
Real-Time Camera Walks Using Light Fields

Biswarup Choudhury, Deepali Singla, and Sharat Chandran

Indian Institute of Technology Bombay
http://www.cse.iitb.ac.in/∼{biswarup, deepali, sharat}

Abstract. An interesting alternative to traditional geometry based ren-
dering is Light Field Rendering [1,2]. A camera gantry is used to acquire
authentic imagery and detailed novel views are synthetically generated
from unknown viewpoints. The drawback is the significant data on disk.

Moving from static images, a walkthrough or a camera walk through
the implied virtual world is often desirable but the repeated access of the
large data makes the task increasingly difficult. We note that although
potentially infinite walkthroughs are possible, for any given path, only
a subset of the previously stored light field is required. Our prior work
[3] exploited this and reduced the main memory requirement. However,
considerable computational burden is encountered in processing even this
reduced subset. This negatively impacts real-time rendering.

In this paper, we subdivide the image projection plane into “cells,”
each of which gets all its radiance information from the cached portions
of the light field at select “nodal points.” Once these cells are defined,
the cache is visited systematically to find the radiance efficiently. The
net result is real-time camera walks.

1 Introduction

In contrast with traditional geometry based rendering, a somewhat recent ap-
proach for “flying” through scenes is Image-Based Rendering (IBR) ([4], [5], [6])
which uses a confluence of methods from computer graphics and vision. The
IBR approach is to generate novel views from virtual camera locations from pre-
acquired imagery ([7], [8]). Synthetic realism is achieved, so to speak, using real
cameras.

Light Field Rendering [1] (or Lumigraphs [2],[9],[10]) is an example of IBR.
The approach is to store samples of the plenoptic function [11] which describe
the directional radiance distribution for every point in space. The subset of this
function in an occlusion-free space outside the scene can be represented in the
form of a four-dimensional function. The parameterization scheme is shown in
Fig. 1(a). Every viewing ray, computed using a ray-shooting technique, from the
novel camera location C passing through the scene is characterized by a pair
of points (s, t) and (u, v) on two planes. By accessing the previously acquired
radiance associated with this four tuple, the view from C is generated.

In the general case, C can be anywhere in three-dimensions. So six light slabs
are combined so that the entire scene is covered (Fig. 1(b)). An unfortunate
consequence of this scheme is the huge datasize of the lightfield. The authors in

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 321–332, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

322 B. Choudhury, D. Singla, and S. Chandran

UV plane
ST plane

C

(a) Two-Plane Parametrization.

V

U

(b) Complete Lightfield: Six
slabs of two-plane lightfields.

Fig. 1. The light field is a description of all light rays in a region of interest

[12] propose an interactive rendering based on Lumigraphs [2], by either using
a smaller set of textures (with compromise in quality) or by storing the recon-
structed image as a new texture for subsequent nearby images (with additional
geometric information).

1.1 Problem Statement and Contributions

The beauty of image based rendering lies in re-sampling and combining the pre-
acquired imagery. In a typical walkthrough situation, a person is expected to
walk along a trajectory in three space and “suitably” sample the input images
(in our case, light field). The problem we pose in this paper is “Given the huge
light field on disk, and a camera walk, how efficiently can the scene as seen by
the camera be rendered?”

In interactive walkthroughs, light field rendering is impacted by the sampling
density of acquired images. For example, lightfield generated in [1] is sampled at
0.125 units; for a 512x512 image, the size of the lightfield is about 4.8GB. With
increase in the resolution and density of acquired images, the size of the light
field increases dramatically. For interactive rendering of the scene, one needs to
store the complete light field in volatile memory, and perform computationally
heavy [13] ray shooting operations.

