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Abstract. We propose a technique for super-resolving an image from
several observations taken at different camera zooms. From the set of
these images, a super-resolved image of the entire scene (least zoomed) is
obtained at the resolution of the most zoomed one. We model the super-
resolution image as a Markov Random Field (MRF). The cost function
is derived using a Maximum a posteriori (MAP) estimation method and
is optimized by using gradient descent technique. The novelty of our ap-
proach is that the decimation (aliasing) matrix is obtained from the given
observations themselves. Results are illustrated with real data captured
using a zoom camera. Application of our technique to multiresolution
fusion in remotely sensed images is shown.

1 Introduction

In many of the imaging applications, images with high spatial resolution are
desired and often required. The spatial resolution can be increased by using
high density sensor for capturing the image. However, this is not possible as there
exist a limit on pixel size. The resolution enhancement from a single observation
using image interpolation is of limited application because of the aliasing present
in the low resolution image. Super-resolution refers to the process of producing
a high spatial resolution image from several low-resolution observations. When
one captures the images with different zoom settings, the amount of aliasing is
different in differently zoomed observations. This is because the least zoomed
entire area of the scene is represented by a very limited number of pixels, i.e.,
it is sampled with a very low sampling rate and the most zoomed image with
a higher sampling frequency. Therefore, larger scene coverage will have lower
resolution with more aliasing effect. By varying the zoom level, one observes the
scene at different levels of aliasing and blurring. Thus, one can use zoom as a
cue for generating high-resolution images at the lesser zoomed area of a scene.

The super-resolution idea was first proposed by Tsai and Huang [1] using
frequency domain approach and employing motion as a cue. In [2], the authors
use a Maximum a posteriori framework for jointly estimating the registration pa-
rameters and the high-resolution image for severely aliased observations. A MAP
estimator with Huber-MRF prior is described by Schultz and Stevenson in [3].
Lin and Shum determine the fundamental limits of reconstruction-based super-
resolution algorithms using the motion cue and obtain the magnification limits
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from the conditioning analysis of the coefficient matrix [4]. Capel and Zisserman
[5] have proposed a technique for automated mosaicing with super-resolution
zoom by fusing information from several views of a planar surface in order to
estimate its texture. The authors in [6] integrate the tasks of super-resolution
and recognition by directly computing a maximum likelihood parameter vector
in high-resolution tensor space for face recognition.

Most of the methods of super-resolution proposed in literature use motion cue
for estimating high resolution image. This requires registration of images with
sub-pixel accuracy. The non-redundant information can also be obtained by us-
ing different camera parameters or different lighting conditions while capturing
the scene. The authors in [7] describe an MAP-MRF based super-resolution
technique using blur cue. They recover both the high-resolution scene intensity
and the depth fields simultaneously using the defocus cue. The authors in [8]
recover the super-resolution intensity field from a sequence of zoomed observa-
tions. The resolution of entire scene is obtained at the resolution of the most
zoomed observed image which consists of only a portion of the actual scene. For
more details refer to [9].

In this paper, we obtain super-resolution by using zoom as a cue. We model
the super-resolution image as an MRF and assume that the high resolution image
at the most zoom setting is super-resolved. In our image formation model, we
learn the decimation (aliasing) matrix from the most zoomed observation and
use MAP-MRF formulation to obtain super-resolved image for the entire scene.
We are also assuming that the images are registered while zooming. However
after registering the images we need to estimate the aliasing accurately so that
the model fits well. It may be interesting to see that our approach generates a
super-resolved image of the entire scene, although only a part of the observed
scene has multiple observations.

2 Image Formation Model

The zoom based super-resolution problem can be cast in a restoration frame-
work. There are p observed images Yi, i = 1 to p, each captured with different
zoom settings and are of size M1 × M2 pixels each. Fig. 1 illustrates the block
schematic of how the low-resolution observations of a scene at different zoom
settings are related to the high-resolution image. Here we consider that the most
zoomed observed image of the scene Yp (p = 3) has the highest spatial resolution.
We are assuming that there is no rotation about the optical axis between the ob-
served images taken at different zooms. Since different zoom settings give rise to
different resolutions, the least zoomed scene corresponding to entire scene needs
to be upsampled to the size of (q1q2 . . . qp−1) × (M1 × M2) pixels (= N1 × N2

