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Abstract. This article is concerned with new strategies with which
explicit time-stepping procedures of PDE-based restoration models con-
verge with a similar efficiency to implicit algorithms. Conventional ex-
plicit algorithms often require hundreds of iterations to converge. In order
to overcome the difficulty and to further improve image quality, the arti-
cle introduces new spatially variable constraint term and timestep size,
as a method of nonflat time evolution (MONTE). It has been verified
that the explicit time-stepping scheme incorporating MONTE converges
in only 4-15 iterations for all restoration examples we have tested. It has
proved more effective than the additive operator splitting (AOS) method
in both computation time and image quality (measured in PSNR), for
most cases. Since the explicit MONTE procedure is efficient in computer
memory, requiring only twice the image size, it can be applied particu-
larly for huge data sets with a great efficiency in computer memory as
well.

1 Introduction

Partial differential equation (PDE)-based image processing has been a popular
tool for image restoration, since the first anisotropic diffusion model by Perona
and Malik in 1990 [1]. A considerable amount of research has been carried out
for the theoretical and computational understanding of various models; see e.g.,
[2,3,4,5,6,7,8,9] and [10,11,12]. It is now well understood that by choosing proper
energy functionals in variational formulation and scaling their stationary Euler-
Lagrange equations by appropriate factors, the resulting evolutionary models
can restore important image features relatively well.

However, most of conventional PDE-based restoration models tend either to
converge to a piecewise constant image or to lose fine structures of the given im-
age, particularly unless they are both incorporating appropriate parameters and
discretized by suitable numerical schemes. Although these results are important
for understanding the current diffusion-like models, the resultant signals may
not be desired in applications where the preservation of both slow transitions
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and fine structures is important. More advanced models are yet to be devel-
oped, along with effective strategies for the choice of appropriate parameters
and numerical schemes.

It is often the case that conventional explicit algorithms for solving PDE-
based restoration models require hundreds of iterations to converge. This article
introduces numerical strategies for the selection of spatially variable constraint
parameter and timestep size, as a method of nonflat time evolution (MONTE),
with which explicit procedures can converge fast and restore images in a com-
parable quality with implicit algorithms. In MONTE, the constraint parameter
is selected larger on fast transitions, which in turn can suppress undesired dis-
sipation effectively there; the timestep size is set reversely proportional to the
sum of the diffusion coefficient and the constraint parameter, which makes the
explicit procedure stable. Note that the MONTE solution must be defined on a
nonflat time surface.

The new strategies have been implemented, incorporating an anisotropic dif-
fusion spatial scheme, for both additive operator splitting (AOS) method [13]
and the explicit algorithm. The explicit algorithm incorporating MONTE turns
out to converge in 4-15 iterations for all restoration examples we have tested.
Furthermore, it has often restored better images (measured in PSNR) than the
AOS algorithm. Since the new explicit MONTE procedure is efficient in com-
puter memory, requiring only twice the image size, it can be applied, particularly
for huge data sets (e.g., 3D images), with a great efficiency in both convergence
and computer memory.

An outline of the paper is as follows. In the next section, we briefly review
PDE-based restoration models and their linearized time-stepping methods, fol-
lowed by an anisotropic diffusion spatial scheme. Section 3 contains new numer-
ical strategies for variable constraint parameters, variable timestep sizes, and
their applications to the explicit time-stepping method. In Section 4, we present
numerical results to show efficiency (in computation time) and effectiveness (in
the preservation of important image features) of the explicit MONTE procedure.
Section 5 conclude our developments and experiments.

2 Preliminaries

This section reviews briefly PDE-based restoration models and their linearized
time-stepping procedures, followed by an anisotropic diffusion spatial scheme.

