
Progressive Decomposition of Point Clouds

Without Local Planes�

Jag Mohan Singh and P.J. Narayanan

Center for Visual Information Technology
International Institute of Information Technology

Hyderabad, India
{jagmohan@research., pjn@}iiit.ac.in

Abstract. We present a reordering-based procedure for the multireso-
lution decomposition of a point cloud in this paper. The points are first
reordered recursively based on an optimal pairing. Each level of reorder-
ing induces a division of the points into approximation and detail values.
A balanced quantization at each level results in further compression. The
original point cloud can be reconstructed without loss from the decom-
position. Our scheme does not require local reference planes for encoding
or decoding and is progressive. The points also lie on the original mani-
fold at all levels of decomposition. The scheme can be used to generate
different discrete LODs of the point set with fewer points in each at
low BPP numbers. We also present a scheme for the progressive repre-
sentation of the point set by adding the detail values selectively. This
results in the progressive approximation of the original shape with dense
points even at low BPP numbers. The shape gets refined as more details
are added and can reproduce the original point set. This scheme uses
a wavelet decomposition of the detail coefficients of the multiresolution
decomposition. Progressiveness is achieved by including different levels
of the DWT decomposition at all multiresolution representation levels.
We show that this scheme can generate much better approximations at
equivalent BPP numbers for the point set.

1 Introduction

Polygon-based graphics is useful when the properties – such as color, normals,
depth – can be interpolated linearly along a plane, from their values at the ver-
tices. This results in the approximation of the shape for many natural objects. As
the graphics capability improves, they get represented using finer and finer poly-
gons. Recently, points have attracted renewed attention as the basic graphics rep-
resentation primitives [1]. The interest in point-based representations is due to the
increase in the resolution of polygon models. The polygons in the graphics models
have been shrinking in size for greater accuracy and visual fidelity. Per pixel cal-
culations are made in the graphics hardware in most cases to improve the shading
� This research was carried out with partial funding from the Naval Research Board,

India.

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 364–375, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Progressive Decomposition of Point Clouds Without Local Planes 365

effects. The display resolution has, on the other hand, been saturating. Thus, it
is common for the polygons of a model to be of the same order as a screen pixel
in many situations. This makes polygons cumbersome and inefficient to handle.
Point-based representations could be more natural and efficient in such situations.

Point based models contain a very large number of points often running into
the millions. Representing them in a compressed manner is therefore essential.
Multiresolution representation and progressive decoding are important to point
based models even more than geometric models. Methods proposed for that typ-
ically compute a local plane of support to induce a regular grid to the points
[2,3]. This facilitates the application of many standard signal and image com-
pression algorithms to points. These local planes are computationally intensive
to find and can cause approximation errors. Since points have no connectivity,
they are conceptually independent of one another and can be reordered with no
loss in information.

In this paper, we present a simple multiresolution decomposition of a point set
based on their proximity without the need for a local plane. Our scheme is based
on the reordering of the points that naturally provides multiresolution represen-
tation and progressive decoding. Our method reorders and decomposes points
successively into approximation and detail sets, loosely similar to the wavelet
decomposition. The approximation results in representation of the point set in a
different levels of decreasing detail. The detail sets are vector differences between
point-pairs. We further reduce the representational complexity of the approxi-
mations by changing the quantization based on the sampling rate, keeping a fine
balance between sampling and quantization. We provide a progressive represen-
tation for the point set. This is done by decomposing the details using DWT up
to a certain number of levels and is used to obtain an approximation of the de-
tail. While reconstructing the point set we use the approximated details instead
of the original details. This scheme is used for generating an approximation of
the point set with given number of bits.

We survey the literature related to the compression of point-based represen-
tations in Section 2. Section 3 presents the details of our multiresolution decom-
position scheme and decompression. Section 4 shows results and is followed by
a few concluding remarks in Section 5.