pixels), where q1, q2, . . . , qp−1 are the corresponding zoom factors between two
successively observed images of the scene Y1Y2, Y2Y3, . . ., Yp−1Yp respectively.
Given Yp, the remaining (p−1) observed images are then modeled as decimated
and noisy versions of this single high-resolution image of the appropriate region
in the scene. The most zoomed observed image will have no decimation. The low
resolution image observation model is shown in Fig. 2.
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Fig. 1. Illustration of observations at different zoom levels, Y1 corresponds to the least
zoomed and Y3 to the most zoomed images. Here z is the high resolution image of the
scene.

Fig. 2. Low-resolution image formation model for three different zoom levels. View
cropping block just crops the relevant part of the high resolution image Z as the field
of view shrinks with zooming.

Let ym represent the lexicographically ordered vector of size M1M2×1, which
contains the pixels from differently zoomed images Ym and z be the super-
resolved image. The observed images can be modeled as

ym = DmCm(z − zαm) + nm, m = 1, · · · , p, (1)

where D is the decimation matrix which takes care of aliasing present while
zooming. The subscript m in D denotes that the amount of decimation depends
on the amount of zoom for mth observation, size of which depends on the zoom
factor. For an integer zoom factor of q, the decimation matrix D consists of
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q2 non-zero elements along each row at appropriate locations. The procedure
for estimating the decimation matrix is described in section 3. Cm is a cropping
operator with zαm = z(x−αmx , y−αmy) and αm = (αmx , αmy) representing the
lateral shift of the optical shift during zooming process for the mth observation.
The cropping operation is analogous to a characteristic function which crop outs
the �q1q2 . . . qm−1N1� × �q1q2 . . . qm−1N2� pixel area from the high resolution
image z at an appropriate position. nm is the i.i.d noise vector with zero mean
and variance σ2

n. It is of the size, M1M2 × 1. The multivariate noise probability
density is given by

P (nm) =
1

(2πσ2
n)

M1M2
2

e
− 1

2σ2
n
nT

mnm
. (2)

Our problem is to estimate z given yms, which is an ill-posed inverse problem.
It may be mentioned here that the observations captured are not blurred. In
other words, we assume identity matrix for blur.

3 Estimation of Decimation (Aliasing) Matrix

The general model for super-resolution based on motion cue is [10],

y = DHWz + n, (3)

where W is a warping matrix, H is a blur matrix, D is a decimation matrix
and n is a noise vector. Here the decimation model to obtain the aliased pixel
intensities from the high resolution pixels has the form [3]

D =
1
q2

⎛
⎜⎜⎝

1 1 . . . 1 0
1 1 . . . 1

0 1 1 . . . 1

⎞
⎟⎟⎠ . (4)

As an example, consider an observation of size 2×2. For the decimation factor
of q = 2, the size of z becomes 4 × 4. z can be represented as lexicographically
ordered vector having 16 elements. The Decimation matrix D is of size 4 × 16
and it can be expressed with reordering of z as

D =
1
4

⎛
⎜⎜⎝

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎞
⎟⎟⎠ . (5)

In other words the aliased pixel intensity at a location (i, j) of a low resolution
image for a zoom factor of q = 2 is given by

y(i, j) =
1
4
z(2i, 2j)+

1
4
z(2i, 2j+1)+

1
4
z(2i+1, 2j)+

1
4
z(2i+1, 2j+1)+n(i, j). (6)
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Here (2i, 2j), (2i, 2j +1), (2i+1, 2j) and (2i+1, 2j +1) are corresponding 4 (q2)
pixel locations in the higher resolution image and n(i, j) is the noise at the pixel
(i, j).