Earlier in [3], we observed that for a camera walk, only a subset of the complete
lightfield is needed. We computed the optimal location of a sparse set of “nodal
points,” suitable for the camera walk. The lightweight light field stored at these
nodal points is enough to render the scene from any of the infinite points —
termed query points — on the camera path. The advantage of this was that
at the time of camera walk, accesses to the hard disk were reduced or absent.
However, considerable computational burden was encountered in processing the
input light field to obtain this subset. In addition, the number of ray shooting
operations required for rendering an image from a query point on the camera
walk was a function of the resolution of the rendered image size. Thus, rendering
time increases considerably with increase in image size. In this paper, we show
that efficiently caching the subset of light field, appropriate for the camera walk,

Real-Time Camera Walks Using Light Fields 323

and further dividing the image plane into “cells” results in rendering an image
from a query point in real-time. Specifically,

1. We partition the image plane into “cells,” each of which gets all the infor-
mation (radiance values) from a specific nodal point, thereby avoiding the
necessity to perform ray-plane intersections. Further, we show that for un-
known, on-line camera walks, the nodal points once used can be discarded
paving the way for memory efficient real-time implementation.

2. The correctness of our scheme is shown using a mathematical characteriza-
tion of the geometry of the light field.

3. A new light field dataset, using a Mini Cooper car model, has been generated
and experiments have been performed on it. Results validate our technique.

2 Our Approach

As in the original work [1], the field of view of the query camera is expected
to be identical to the cameras that generated the light field. Likewise, sheared
perspective projection handles the problem of aligning the plane of projection
with the lightfield-slab. The center of projection of the camera moves along a
plane parallel to the UV and the ST plane. For brevity, consider a setup similar
to the two slab setup (Fig. 1(a)) where planes, UV and ST are replaced by
lines U and S. We call this as the two-line setup (Fig. 2(a)). The query points q
lie on line C, which in turn replaces the camera plane. As in [1], nearest neighbor
approximation is employed for determining the radiance corresponding to q. We
provide the complete mathematical framework with respect to this setup.

The rest of this paper is organized as follows. Section 2.1 and Section 2.2 sum-
marize [3] for coherence (If proofs are not desired, this paper is self-contained).
Section 2.3 develops the mathematical framework for our new algorithm. In Sec-
tion 3 and Section 4, we give details of our approach and present our algorithm.
Experimental results and analysis are discussed in Section 5. Finally in Section 6,
we provide our concluding remarks.

2.1 Fixed-Direction Algorithm

In this section, we provide a brief summary of the concept of nodal points for a
query point q. Later, we use these concepts in the mathematical characterization
of the rest of the paper.

Denote Δl to be the constant distance d[Gi, Gi+1] between two consecutive
grid points on the U line, i.e., the distance between the input lightfield camera
locations. For a specific s, denote assoc(q), where q is a point on C, to be
the closest grid vertex G (on U) to the ray qs. In Fig. 2(a), assoc(q) = G1.
Given q, we use Algorithm 2.1 to compute nodal points N1 and N2. The radiance
L[q], in the direction of s, is obtained from these nodal points (presumably
cached).

324 B. Choudhury, D. Singla, and S. Chandran

q

N1’ N2’

G(1)G(0) G(2)

N2N1

Uq’

s

S

C

(a)

q

s

N2

q’

S

U

C

N1

G1G0

N2’N1’

G2

(b)

Fig. 2. (a): N1 and N2, the nodal points for q are marked such that d[q′N1
′] =

d[q′N2
′] = Δl

2
. (b): assoc(N1) is G0 and assoc(N2) is G2.

Algorithm 2.1. Fixed-Direction (q, s)

Shoot a ray from q to s to obtain q′ on U. Mark points N1
′ and N2

′ on U
at a distance d = Δl

2 apart on either side of q′. This determines the nodal
points N1 and N2 on C.
if assoc(N1) == G1 then

L[q] = L[N1]
else

L[q] = L[N2]
end if

In the case of two-plane parametrization, given q, one may compute four nodal
points N1, N2, N3 and N4. Shoot the ray from q to s for a given s to obtain
q′ on UV . Now, mark four points (q′.u ± Δl

2 , q′.v ± Δl
2 , zuv), where q′.u and

q′.v represent the component of q′ along u and v respectively, and zuv is the z
coordinate of the UV plane. These four points correspond to four nodal points
on the camera COP (center of projection) plane. We use assoc of these nodal
points to determine L[q].