2.1 PDE-Based Restoration Models

Let u0 be an observed image of the form

u0 = u + v, (1)

where u is the desired image and v denotes a mean-zero noise of variance σ2.
Then, popular PDE-based restoration models can be written in the following
general form:
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∂u

∂t
+ S(u) = R(u0 − u), (2)

where S is a (nonlinear) diffusion operator and R denotes a nonnegative con-
straint term. For example, the Perona-Malik (PM) model [1], the total variation
(TV) model [8], the improved TV (ITV) model [6,11], and the convex-concave
anisotropic diffusion (CCAD) model [4,5] can be specified as follows:

S(u) = −∇ · (c(|∇u|)∇u), R = 0, (PM)
S(u) = −κ1(u), R = λ, (TV)
S(u) = −|∇u|κ1(u), R = λ |∇u|, (ITV)
S(u) = −|∇u|q κq(u), R = β |u0 − u|, (CCAD)

(3)

where λ, β ≥ 0, 0 ≤ q < 2, and

c(x) = (1 + x2/K2)−1, κq(u) = ∇ ·
( ∇u

|∇u|q
)
,

for some K > 0.
The PM and TV models tend to converge to a piecewise constant image; such

a phenomenon is called the staircasing effect. To suppress the staircasing effect,
Marquina and Osher [6] suggested the ITV model, a scaling of the TV model
by a factor of |∇u|. Since |∇u| vanishes only on flat regions, its steady state is
analytically the same as that of the TV model. The ITV model turns out to
reduce the staircasing effect successfully; however, it is yet to be improved for
a better preservation of fine structures. The CCAD model is a non-variational
generalization of the ITV model and can be implemented as a stable numerical
algorithm for q ≥ 0; see [5] for details.

Note that the image is originally time-independent; the time in (2) has been
introduced in order to deal with the corresponding steady-state PDEs conve-
niently. Thus the time is an artificial variable and can be considered as an algo-
rithmic parameter for the solution, the restored image.

2.2 Linearized Time-Stepping Procedures

Let Δtn be the nth timestep size and tn =
∑n

i=1 Δti, n ≥ 1, with t0 = 0.
Define un = u(·, tn), n ≥ 0, with u0 = u0. Given u0, · · · , un−1, we will try to
compute un by linearized time-stepping procedures. For � = 1, 2, let Sn−1

� be
diffusion matrices approximating directional operators of the diffusion term S;
for example, for the CCAD model,

Sn−1
� um ≈ −|∇un−1|q ∂x�

( ∂x�
um

|∇un−1|q
)
, m = n − 1, n. (4)

(See Section 2.3 below for details of an anisotropic diffusion spatial scheme.)
Define An−1 = An−1

1 + An−1
2 , where

An−1
� = Sn−1

� +
1
2
Rn, � = 1, 2. (5)
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Here Rn is an evaluation of the constraint term R for the nth time level, of
which an effective strategy will be considered in Section 3.1. Then, a linearized
θ-method for (2) can be formulated as follows: for 0 ≤ θ ≤ 1,

un − un−1

Δtn
+ An−1 [θun + (1 − θ)un−1)] = Rnu0. (6)

For θ = 0, the θ-method computes un explicitly; when Δtn is constant spa-
tially, it must be sufficiently small in order for the algorithm to be stable. On
the other hand, for θ > 0, one can solve the linear system (6) by applying an
iterative algebraic solver or the alternating direction implicit (ADI) procedure
[14,15,4].

Although the algebraic system (6) is often solved implicitly (θ = 1/2 or 1)
in the literature, the explicit procedure (θ = 0) is still popular, due to simplic-
ity in implementation and efficiency in computer memory. However, it requires
to choose Δtn sufficiently small for stability and therefore converges in a huge
number of iterations, which is its major disadvantage. In Section 3.2, we will
study a strategy for the choice of spatially variable Δtn, i.e., Δtn = Δtn(x);
with which the explicit procedure can converge quickly, e.g., in about 10 itera-
tions. In Section 4, the new explicit algorithm will be compared with the AOS
method:

un,k − un−1

Δtn
+ 2An−1

k un,k = Rnu0, k = 1, 2,

un = (un,1 + un,2)/2,
(7)

which holds the maximum principle independently of the timestep size and in-
volves a splitting error of O(Δt); see [13].