The decimation matrix in Eq. (4) indicates that a low resolution pixel intensity
y(i, j) is obtained by averaging the intensities of q2 pixels corresponding to the
same scene in the high resolution image and adding noise intensity n(i, j) (refer
to Eq.(1)). In other words, all q2 high resolution intensities are weighted equally
by 1

q2 (1
4 for q = 2) to obtain the distorted or aliased pixel. This decimation

model simulates the integration of light intensity that falls on the high resolution
detector. This assumes that the entire area of a pixel acts as the light sensing
area and there is no space in the pixel area for wiring or insulation. In other
words, fill factor for the CCD array is unity. However, in practice, the observed
intensity at a pixel captured due to low resolution sampling depends on various
factors such as camera gain, illumination condition, zoom factor, noise etc. Hence
the aliased low resolution pixel intensity of an image point is not always equally
weighted sum of the high resolution intensities. Since we capture the images at
different resolutions using zoom camera and the most zoomed image is assumed
to be alias free, we estimate the weights from the most zoomed region. These
weights are obtained by considering the most zoomed image and corresponding
portion in the lesser zoomed images. We estimate 4 weights for a zoom factor of
2 and 16 for a zoom factor of 4. The estimated weight vectors are then used in
Eq.(1) for forming D matrix to get the observation model. It may be noted that
for a given zoom factor, we are not estimating different weights for each location.
Since the average brightness of each observation varies due to AGC of camera,
we used mean correction to maintain average brightness of the captured images
approximately the same and use these observations for the D matrix estimation
as well as for experimentation. Mean correction for Y2 is obtained by subtracting
it’s mean from each of its pixel and adding the mean of corresponding portion
in Y1. Similarly, for Y3, it is obtained by subtracting from each pixel, its mean
and adding the mean of corresponding portion in Y1. (Refer to Fig.1.)

The decimation matrix of the form shown in Eq.(4), can now be modified as,

D =

⎛
⎜⎜⎝

a1 a2 . . . aq2 0
a1 a2 . . . aq2

0 a1 a2 . . . aq2

⎞
⎟⎟⎠ , (7)

where |ai| ≤ 1, i = 1, 2, . . . q2. The Decimation matrix D for the considered
example of 2 × 2 observation can be expressed with reordering of z as

D =

⎛
⎜⎜⎝

a1 a2 a3 a4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 a1 a2 a3 a4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 a1 a2 a3 a4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 a1 a2 a3 a4

⎞
⎟⎟⎠ . (8)
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The aliased pixel intensity at a location (i, j) for a zoom factor of q = 2 is now
given by

y(i, j) = a1z(2i, 2j)+a2z(2i, 2j+1)+a3z(2i+1, 2j)+a4z(2i+1, 2j+1)+n(i, j).
(9)

In [11], authors discuss the spatial interaction model and choice of neighbors
and use the same for texture synthesis. They model every pixel in an image as a
linear combination of neighboring pixels considering neighborhood system. They
estimate the model parameters using the Least Squares (LS) estimation approach
as the initial estimates. In this paper, we use their approach for estimating the
weights in decimation matrices for different zoom factors.

4 Super-Resolving a Scene

4.1 MRF Prior Model for the Super-Resolved Image

In order to obtain a regularized estimate of the high-resolution image, we define
an appropriate prior term using an MRF modeling of the field. The MRF pro-
vides a convenient and consistent way of modeling context dependent entities.
This is achieved through characterizing mutual influence among such entities
using conditional probabilities for a given neighborhood. The practical use of
MRF models is largely ascribed to the equivalence between the MRF and the
Gibbs Random Fields (GRF). We assume that the high-resolution image can be
represented by an MRF. This is justified because the changes in intensities in
a scene is gradual and hence there is a local dependency. Let Z be a random
field over an regular N × N lattice of sites L = {(i, j)|1 < i, j < N}. From the
Hammersley-Clifford theorem for MRF-GRF equivalence, we have,

P (Z = z) =
1
Zp

e−U(z), (10)

where z is a realization of Z, Zp is a partition function given by Zp =
∑

z e−U(z)

and U(z) is energy function given by U(z) =
∑

c∈C Vc(z). Vc(z) denotes the
potential function of clique c and C is the set of all cliques. The lexicographically
ordered high resolution image z satisfying Gibbs density function is now written
as

P (z) =
1
Zp

e−
�

c∈C Vc(z). (11)

We consider pair wise cliques on a first-order neighborhoods consisting of the
four nearest neighbors for each pixel and impose a quadratic cost which is a
function of finite difference approximations of the first order derivative at each
pixel location. i.e.,