Notice that if the distance d in Algorithm 2.1 is more than Δl
2 , as in Fig. 2(b),

an incorrect value of L[q] is computed. When d is as specified in Algorithm 2.1, it
is easy to observe that either assoc(N1) = G1 or assoc(N2) = G1; it cannot be
the case that assoc(N1) = G0 and assoc(N2) = G2. A choice less than Δl

2 might
be suitable to maintain correctness, but will increase the number of nodal points,
and hence decrease our efficiency. Also note that the if condition in Algorithm 2.1
cannot be dispensed with. We cannot simply pick the nearest nodal point.

2.2 All-Directions Algorithm

Algorithm 2.1 is “backward” in that it computes nodal points given a query
point; in a sense it appears useless. However using this algorithm as the basis,
in [3] we proved that,

– The nodal points N1, N2 corresponding to a query point q are sufficient for
determining the radiance of any query point in the interval [N1, N2]. This
generalizes to three dimensions.

– Choice of nodal points is independent of the direction (of s).

Real-Time Camera Walks Using Light Fields 325

Using the above results, we use Algorithm 2.2 to compute the radiance cor-
responding to any query point q in the interval [N1, N2]. For simplicity, the
algorithm has been presented for the two line setup.

Algorithm 2.2. All-Directions (q)

Determine nodal points N1, N2 bounding q.
for all s ∈ S do

Shoot a ray from query point q to s.
if assoc(N1) == assoc(q) then

L[q] = L[N1]
else

L[q] = L[N2]
end if

end for

2.3 Image Plane Intervals

In Algorithm 2.2, the scene as rendered from a query point q is determined
expensively by shooting N rays (to the N sample points on S), followed by a
lookup of assoc for each of the N rays. This computational burden increases
dramatically with the increase in query points on a camera walk. Expectedly, the
situation for the two-plane setup is worse. (The number of shot rays are N ×N
for a query point.) With an independent increase in the number of query points,
the computational requirements prohibit real-time rendering.

In this section, we show how to subdivide the image plane into cells and
thereby derive a deterministic “square wave” pattern of using nodal points for
each cell. For the sake of exposition, we consider the two-line setup wherein cells
degenerate to intervals. The following lemma depends on mid grid points, which
are defined as the points lying in the middle of any two adjacent grid points.
For a query point q bounded by nodal points [Nj, Nj+1], consider (respectively)
rays from q, Nj and Nj+1 through the mid grid points on U . These divide S
into intervals [Si, Si+1] (i is a whole number) (see, for example, Fig. 3(a)).

Lemma 1. Range Lemma: The radiance values corresponding to all s points
in an interval [Si, Si+1] can be determined from a single nodal point.

Proof: Without loss of generality, let the interval under consideration be [S2, S3]
(Fig. 3(a)). Let sp be any point in the interval [S2, S3]. Observe that for sp,
assoc(q)=G2. By construction, ∀s ∈ [S2, S4], assoc(N1)=G2. Since [S2, S3] is a
subset of [S2, S4], so ∀s ∈ [S2, S3], assoc(N1)=G2. Thus, for sp, assoc(q)=assoc
(N1) and therefore L(q)=L(N1). ��

Thus, in general, we can avoid ray shooting for a range of s values in any interval
since the radiance L(q) will come from some fixed nodal point. The next lemma
tells us that even the choice of nodal point is deterministic.