2.3 An Anisotropic Diffusion Spatial Scheme

For a completeness of the article, this subsection presents an anisotropic diffusion
scheme for Sn−1

� utilized in (4), which was first introduced in [16]. We will
show the construction of Sn−1

1 ; the analogue can be applied to obtain Sn−1
2 . Let

D un−1
i−1/2,j be a finite difference approximation of |∇un−1| evaluated at xi−1/2,j ,

the mid point of xi−1,j and xi,j . For example, a second-order scheme reads

D un−1
i−1/2,j =

(
(un−1

i,j − un−1
i−1,j)

2

+
[1
2

(un−1
i−1,j+1 + un−1

i,j+1

2
− un−1

i−1,j−1 + un−1
i,j−1

2

)]2)1/2

.

(8)

Define

dn−1
ij,W = [(D un−1

i−1/2,j)
2 + ε2]q/2, dn−1

ij,E = dn−1
i+1,j,W , (9)

where ε is a positive constant (small) introduced to prevent dn−1
ij,W from approach-

ing zero. Then the differential operators in (4), � = 1, can be approximated as
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−∂x1

( ∂x1u
m

|∇un−1|q
)

≈ − 1
dn−1

ij,W

um
i−1,j

+
( 1

dn−1
ij,W

+
1

dn−1
ij,E

)
um

i,j −
1

dn−1
ij,E

um
i+1,j ,

|∇un−1|q ≈ 2 dn−1
ij,W · dn−1

ij,E

dn−1
ij,W + dn−1

ij,E

.

(10)

Note that the last approximation is the harmonic average of dn−1
ij,W and dn−1

ij,E

and first-order accurate. It follows from (4) and (10) that the three consecutive
non-zero elements of the matrix Sn−1

1 corresponding to the pixel xij read

[Sn−1
1 ]ij = (−sn−1

ij,W , 2, −sn−1
ij,E ), (11)

where

sn−1
ij,W =

2 dn−1
ij,E

dn−1
ij,W + dn−1

ij,E

, sn−1
ij,E =

2 dn−1
ij,W

dn−1
ij,W + dn−1

ij,E

. (12)

Note that sn−1
ij,W +sn−1

ij,E = 2. The above anisotropic diffusion numerical scheme has
been successfully applied for image zooming of arbitrary magnification factors
[17,16] and a simultaneous denoising and edge enhancement [5].

3 The Method of Nonflat Time Evolution (MONTE)

In this section, we will introduce an effective variable constraint parameter and
an explicit scheme incorporating variable timestep size Δtn = Δtn(x).

3.1 Constraint Parameters

For most PDE-based models, the constraint parameter has been chosen as con-
stant, due to simplicity. However, constant constraint parameters can often be
ineffective in the preservation of interesting image features such as edges and
textures, because the diffusion operator may introduce an extra dissipation on
fast transitions.

In order to overcome the difficulty, one consider a variable constraint param-
eter as follows: Multiply the stationary part of (2) by (u0 − u) and average the
resulting equation locally to obtain

R(x) ≈ 1
σ2
x

1
|Ωx|

∫

Ωx

(u0 − u)S(u) dx,

where Ωx is a neighborhood of x (e.g., the window of (3 × 3) pixels centered at
x) and σ2

x denotes the local noise variance measured over Ωx. Then, the right
side of the above equation can be approximated as

R(x) ≈ 1
σ2
x

‖u0 − u‖x · ‖S(u)‖x, (13)
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where ‖g‖x denotes a local average |g| over Ωx. The constraint parameter in
(13) is proportional to both the absolute residual |u0 − u| and the diffusion
magnitude |S(u)|, which may effectively suppress the extra dissipation arising
on fast transitions. Note that the local noise variance σ2

x must be estimated
appropriately; see [18] for an effective estimation of σ2

x.
Let the neighborhood Ωx be chosen to include a single pixel x. Then the

constraint parameter in (13) related to a pixel (i, j) in the nth time level can be
formulated as

Rn
ij = η1 · |u0,ij − un−1

ij | · |(Sn−1un−1)ij |, (14)

where η1 is nonnegative constant and Sn−1 = Sn−1
1 + Sn−1

2 .