2 Related Work

Compression techniques have mainly focused on triangle meshes. Triangle based
mesh compression mainly focuses on encoding connectivity [4,5,6]. Vertex po-
sitions are obtained by quantization followed by predictive coding. Progressive
coders allow for better prediction of positions which allow for reconstruction of
intermediate shapes by using a prefix of encoded bit stream. These include pro-
gressive meshes [7] which uses greedy edge collapses to arrive at lower resolution
mesh. Progressive geometry compression [8] eliminates the need for connectiv-
ity compression by using semi-regular meshes, wavelet transforms, and zero-tree
encoding.

366 J.M. Singh and P.J. Narayanan

Point based representations allow us to work directly on point data without
worrying about connectivity. QSplat [9] uses a multiresolution data structure
based on a bounding volume hierarchy. This is optimized for rendering of large
point based models such as those obtained through the Digital Michelangelo
Project [10]. The preprocessing allows dynamic level of detail selection on the
fly. Layered Point Clouds [11] handles large point based models and adjust their
sampling according to their projected size on the screen. The sampling technique
[12] used is able to handle complex and procedural geometry. Point set surfaces
[3] use Moving Least Square (MLS) which is a projection operator which can be
used both for upsampling and downsampling of the surface. MLS operator can
be used for generating multiresolution point sets [13]. They use a polynomial
and a local plane and generate multiple resolutions by varying the degree of the
polynomial. The number of choices available for encoding between two consec-
utive levels are however limited. MLS is a smoothing operator and it smooths
the sharp features of the point set surface. Efficient Simplification of Point Sam-
pled Surfaces [14] estimates the curvature of points using local planes. They use
curvature and quadric error metric for simplification which is computationally
expensive. Progressive compression of point sampled models [15] finds an optimal
pairing of points and replace them by their average at lower level of approxi-
mation. This is followed by differential coding where the residues are decreased
further by the use of local planes and a prediction operator. The residues are
coded using a zerotree coder which gives a progressive stream and finally us-
ing arithmetic coding. This scheme can be used for generating progressive levels
from a given point set at a fixed rate and progressive rate. This scheme is able to
handle point attributes such as geometry, color and normals. However, averaging
sends the points to outside the manifold and local plane computation which is
needed is expensive. Predictive point-cloud compression [16] uses a prediction
tree, which is a spanning tree over the vertices. Rooting of the tree defines a
partial order. The tree is built greedily by adding those nodes that predicts the
new point with smallest residue such as constant and linear. The residues are
then encoded by arithmetic coding. This generates multiresolution hierarchy of
the original point set. This scheme handles only geometry.

3 Multiresolution Decomposition Using Reordering

We propose a lossless, multiresolution decomposition of the geometry of the point
set. Our scheme is based on a reordering of the points. Points are first paired
up optimally such that the sum of distances between the pairs is minimum.
The pairing induces a partitioning of the points into Odd and Even halves. The
Odd half provides a lower resolution representation of the model. This process
is repeated recursively with successive Odd sets to get a lossless multiresolution
decomposition of the point set. We also adjust the quantization at the lower
levels to match the sampling. Detail and quantized approximation are encoded
by arithmetic encoding. The multiple resolutions of the representation provide
discrete LODs of the original point cloud with decreasing number of points.

Progressive Decomposition of Point Clouds Without Local Planes 367

3.1 Reordering of Points

Our algorithm uses the minimum weighted perfect matching [17] for pairing up
the points. A perfect matching in a graph G is a subset of edges such that each
node in G is met by exactly one edge in the subset. Given a real weight ce for each
edge e of G, the minimum-weight perfect-matching problem is to find a perfect
matching M of minimum weight Σ(ce: e ∈ M). An implementation of Edmond’s
original algorithm will run in time O(n2m) where n is the number of nodes in the
graph and m is the number of edges. Minimum weighted perfect matching uses
an improved version of Edmond’s algorithm and is bounded by O(nm log(n)).
The pairing at each level minimizes the total Euclidean distance between all
pairs. The edge weights can additionally include distances between colors and
normals if those attributes are also being compressed. We do not construct the
complete graph but only an adjacency graph connecting each vertex with its
k = 16 nearest neighbours.