326 B. Choudhury, D. Singla, and S. Chandran

G
1

G
2

G
3

S 2S 0

G
i: Grid Points

: Mid Grid Points

S 3S 1 S 4

N2N1
C

U

S

q

ps

(a)

G
0

G
1

G
2

G
3

S 0 S 1 S 2 S 3 S 4 S 5 S 6

G
i

qN1 N2

S

U

C

: Grid Points

: Mid Grid Points

(b)

Fig. 3. (a): Radiance L(q, s) for ∀s ∈ [S2, S3] can be determined from N1. (b):
∀s∈[S1, S2],L(q)=L(N2); ∀s∈[S2, S3], L(q)=L(N1).

Lemma 2. Toggle Lemma: If L(q)=L[Nj] for some s ∈ [Si, Si+1], then ∀s ∈
[Si+1, Si+2], L(q)=L[Nj+1] and vice-versa.

Proof: Without loss of generality, let [S1, S2] and [S2, S3] be the two intervals
under consideration (Fig. 3(b)). By construction, we observe that ∀s∈[S1, S2],
assoc(q)=G1 and assoc(N2)=G1. So ∀s ∈ [S1, S2], L(q)=L[N2]. The lemma
claims that ∀s ∈ [S2, S3], L(q)=L[N1].

By construction, assoc(q)=G1, ∀s ∈ [S1, S3]. Also, assoc(N1)=G1, ∀s ∈ [S2,
S4]. The intersection of intervals [S1, S3] and [S2, S4] is [S2, S3]. Hence, ∀s ∈
[S2, S3], assoc(q)=assoc(N1), or, L(q)=L[N1].

The situation when we consider the intervals [S2, S3] and [S3, S4] is similar;
we find that ∀s ∈ [S3, S4], L(q)=L[N2]. ��
Thus the lemma asserts that, for a query point, the radiance corresponding to
each interval in S, is deterministic as a toggle between bounding nodal points.
This is best visualized as a square wave (Fig. 4) and is exploited in our algorithm
(Algorithm 2.3).

Algorithm 2.3. Interval Algorithm (q)

Determine the nodal points Nj , Nj+1, bounding q.
Determine all intervals [Si, Si+1] on S using q, Nj and Nj+1.
Shoot a ray from query point q to the first s in [S0, S1].
Toggle = (assoc(Nj) == assoc(q)) ? Nj : Nj+1

for all intervals do
for all s ∈ [Si, Si+1] do

L[q] = L[Toggle]
end for
Toggle = (Toggle==Nj) ? Nj+1 : Nj

end for

Real-Time Camera Walks Using Light Fields 327

N
j+1

N
j

S
3

S
4

S
5

S
6

S
1

S
2

S
0

N

S

Fig. 4. Nodal points are accessed in a “toggle” manner for any query point. The duty
cycle of the square wave is dependent on which query point is used. Size of the image
plane determines the end conditions.

3 The Algorithm

We now have the apparatus to select the nodal points and divide the image
plane into cells, given a query point. For the sake of exposition, we consider two
types of cases (Fig. 5). In the first case, the input is an unrestricted camera
walk and nodal points are computed on the fly (Fig. 5(a)). As we traverse along
the camera walk, nodal points “used” can be discarded. In the second case, the
first input is a domain, and nodal points are computed after the domain is given
(Fig. 5(b)). The second input are camera walks restricted to be in the domain.
In this case, multiple walks can be rendered efficiently without recomputing new
nodal points, and in parallel.

3.1 Case 1

Algorithm 3.1. Incremental-Camera Walk (walk)

1. Starting from the initial query point on the camera walk, mark four nodal
points at a distance Δx = Δl × R, where R is the ratio of the distance
between the camera plane and the ST plane, and the distance between the
UV and ST plane. For simplicity, the nodal points are selected parallel to
the u and v directions as shown in Fig. 5(a). A cell thus is created.

2. The light field is cached at four nodal points in the grid enclosing the
query point (The precise computation of the light field at the nodal points
can take advantage of the methods suggested in Section 4, instead of the
method in [1].)

3. Apply Algorithm 2.3 iteratively to calculate the radiance at all query points
(along the camera walk) inside the cell.