3.2 An Explicit Nonflat Time-Stepping Procedure

For θ = 0, the θ-method (6) can be rewritten as

un = (1 − Δtn Sn−1)un−1 + Δtn Rn(u0 − un−1). (15)

Let the diffusion matrix Sn−1 incorporate a five-point stencil, i.e.,

[Sn−1un−1]ij = sn−1
ij,C un−1

ij − sn−1
ij,W un−1

i−1,j

−sn−1
ij,E un−1

i+1,j − sn−1
ij,S un−1

i,j−1 − sn−1
ij,N un−1

i,j+1,
(16)

where sn−1
ij,W , sn−1

ij,E , sn−1
ij,S , sn−1

ij,N ≥ 0 and sn−1
ij,C := sn−1

ij,W + sn−1
ij,E + sn−1

ij,S + sn−1
ij,N . For

the diffusion matrix Sn−1
1 in (11) and its analogue Sn−1

2 , we have sn−1
ij,C = 4.

When (16) and (14) are adopted respectively for the diffusion and constraint
terms, the explicit procedure (15) can be written as

un
ij = [1 − Δtn (sn−1

ij,C + Rn
ij)] u

n−1
ij

+Δtn (sn−1
ij,W un−1

i−1,j + sn−1
ij,E un−1

i+1,j

+sn−1
ij,S un−1

i,j−1 + sn−1
ij,N un−1

i,j+1) + Δtn Rn
ij u0,ij .

(17)

The above iteration is stable when all coefficients in the right side are nonnega-
tive. Thus the stability condition for (17) reads

Δtn ≤ 1
sn−1

ij,C + Rn
ij

. (18)

A common practice for the choice of Δtn is

Δtn = min
ij

1
sn−1

ij,C + Rn
ij

. (19)

Recall that Rn
ij is proportional to both the absolute residual and the diffusion

magnitude, while sn−1
ij,C is a multiple of the diffusion coefficient. Thus the timestep

size Δtn in (19) has been chosen as a constant, in order for the algorithm (17)
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not to introduce nonphysical oscillations (instability) on regions of the fastest
transition. However, this choice can slow down evolution of the solution on other
regions, particularly on slow transitions. This is why conventional explicit meth-
ods have often required hundreds of iterations to converge.

As an alternative to (19), this article considers the following variable timestep
size Δtn = Δtn(x):

Δtnij =
1

sn−1
ij,C + Rn

ij

. (20)

The above choice of a variable timestep size deserves the following remarks:

• On slow transitions, the constraint parameter Rn
ij approaches zero and there-

fore a larger timestep must be set, which in turn makes the algorithm work
faster in image restoration.

• Since PDE-based models often incorporate an extra (faster) diffusion on fast
transitions, the choice in (20) can serve as a modulator which tries to equalize
the speed of diffusion over the image domain.

• The computed solution un resides on a nonflat time surface, which causes no
difficulties. Note that the time in PDE-based denoising models of interests
has been introduced, as an artificial variable, in order to enhance convenience
in numerical simulation. The variable timestep size in (20) can be viewed
as a variable parameter of the algorithm (15) which is introduced to solve
steady-state problems of the form

S(u) = R(u0 − u).

Here we have chosen Δtn to enhance efficiency in algorithmic convergence.
We will see in Section 4 that the choice is also effective in quality of image
restoration.

• With (20), the algorithm (17) can be rewritten as

un
ij =

1
sn−1

ij,C + Rn
ij

(
sn−1

ij,W un−1
i−1,j + sn−1

ij,E un−1
i+1,j

+sn−1
ij,S un−1

i,j−1 + sn−1
ij,N un−1

i,j+1 + Rn
ij u0,ij

)
,

(21)

which is an average of u0,ij and four neighboring pixel values of un−1; the
weights are computed anisotropically, incorporating all the pixel values of
un−1 on the (3 × 3) window centered at (i, j), as presented in Section 2.3.