After applying perfect matching we get odd and even point sets.While choos-
ing the odd point set and even point set after perfect matching we enhance
coherence in the even point set. The odd point is chosen such that the vector
from the odd point to the even point has positive X, Y , and Z components in
that order of priority. This will increase the correlation between the pairing vec-
tors since our intention is to replace the even points with them. The perfect
matching would reorder the point sets such that the total distance between the
odd and even point sets. After, getting the lowermost odd point set by repeat-
edly applying perfect matching. We would reorder the point sets such that odd
points are in positions (1, · · · , N/2) and the corresponding even points are in the
positions (N/2+1, · · · , N). This reordering is applied recursively to the odd half
of the points so that after reordering the points remain matched. When a point
in the odd section is reordered its matching even point should also be reordered
to maintain the pairing. If only one level of decomposition is done then the even
point set has to be reordered only once. However, if k levels of decomposition is
done or perfect matching is applied k times, then the movement of a point at
the lowest level can result in reordering of 2k−1 points.

3.2 Approximation and Detail

The even point can be replaced by a vector from the matching odd point. If the
pairing is done well, these vectors will have similar values and can compress well.

Odd Even Even Even3 2 13

i+n/4 i+n/2i+n/4+n/8i+n/8i i+n/2+n/4+n/8

Fig. 1. Point set reordering with three levels of decomposition arrows show the move-
ment of matching points. The positions show where the matched points appear after
reordering.

368 J.M. Singh and P.J. Narayanan

This is performed in all hierarchical decomposition levels. The approximation
point set is same as the odd point set. The detail point set is obtained by
taking vector difference between the matched even point and the odd point for
every point in the even point set. Thus, after k levels of decomposition the
approximation is Ak and the detail is Dk. We denote jth point of detail Di as
Di[j] and jth point of approximation Ai as Ai[j]. Note that the lower resolution
approximations have the larger index among Ais and Dis. The approximation
and detail are shown after three levels of decomposition Figure 1.

A3 D3 D2 D1

Fig. 2. Approximation and detail after decomposition. A3 is the lowest resolution level.
A3 and D3 make up A2 in a lossless manner and so on recursively.

If each even point i + N/2j at level j is replaced by the vector from its
odd counterpart i at each step, the decomposition divides the original point set
successively into Ak, Dk, Dk−1, Dk−1, · · ·D1.

The approach used by [15] is similar to the full edge collapse used in triangle
meshes. Our approach is similar to the half-edge collapse used in triangle meshes.
In triangle meshes the full edge collapse might result in converting a manifold
mesh to a non-manifold mesh [18]. The same can happen in point sampled models
as the average position is not expected to lie on the manifold. Figure 3 shows
the back part of the of the bunny model with positions as average on the left
one and retained on the right. The edge weight of the graph constructed in both
the cases is the Euclidean distance and attributes are averaged in one case and
retained in another. The averaged representation appears more regular, but has
the points that are clearly away from the original manifold. This problem is more
serious at lower levels of approximation.

Fig. 3. Comparison between averaging the pairs and retaining one of them. The av-
eraged Bunny (left) have points that move away from the manifold (as shown in the
inset), but the retained Bunny (right) has all the points on the original manifold.

3.3 Balanced Quantization and Sampling

It has been established that the quantization and sampling should be matched
to each other in point-sampled representations [19]. It is fruitless to represent

Progressive Decomposition of Point Clouds Without Local Planes 369

coordinates with precision when they are sparsely sampled. Conversely, the qual-
ity will be poor if a densely sampled set of points is represented using only a few
bits. This can be exploited to gain greater compression ratios at higher levels of
decomposition.