4. As the walk exits the cell, update the nodal points and go to Step 2.

328 B. Choudhury, D. Singla, and S. Chandran

5 6 7

8

9

10 12

11

1 3

42

Black dots are the nodal points
Dashed (green) curve is the camera path

(a) Incremental nodal points along a
camera walk.

Thick curves are camera paths

2

1

14

4 6 8 10

9

11121315

3 5 7

Black dots represent nodal points

(b) Domain-based nodal points.

Fig. 5. Rendered scene as viewed from a camerawalk can be computed from nodal
points

3.2 Case 2

Next, if we are given several camera walks lying in a domain, we pick domain-
based nodal points, as shown in Fig. 5(b). Scene from any query point, on any
camera walk, or even at random, in the rectangular region defined by the bound-
ing box of the nodal points can be rendered efficiently as shown below.

Algorithm 3.2. Domain-Camera Walk (domain)

1. Determine the bounding box of the domain specified.
2. Mark nodal points at a distance Δx = Δl × R, where R is the ratio of

the distance between the camera plane and the ST plane, and the distance
between the UV and ST plane along the complete bounding box. For
simplicity, the nodal points are selected parallel to the u and v directions
as shown in Fig. 5(b). A grid is thus created.

3. The light field is cached at all the nodal points in the grid (The precise
computation of the light field at the nodal points can take advantage of
the methods suggested in Section 4, instead of the method in [1].)

4. Apply Algorithm 2.3 to calculate the radiance at any query point inside any
cell of the grid.

In summary, the incremental algorithm is more suitable when the user does
not want to specify the camera walk in advance. The domain-based algorithm,
on the other hand, is useful when the user has a number of camera walks, or
random query points in a domain.

4 Caching Radiance at Nodal Points

In Algorithm 2.2, the radiance computation for nodal points was done using the
method in [1]. Caching of nodal points can be less expensive by using the ideas in

Real-Time Camera Walks Using Light Fields 329

Fig. 6. Lightfield for the
MiniCooper

(a) (b)

(c) (d)

Fig. 7. Rendered novel images (best seen in color)

Lemma 1, i.e., by dividing S into intervals (or the image plane ST into cells). The
radiance values for a number of image pixels is computed from a fixed camera
grid point. Further, the relationship between the intervals and the camera grid
points can be easily determined. As a result, in our method for nodal points, ray
shooting has to be done only once to find the intervals and their corresponding
grid points.

5 Experiments and Results

In this section, we first describe the implementation details and then show the
significant computational advantage. For baseline comparisons, and since it is a
standard, and freely available, we use [1] to contrast our method. Various simu-
lations on different paths confirm our claims to superiority.

Mini Cooper Dataset: We have generated a new lightfield dataset for pur-
poses of our experimentation (Fig. 6). It consists of images of a Mini Cooper car
model captured from cameras placed on a 32x32 grid. The Mini Cooper, a CSG
model, was rendered by performing radiosity computation with 3 different light
sources using Povray. Some features of the Mini Cooper include specular metal
body, reflective window glasses, inner details of the car (car seats, rear-view mir-
ror). Resolution of the images is 256 x 256.

330 B. Choudhury, D. Singla, and S. Chandran

Table 1. Time in seconds
for different camera walks

|q| [1] §3.1
164 82.617 5.020

335 165.015 10.468

550 281.126 14.640

741 376.040 17.997

1023 521.605 24.417

Table 2. Number of disk
accesses for camera walks
on different planes

zCam [1] §3.1
10 160338 23244

20 211730 20640

30 222284 15360

40 231329 12512

50 238442 10240

Table 3. Time in seconds
for camera walks on different
planes

zCam |p| [1] §3.1
10 170 317.424 30.349

20 86 413.178 27.141

30 60 432.255 20.717

40 46 444.092 17.173

50 40 462.085 14.764

Quality: We downloaded the reference implementation [1], obtained the input
lightfield dataset after the decompression stage, and then “hooked” our modi-
fication. The rendered images (Fig. 7) using our method are identical to those
generated in [1]. The output is devoid of any artifacts — diff under Gnu-Linux
reports the null set.