∑
c∈C

Vc(z) = λ

N1∑
k=1

N2∑
l=1

[(zk,l − zk,l−1)2 + (zk,l − zk−1,l)2], (12)

where λ represents the penalty for departure from the smoothness in z.
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4.2 Maximum a Posteriori (MAP) Estimation

Having defined the MRF prior, we use the MAP estimator to restore the high-
resolution field z. Given the ensemble of images yi, i = 1 to p, at different
resolutions, the MAP estimate ẑ, using Bayesian rule, is given by

ẑ =
argmax

z
P (z|y1,y2, · · · ,yp) =

argmax

z
P (y1,y2, · · · ,yp|z)P (z). (13)

Taking the log of the posterior probability we can write,

ẑ =
argmax

z
[

p∑
m=1

logP (ym|z) + logP (z)], (14)

since nm are independent. Now using Eqs. (1) and (2), we get

P (ym|z) =
1

(2πσ2
n)

M1M2
2

e
−‖ym−DmCm(z−zαm )‖2

2σ2
n . (15)

The final cost function is obtained as

ẑ =
argmin

z
[

p∑
m=1

‖ym − DmCm(z − zαm)‖2

2σ2
n

+
∑
c∈C

Vc(z)]. (16)

The above cost function is convex and is minimized using the gradient descent
technique. The initial estimate z(0) is obtained as follows. Pixels in the zero order
hold of the least zoomed observation corresponding to the entire scene is replaced
successively at appropriate places with zero order hold of the other observed
images with increasing zoom factors. Finally, the most zoomed observed image
with the highest resolution is copied at the appropriate location (see Fig. 1.)
with no interpolation.

5 Experimental Results

In this section, we present the results of the proposed method of obtaining super-
resolution by estimating the decimation. All the experiments were conducted on
real images taken by a zoom camera and known integer zoom factors. It assumed
that the lateral shift during zooming is known. In each experiment, we consider
three low resolution observations Y1, Y2, Y3 of an image. Each observed image is of
size 72×96. Zoom factor q between Y1 and Y2 is 2 and that between Y1 and Y3 is
4. The super-resolved images for the entire scene are of size 288×384. We obtain
super-resolution and compare the results obtained using decimation matrix of the
form in Eq. (4) consisting of equal weights. We used the quantitative measures
Mean Square Error (MSE) and Mean Absolute Error (MAE) for comparison of
the results. The MSE used here is
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MSE =

∑
i,j [f(i, j) − f̂(i, j)]2∑

i,j [f(i, j)]2
(17)

and MAE is

MAE =

∑
i,j |f(i, j) − f̂(i, j)|∑

i,j |f(i, j)| , (18)

where f(i, j) is the original high resolution image and f̂(i, j) is estimated super-
resolution image. In order to use high resolution image for the entire scene the
most zoomed image was captured with entire scene content. However, while
experimenting only a portion of it was used. The estimated D matrices are used
in the cost function given by Eq. (16).

(a) (b) (c)

Fig. 3. Observed images of ’Nidhi’ captured with three different integer zoom settings.
The zoom factor between (a) and (b) is 2 and between (b) and (c) is also 2.

In the first experiment, we considered three low resolution observations of a
girl image ’Nidhi’ shown in Fig. 3, where the observed images have less intensity
variations. Fig. 4(a) and (b) shows zoomed ’Nidhi’ image obtained by successive
pixel replication and successive bicubic interpolation respectively. In both the
images the seam is clearly visible. Fig. 5(a) shows super-resolved ’Nidhi’ image
obtained by using the decimation matrix of the form in Eq. (4) and Fig. 5(b)
shows super-resolved ’Nidhi’ image obtained by proposed method by using the
estimated decimation matrix of the form in Eq. (7). The comparison of the

(a) (b)

Fig. 4. Zoomed ’Nidhi’ image (a) using successive pixel replication and (b) using suc-
cessive bicubic interpolation
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(a) (b)

Fig. 5. Super-resolved ’Nidhi’ image (a) using equal weights decimation matrix and
(b) using estimated weights for decimation matrix.

images show more clear details in the regions like cheeks and forehead in the
image obtained by the proposed method.