The point coordinates are represented using fixed precision integers. The num-
ber of bits used should depend on the sampling rate at that level. Twelve to
fifteen bits per coordinate will suffice for most practical models used today.
Thereafter, when approximation Ai−1 is split into Ai and Di, the coordinates of
Ai are stripped off the least significant bit. Thus, the coordinates at level i are
represented using p − i bits if the original points are represented using p bits.
The least significant bits that are collected as an (N/2i)-bit entity Ei of extra
information Figure 4.

Hence, our k-level decomposition of points consists of Ak, Dk, Ek, Dk−1, Ek−1

Dk−1, Ek−2, · · · , D1, and E1. The computation of approximation and detail from
the point set in our case does not involve the use of local coordinate frames as
done in [15].

D1
D2

D3
A3

E3

E2
E1

Fig. 4. Point Set after reordering and quantization

3.4 Compressed Representation

The approximation and detail are encoded using arithmetic encoding [20]. The
extra detail, obtained during quantization, is packed into a stream of bytes and
no encoding is applied as they do not compress much. The encoding is lossless.
Given the lower level approximation, detail and extra-detail we can compute the
higher level approximation exactly.

3.5 Decompression

The original point set has been reordered so that approximation and detail
are matched. Thus decompression is simple and the level up to which we need
lossless reconstruction is computed from the same. Hence, in our scheme the data
size needed to store the complete progressive point set is same as the original
point set. In order to obtain a better approximation, we use the coarsest level
of approximation and the encoded detail levels and extra detail levels till we get
the required level of approximation. We achieve high compression this way as
details and approximation after encoding require less space than the encoded
higher approximation level.

370 J.M. Singh and P.J. Narayanan

Table 1. PSNR and BPP for Different Models. Compression ratio is inversely propor-
tional to BPP.

Level Bunny(35k) Santa(75k) GolfBall(122k) Venus(134k) Armadillo(172k)

0 ∞/30.84 ∞/41.71 ∞/41.29 ∞/31.17 ∞/42.82

1 45.60/7.65 66.41/12.8 62.38/13.05 49.69/6.96 80.15/12.24

2 44.16/3.74 53.53/5.79 61.30/6.72 48.18/2.99 66.19/5.79

3 43.18/1.74 51.19/2.86 60.68/3.27 47.18/1.41 55.61/2.56

4 42.30/0.91 49.81/1.39 50.17/1.50 46.29/0.67 53.12/1.28

5 41.54/0.47 48.76/0.65 47.46/0.75 45.52/0.30 51.6/0.63

6 40.87/0.23 47.91/0.31 45.86/0.37 44.84/0.16 50.48/0.27

7 40.29/0.14 47.22/0.18 44.71/0.18 44.23/0.08 49.61/0.14

8 - 46.62/0.09 43.74/0.09 43.7/0.04 48.88/0.08

9 - - 42.93/0.05 43.2/0.02 48.28/0.04

Level Lion(183k) Lucy(262k) Heptoroid(286k) Brain(294k) Octopus(465k)

0 ∞/31.57 ∞/41.19 ∞/22.59 ∞/43.01 ∞/41.79

1 53.7/8.11 66.26/12.06 65.66/15.03 65.69/13.94 60.33/9.98

2 52.94/3.11 63.37/5.82 61.22/7.05 61.98/6.38 59.36/4.41

3 51.99/1.67 58.11/2.8 56.59/3.27 54.57/3.29 58.35/1.69

4 51.13/0.96 56/1.32 49.5/1.59 50.67/1.56 57.5/0.87

5 50.38/0.47 54.64/0.61 44/0.78 48.82/0.71 56.74/0.48

6 49.72/0.22 53.62/0.27 41.71/0.38 47.60/0.35 56.08/0.21

7 49.15/0.11 52.81/0.13 33.51/0.19 46.72/0.17 55.51/0.10

8 48.65/0.063 52.16/0.07 28.18/0.09 46/0.07 55.02/0.05

9 48.23/0.032 51.65/0.039 25.87/0.04 45.41/0.044 54.57/0.02

10 47.84/0.018 51.22/0.02 24.36/0.021 44.94/0.024 54.19/0.014

3.6 Results

Table 1 shows the PSNR and bits per pixel (BPP) for different point based
models after our decomposition. Some of the models at different resolutions are
shown in Figure 6. The figure shows the model using a surfel radius that is higher
for lower resolution models.

