video
Technology 7 (1998) 13–26

9. Tanigawa, S., Katoh, N.: Polygonal curve approximation using grid points with
application to a triangular mesh generation with small number of different edge
lengths. In: Proc. AAIM 2006. (2006) 161–172

10. Teh, C.H., Chin, R.T.: On the detection of dominant points on digital curves.
IEEE Trans. PAMI 2 (1989) 859–872

11. Yin, P.Y.: Ant colony search algorithms for optimal polygonal approximation of
plane curves. Pattern Recognition 36 (2003) 1783–1797

12. Rosin, P.L.: Techniques for assessing polygonal approximation of curves. IEEE
Trans. PAMI 19 (1997) 659–666

13. Yin, P.Y.: A new method for polygonal approximation using genetic algorithms.
PRL 19 (1998) 1017–1026

14. Devillers, O.: Inner and outer rounding of set operations on lattice polygonal
regions. In: Proc. 20th Ann. Symp. Computational Geometry (2004) 429–437

15. Cohen, J., et al.: Simplification Envelopes. In: Proc. SIGGRAPH (1996) 119–128
16. Bhattacharya, P., Rosenfeld, A.: Contour codes of isothetic polygons. CVGIP 50

(1990) 353–363
17. Bhowmick, P., Biswas, A., Bhattacharya, B.B.: Isothetic polygons of a 2D object

on generalized grid. In: Proc. PReMI 2005. LNCS 3776. 407-412
18. Biswas, A., Bhowmick, P., Bhattacharya, B.B.: TIPS: On finding a Tight Isothetic

Polygonal Shape covering a 2d object. In: Proc. SCIA 2005. LNCS 3540. 930–939
19. Yu, B., Lin, X., Wu, Y., Yuan, B.: Isothetic polygon representation for contours.

CVGIP 56 (1992) 264–268
20. Fam, A., Sklansky, J.: Cellularly straight images and the hausdorff metric. In:

Proc. Conf. on Pattern Recognition and Image Processing. (1977) 242–247
21. Geer, P., McLaughlin, H.W.: Cellular lines: An introduction. Discrete Mathematics

and Theoretical Computer Science (2003) 167–178
22. Kim, C.E.: On cellular straight line segments. Computer Graphics Image Process-

ing 18 (1982) 369–391
23. Klette, R.: Cell complexes through time. In: Proc. Vision Geometry. Volume IX

of SPIE 4117. (2000) 134–145
24. Rosenfeld, A.: Digital straight line segments. IEEE Transactions on Computers

23 (1974) 1264–1268
25. Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Trans.

Electronic Computers EC-10 (1961) 260–268
26. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. Prentice

Hall of India Pvt. Ltd. (2000)

	Introduction
	Cellular Envelope
	Combinatorial Properties of a Cellular Envelope

	Cellular Straight Segments
	Proposed Method (PACE)
	Stage I: Finding the Cellular Envelope
	Stage II: Finding the Cellular Straight Segments

	Experiments and Results
	Conclusion and Future Work