4 Numerical Experiments

In this section, we verify effectiveness of the explicit MONTE procedure, com-
paring with the AOS method (7). Both algorithms incorporates the same spatial
schemes in Section 2.3 and the same constraint parameter in Section 3.1. The
explicit MONTE procedure utilizes the variable timestep size (20), while the
AOS method is provided with the constant timestep size which experimentally
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Fig. 1. Sample images: Lenna, Elaine, and Zebra

Table 1. A PSNR analysis: comparison between the AOS and the explicit MONTE

Noise AOS Explicit MONTE

Image PSNR Δt Iter PSNR Etime Iter PSNR Etime

Lenna 27.27 0.44 6 32.14 0.47 4 32.83 0.32
21.25 0.41 12 28.83 0.92 7 29.48 0.56
16.81 0.42 15 26.22 1.20 9 26.95 0.72

Elaine 27.28 0.43 7 31.51 0.53 4 31.91 0.40
16.82 0.41 19 27.34 1.40 9 27.50 0.89

Zebra 24.78 0.15 7 28.03 0.57 6 28.06 0.67
16.82 0.15 15 23.01 1.28 11 23.34 1.22

results in the best PSNR among all constant timestep sizes. A personal computer
of 2.66 GHz Celeron processor is utilized for the computation; the elapsed time
(Etime) is the real time in second.

The input images are scaled by 1/255 to have values between 0 and 1. Most
algorithm parameters are chosen heuristically for the algorithms to perform their
best. We set ε = 0.01 in (9); the iterations are stopped when maxij |un

ij−un−1
ij | ≤

0.01. The ITV model [6] is selected for the numerical experiment. For simplicity
and a fair comparison, we have utilized the true value of noise variance σ2 for
the parameter η1 in (14): η1 = 0.4/σ2. This choice of the parameter has been
verified to be most effective (among all constant η1) for both algorithms. See
[18] for an effective estimation of σ2

x.
The algorithms have been tested various synthetic and natural images. Here

we will present numerical results, obtained with the sample images in Figure 1.
Table 1 contains a PSNR analysis, comparing performances of the AOS and

explicit procedures applied to the sample images. The variable Δt is the best
constant timestep size we have experimentally found for the AOS, which tends to
become small for texture images such as Zebra. As one can see from the table, the
explicit MONTE can restore images better than the AOS method measured in
PSNR for all cases. It should be noticed that the explicit scheme (17) converges
in 4-11 iterations, while the AOS algorithm requires more iterations. Such a
fast convergence for the explicit algorithm is due to the MONTE, the variable
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(a) (b) (c)

Fig. 2. Lenna image: (a) a noisy image (PSNR=21.25) and restored images by (b) the
AOS method (PSNR=28.83) and (c) the explicit procedure (PSNR=29.48)

constraint term (14) and the variable timestep size (20), which tries to equalize
the speed of diffusion over the image domain.

Figure 2 depicts a noisy image of Lenna (PSNR=21.25) and its restored images
by the two algorithms. The AOS and explicit iterations converge in 12 and 7
iterations, respectively, as shown in Table 1. As one can see from the figure, image
details are preserved satisfactorily by the AOS, while the new explicit method
has resulted in a better restored image. The MONTE has proved efficient in
computation time and effective in the preservation of interesting image features.

The explicit MONTE procedure has converged in 4-15 iterations for all tested
cases (including those not presented in this article). One should notice that
the explicit procedure is efficient in computer memory, requiring only twice the
image size.

5 Conclusions

Conventional explicit algorithms for solving PDE-based restoration models of-
ten require hundreds of iterations to converge. In this article, we have intro-
duced strategies for spatially variable constraint parameter and timestep size,
as a method of nonflat time evolution (MONTE). The explicit MONTE has
been compared with the additive operator splitting (AOS) method to prove its
efficiency and effectiveness. It has been numerically verified that the explicit
MONTE procedure converges in only 4-15 iterations for all tested cases of image
denoising. The new explicit method has converged faster and produced better
restored images (measured in PSNR) than the AOS algorithm, for most cases.
Since the explicit MONTE procedure is efficient in computer memory, requiring
only twice the image size, it can be applied particularly for huge data sets (e.g.,
3D images) with a great efficiency in computer memory.
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