We also give the rate distortion curves for different models (see Figure 5).
The compression is lossless hence the reconstructed model from the coarsest
approximation and details will match exactly. PSNR is calculated by considering
the error induced in the geometry as we go down the levels. The peak signal is
the diameter of the bounding sphere of the point set. The mean square error
is the cumulative magnitude of the details and the extra-details as we go down
the levels. The BPP at a level is calculated as a ratio of the total number of bits
in its representation to the total number of points.

We are able to achieve high levels of compression and low BPP values using the
scheme. Each lower level has approximately half the number of points as the next
higher model. Thus, the levels represent successive approximations using fewer
points but at very low bpp numbers. Our method can be thought of as retaining
the high level information as we down the lower levels which is more important

Progressive Decomposition of Point Clouds Without Local Planes 371

Fig. 5. PSNR/BPP for Bunny, Santa, Venus, Armadillo, Lion, Heptoroid, and Octopus
Models

Fig. 6. Left to Right, Top to Bottom: Lucy model at Levels 7 (0.13 BPP), 4 (1.32
BPP) and 2 (5.82 BPP) , Venus at Levels 8 (0.04 BPP), 5 (0.30 BPP) and 3 (1.41
BPP). Octopus at Levels 9 (0.02 BPP), 5 (0.48 BPP) and 2 (4.41 BPP).

for perception and approximating the shape than the low level information which
is a result of averaging process. Thus, averaging will lead to low pass version of
the signal which is not a true approximation of the original shape. However,
retaining the high pass information will give us the important features in the
shape and the rest can be filled by changing the surfel radii accordingly.

4 Progressive Representation of the Point Set

The multiresolution decomposition given above differs from a standard wavelet
decomposition critically, though there are structural similarities. In a wavelet
decomposition, if the detail coefficients are set to zero, an averaged version of
the signal is reproduced. This version is approximate but dense, covering the
whole domain. In our decomposition, if the detail coefficients are set to zero, the
points are repeated. The higher levels do not contain any additional information
if a detail value is 0. We need a scheme in which different approximations of Dis
can be generated. While a 0 value for Di repeats points, approximation of Di

can generate a dense representation of the original point set. One way to do this
is to approximate the detail values as a 1D signal. Different approximations of
this signal will contain different details.

372 J.M. Singh and P.J. Narayanan

4.1 Decomposition

We treat each detail Di as a one dimensional sequence of slow varying num-
bers and compress the sequence using DWT. Thus, for each detail Di, DWT is
applied ki times. ki is chosen such that the last level has about M points. We
used a simple 7 -tap Daubechies wavelet for decomposition and set M as 25. A
representation of this is shown in Figure 7 where ki is 5, 10, and 15 for D3, D2

and D1 respectively. Let Di be the DWT decomposition of Di.

D3

D2 D1

A3

E3

E2

E1

Fig. 7. Point set after reordering, quantization and wavelet decomposition of detail
values. This is obtained by decomposing D3, D2 and D1 into 5, 10, and 15 levels
respectively.

4.2 Progressive Representation

Each Di can be approximated by including only a number of its DWT levels
resulting in a smooth version of the Di sequence. Since, each Di[j] value acts as
a displacement on a point Ai[j], it generates another point in the representation.
This results in a better approximation of the point set. A dense representation
of the point set with as many points as the original point set can be obtained
if we include some of all Dis in the representation. If we set all Dis to 0 for
i < j, a representation with as many points as the approximation level Aj can
be obtained. We give a procedure to generate an approximation of the point set
with M points and S number of bits given a model with N original points and
k multiresolution decomposition levels.