Theoretical Analysis: The advantages of our technique arise due to efficient
nodal light field caching, and division of the image plane into cells. For a path
with q query points, let the number of nodal points needed be p. Note that for
a camerawalk, the number of query points is much larger than the number of
nodal points, i.e., q � p (e.g., for |q| =886, |p|=40 on a plane at zCam=50).
Let the average number of grid points required for generating an image from a
query point be g. We penalize disk access to the lightfield data (densely sampled
and at a high resolution) by a factor of d.

In [1], the number of rays shot is of the order of the resolution of an image
(NxN). Theoretically, the total time taken is q(k1N

2 +dg), where k1 is the time
taken by each ray shooting operation and corresponding computations. In our
method, time taken for caching each nodal point is less than that taken by a
query point in [1] (Section 4). For each nodal point, the initial computation of
determining cells is constant (c1) but again, the time taken for disk accesses
is dg. For a query point, computation of cells takes constant time (c2). So the
theoretical computational gain is

q(k1N
2 + dg)

p(c1 + dg) + qc2
=

O(q(N2 + dg))
O(pdg + q)

(1)

Computational Advantage: All our experimentation was performed on an
Intel Pentium IV 2.4GHz, 1 GB RAM Linux based computer. Our results confirm
the theoretical computational advantage in Equation 1.

1. Table 1 depicts the results we obtained using different camera walks. The
two techniques compared are [1] and Algorithm 3.1 (with caching of nodal
points as in Section 4). The distance between two successive query points
on the camera walk is constant for all the experiments. With increase in the
number of query points, the rate of increase of time taken in [1] is more than

Real-Time Camera Walks Using Light Fields 331

Table 4. Total time in seconds for
loading light field into a domain and
rendering from random query points.
The rendering time after loading is
nominal.

|q| [1] §3.2
64 29.949 12.35

130 61.294 12.587

212 99.255 12.682

300 140.166 13.019

464 215.86 13.44

Table 5. Number of disk accesses
for random query points on a plane

|q| [1] §3.2
64 15987 9968

130 32229 9968

212 52400 9968

300 74360 9968

464 114707 9968

that of our method. Note that the number of frames rendered per second
ranges from 30 to 40.

2. In Table 2 and Table 3, we show the results using camera walks on parallel
planes at varying distances from the lightfield setup. The total number of
query points was kept constant, in this case it happened to be 886. The
computational gain increases with increase in the value of zCam, because
the number of nodal points decrease with increase in zCam.

3. Table 4 and Table 5 compares the results of Algorithm 3.2 (with caching of
nodal points as in Section 4) with [1]. The experiments have been performed
on a fixed domain (42 nodal points) and with random number of query
points. The rate of increase in the time taken by our algorithm, as the number
of query points increases is very low, because most of the computational time
is spent generating the (fixed number of) nodal point images. Rendering of
images from the query points takes nominal computational time.

4. We also compared our method with the technique in our previous work [3]
and observed a significant computational gain. For instance, on a camera
walk with |q|=370 (and zCam ranging from 10 to 50), our method was on
an average 10 orders of magnitude faster.

6 Conclusion

In this paper, we have looked at the problem of reducing the computational
burden in dealing with the rich and densely sampled light field when a user
walks through a virtual world. We have achieved this by recognizing that instead
of considering the complete light field, it is enough to consider a sparse set of
nodal points. We have proved that the division of the image plane into cells and
thereafter, deriving a deterministic pattern of the use of the nodal points for each
of these cells, has increased the computational efficiency significantly. The proofs
of the mathematical characterizations of these concepts have been provided. A
new lightfield dataset for purposes of experimentation has been generated and
experimental results have been shown to validate our technique.