In the second experiment, we considered low resolution observations of a house
shown in Fig. 6. Zoomed house images obtained by successive pixel replication
and successive bicubic interpolation are shown in Fig. 7 (a) and (b) respec-
tively. Fig. 8 shows super-resolved house images obtained using the two different
methods. The comparison of the figures show that there is less blockiness in
the super-resolved image obtained by the proposed method. Branches of trees
opposite to windows are more clearly visible.

(a) (b) (c)

Fig. 6. Observed images of a house captured with three different integer zoom settings

(a) (b)

Fig. 7. Zoomed house image (a) using successive pixel replication and (b) using suc-
cessive bicubic interpolation
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(a) (b)

Fig. 8. Super-resolved house image. (a) using equal weights decimation matrix and (b)
using estimated weights for decimation matrix.

(a) (b) (c)

Fig. 9. Observed images of a scene captured with three different integer zoom settings

(a) (b)

Fig. 10. Super-resolved scene image. (a) using equal weights decimation matrix and
(b) using estimated weights for decimation matrix.

In order to consider images with significant texture, we experimented by cap-
turing zoomed images of a natural scene. The observed images are displayed in Fig.
9. Fig. 10 shows super-resolved scene images. The small house near the center of
image appear sharper in the image super-resolved using the proposed approach.

Table 1. shows the quantitative comparison of the our results with the one
obtained using equal weights for decimation matrix. It can be seen that for all
the three experiments, MSE and MAE of the super-resolved images obtained
by using estimated decimation matrices is lower than those obtained by fixed
decimation matrix entries showing improvement in the quantitative measures.
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Table 1. Comparison of performance of the two methods of super-resolution

MSE MAE
Image Estimated Fixed Estimated Fixed

decimation decimation decimation decimation
(Equal weights) (Equal weights)

Nidhi 0.0484 0.0514 0.0489 0.0525
House 0.6671 0.6733 0.6678 0.6751
Scene 0.2732 0.3056 0.2741 0.3082

6 Application of Zoom Based Super-Resolution to
Multiresolution Fusion in Remotely Sensed Images

In this section we show the application of the proposed zoom based super-
resolution to multiresolution fusion in remotely sensed images. The process of
combining panchromatic (Pan) and multispectral (MS) data to produce images
characterized by both high spatial and spectral resolutions is known as multires-
olution fusion. Because of the technological limitations, MS images are generally
acquired with a lower spatial resolution. With a fusion of different images, we
can overcome the limitations of information obtained from individual sources
and obtain a better understanding of the observed scene. Since the Pan image
has high spatial resolution and MS images have lower spatial resolution, we es-
timate the aliasing on MS images by using the Pan image. The same Pan image
is used to estimate the aliasing on each of MS images. Available Pan image can
be used for estimating aliasing matrices for all the MS images as the aliasing
depends on difference in spatial resolution between high resolution and low reso-
lution images.For the experiment, we consider LANDSAT-7 Enhanced Thematic

(a) (b)

Fig. 11. (a) MS image (Band 1) and (b) fused image using estimated weights for
decimation matrix
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Mapper Plus (ETM+) images acquired over a city. We use available Pan image
and six MS images having decimation factor of q = 2 between the Pan image and
MS images. We learn the decimation matrix from the Pan image and minimize
the cost function given by Eq. (16) for each of MS images separately. It may be
noted that the z in the equations has to be replaced by zm, where m = 1, 2, . . . , 5
(One of the MS images, Band 6, is not used.). Due to space limitation, we show
results for only one MS image. Fig. 11(a) shows observed MS image (Band 1).
The fused image obtained by using estimated weights is shown in in Fig. 11(b).
From the figure it is clear that the fused image has high spatial resolution with
negligible spectral distortion. It may be mentioned that we have not compared
the performance of this method with other methods of fusion available in the
literature due to space limitation.

7 Conclusion

We have presented a technique to recover the super-resolution intensity field
from a sequence of zoomed observations by using decimation matrices derived
from the observations. The resolution of the entire scene is obtained at the
resolution of the most zoomed observed image that consists of only a small
portion of the actual scene. The high-resolution image is modeled as an MRF
and the decimation matrix entries are estimated using appropriate regions in
the lesser zoomed image and the most zoomed image. Our future work involves
incorporating the line fields in MRF model so that the discontinuities can be
better preserved in the super-resolved image and also to extend the proposed
approach for fractional zoom settings.
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