The above algorithm can produce approximations of the point set with differ-
ent number of points and total size. The combination of Ak and D′

i, E
′
i, k ≤ i < j

is a compact representation of the point set. They can be used to reconstruct the
model in two steps. First, approximate D′

is for each level is found by applying
IDWT on each Di, setting the missing coefficients to 0. Next, an approximation
A′

j of the point set is generated using the decompression technique given in Sec-
tion 3.5 using Ak and D′

is and Eis. In our experiments, we allocate 80% of the
bits at every level to Di and the rest to Ei.

4.3 Results

We give the rate distortion curves for different models (see Figure 8) using
progressive representation. Since the decomposed model has exactly the same

Progressive Decomposition of Point Clouds Without Local Planes 373

Algorithm 1. Progressive Representation(M, S)
1: Find level j = �log2 N/M� with more than M points. Skip Dis for all i < j.
2: Include the lowest level Ak. Subtract its size from S. This is the number of bits

available for Dis and Eis.
3: Allocate these bits equally among the levels from k to j.
4: for i = k to j do
5: Let Si be the size allocated to level i. A fraction r of it is used for Di and rest

for Ei.
6: If Si is greater than the combined size of Di and Ei, set D′

i ← Di and E′
i ← Ei.

7: Otherwise, construct D′
i with as many DWT coefficients of Di, starting with the

most approximate level, such that the combined size is rSi and construct E′
i

with (1− r)Si bits of Ei

8: end for
9: Return Ak and D′

i, E
′
i for i= k to j

0 2 4 6 8 10 12 14 16 18
30

40

50

60

70

80

90

100

Bits per point

P
S

N
R

/d
B

 Bunny (35k)

 Venus (134k)

 Heptoroid(286k)

Lucy(262k)

 Octopus(465k)

Fig. 8. Rate distortion curve for Bunny, Venus, Heptoroid, Lucy and Octopus mod-
els for the progressive representation. These cannot be directly compared directly
with Figure 5 as the PSNR is calculated in a different way here as explained in the
text.

number of points as the reordered original point-set, the PSNR can be calculated
by taking from the error between the corresponding points. This is a better
measure of quality unlike those used in Section 3 or by Waschbüsch et al. [15]
The peak signal is the diameter of the bounding sphere of the point set. BPP
is calculated by taking into account number of bits used to go till the higher
most level of approximation using the approximation and reconstructed details.
Lucy Model at different BPP is shown in Figure 9 with increased radius for
hole free appearance. We compare the quality of models achieved by progressive
representation and multiresolution decomposition Figure 10. Note that higher
BPP are required in progressive representation but the model has fewer holes.
We use the procedure progressive representation for to generate any number of
points.

374 J.M. Singh and P.J. Narayanan

Fig. 9. Lucy Model at 2.27 BPP, 3.16 BPP, and 8.24 BPP respectively using the
progressive representation

Fig. 10. Lucy Model at 3.11 BPP from the multiresolution decomposition (left) and
progressive representation (right) with same radius for both. Progressive representation
is visually superior.

5 Conclusions and Future Work

We presented a simple, reordering based algorithm to decompose a point set into
multiple resolutions. The algorithm is based on optimal pairing and decomposes
the points into a low resolution approximation and a series of detail vectors.
The points of all approximation levels fall on the original manifold. We are
able to get further compression using balanced quantization at every sampling
level. The multiresolution decomposition provides discrete levels of detail to
the point set. We also present a progressive representation of the point set by
compressing the detail vectors using wavelets. By selectively including different
numbers of coefficients of the wavelet decomposition at each detail level, we
are able to get a wide range of representations for the point set, ranging from
the lowest approximation to a totally lossless representation. The progressive
representation scheme can be used to generate a model with the given number
of points and a given BPP. Progressive representation results in better visual
appearance compared to the multiresolution decomposition.