Our description does not explicitly deal with decompression issues (indeed, in
the first stage [1] of rendering, the entire light field is decompressed as it is read

332 B. Choudhury, D. Singla, and S. Chandran

into memory from disk). However, there is no conceptual blockade in applying
the general caching strategy and the mathematical elements even in these cases.

Acknowledgements. This work was funded by an Infosys Ph.D. fellowship
grant. The base Light field code was downloaded from graphics.stanford.edu
The Mini Cooper model was taken from www.oyonale.com and the lightfield
generated with Povray. We thank the members of ViGIL, IIT Bombay for useful
discussions.

References

1. Levoy, M., Hanrahan, P.: Light field rendering. In: SIGGRAPH 1996: Proceedings
of the 23rd annual conference on Computer graphics and interactive techniques,
New York, NY, USA, ACM Press (1996) 31–42

2. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: SIG-
GRAPH 1996: Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques, New York, NY, USA, ACM Press (1996) 43–54

3. Pandey, A., Choudhury, B., Chandran, S.: Efficient lightfield based camera walk.
In: Fourth Indian Conference on Computer Vision, Graphics and Image Processing
ICVGIP. (2004) 302–307

4. Debevec, P., Gortler, S.: Image-based modeling and rendering. In: SIGGRAPH 98
Course Notes. ACM SIGGRAPH, Addison Wesley, July. (1998)

5. Shum, H.Y., Wang, L., Chai, J.X., Tong, X.: Rendering by Manifold Hopping.
International Journal of Computer Vision 50 (2002) 185–201

6. Chen, S.E.: Quicktime VR: an image-based approach to virtual environment navi-
gation. In: SIGGRAPH 1995: Proceedings of the 22nd annual conference on Com-
puter graphics and interactive techniques, New York, NY, USA, ACM Press (1995)
29–38

7. Unger, J., Wenger, A., Hawkins, T., Gardner, A., Debevec, P.: Capturing and ren-
dering with incident light fields. In: EGRW ’03: Proceedings of the 14th Eurograph-
ics workshop on Rendering, Aire-la-Ville, Switzerland, Switzerland, Eurographics
Association (2003) 141–149

8. Shum, H.Y., He, L.W.: Rendering with concentric mosaics. In: SIGGRAPH 1999:
Proceedings of the 26th annual conference on Computer graphics and interactive
techniques, New York, NY, USA, ACM Press (1999) 299–306

9. Isaksen, A., McMillan, L., Gortler, S.J.: Dynamically reparameterized light fields.
In: SIGGRAPH 2000: Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, New York, NY, USA, ACM Press (2000)
297–306

10. Buehler, C., Bosse, M., McMillan, L., Gortler, S.J., Cohen, M.F.: Unstructured
lumigraph rendering. In: SIGGRAPH 2001: Proceedings of the 28th annual confer-
ence on Computer graphics and interactive techniques, ACM Press (2001) 425–432

11. Adelson, E.H., Bergen, J.R.: The Plenoptic Function and the Elements of Early
Vision. In: Computational Modeling of Vision Processing. MIT Press (1991)

12. Sloan, P.P., Cohen, M.F., Gortler, S.J.: Time critical lumigraph rendering. In:
SI3D ’97: Proceedings of the 1997 symposium on Interactive 3D graphics, New
York, NY, USA, ACM Press (1997) 17–ff.

13. Sharma, P., Parashar, A., Banerjee, S., Kalra, P.: An Uncalibrated Lightfield
Acquisition System. In: Third Indian Conference on Computer Vision, Graphics
and Image Processing ICVGIP. (2002) 25–30

graphics.stanford.edu
www.oyonale.com

	Introduction
	Problem Statement and Contributions

	Our Approach
	Fixed-Direction Algorithm
	All-Directions Algorithm
	Image Plane Intervals

	The Algorithm
	Case 1
	Case 2

	Caching Radiance at Nodal Points
	Experiments and Results
	Conclusion