Currently, the decomposition is performed on the whole point set. This de-
creases the coherence of the detail vectors. Partitioning the points into different
parts of the model and treating each part independently will perform better.
The detail vectors will be more coherent and will compress well using DWT.
We can also select different progressive levels for different parts of the point set
based on proximity or importance. We are exploring these ideas currently.

Progressive Decomposition of Point Clouds Without Local Planes 375

References

1. Kobbelt, L., Botsch, M.: A survey of point-based techniques in computer graphics.
Computer and Graphics 28 (2004) 801–814

2. Pauly, M., Gross, M.: Spectral processing of point-sampled geometry. In: SIG-
GRAPH ’01. (2001) 379–386

3. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Com-
puting and rendering point set surfaces. IEEE Transactions on Visualization and
Computer Graphics 9 (2003) 3–15

4. Gumhold, S., Strasser, W.: Real time compression of triangle mesh connectivity.
In: SIGGRAPH ’98. (1998) 133–140

5. Rossignac, J.: Edgebreaker: Connectivity compression for triangle meshes. In:
IEEE Transactions on Visualization and Computer Graphics. Volume 5. (1999)
133–140

6. Touma, C., Gotsman, C.: Triangle mesh compression. In: Graphics Interface.
(1998) 26–34

7. Hoppe, H.: Progressive meshes. In: SIGGRAPH ’96. (1996) 99–108
8. Khodakovsky, A., Schroder, P., Sweldens, W.: Progressive geometry compression.

In: SIGGRAPH ’00. (2000) 271–278
9. Rusinkiewicz, S., Levoy, M.: Qsplat: a multiresolution point rendering system for

large meshes. In: SIGGRAPH ’00. (2000) 343–352
10. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginz-

ton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The digital
michelangelo project: 3d scanning of large statues. In: SIGGRAPH ’00. (2000)
131–144

11. Gobbetti, E., Marton, F.: Layered point clouds. In: Eurographics Symposium on
Point Based Graphics. (2004) 113–120, 227

12. Stamminger, M., Drettakis, G.: Interactive sampling and rendering for complex
and procedural geometry. In: Rendering Techniques 2001 (Proceedings of the Eu-
rographics Workshop on Rendering 01). (2001)

13. Fleishman, S., Cohen-Or, D., Alexa, M., Silva, C.T.: Progressive point set surfaces.
ACM Trans. Graph. 22 (2003) 997–1011

14. Pauly, M., Gross, M., Kobbelt, L.P.: Efficient simplification of point-sampled sur-
faces. In: VIS ’02: Proceedings of the conference on Visualization ’02. (2002)
163–170

15. Waschbüsch, M., Gross, M., Eberhard, F., Lamboray, E., Wurmlin., S.: Progres-
sive compression of point-sampled models. In: Proceedings of the Eurographics
Symposium on Point-Based Graphics. (2004) 95–102

16. Gumhold, S., Karni, Z., Isenburg, M., Seidel, H.P.: Predictive point-cloud com-
pression. In: Proceedings of the Sixth Israel-Korea Bi-National Conference. (2005)
125–129

17. Cook, W., Rohe, A.: Computing minimum-weight perfect matchings. INFORMS
Journal on Computing 11 (1999) 138–148

18. Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B., Huebner, R.: Level
of Detail for 3D Graphics. Morgan Kaufmann (2003)

19. Botsch, M., Wiratanaya, A., Kobbelt, L.: Efficient high quality rendering of point
sampled geometry. In: EGRW ’02: Proceedings of the 13th Eurographics workshop
on Rendering. (2002) 53–64

20. Moffat, A., Neal, R.M., Witten, I.H.: Arithmetic coding revisited. ACM Trans.
Inf. Syst. 16 (1998) 256–294

	Introduction
	Related Work
	Multiresolution Decomposition Using Reordering
	Reordering of Points
	Approximation and Detail
	Balanced Quantization and Sampling
	Compressed Representation
	Decompression
	Results

	Progressive Representation of the Point Set
	Decomposition
	Progressive Representation
	Results

	Conclusions and Future Work

