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Abstract. Existing multi-kernel tracking methods are based on a for-
wards additive motion model formulation. However this approach suffers
from the need to estimate an update matrix for each iteration. This pa-
per presents a general framework that extends the existing approach and
that allows to introduce a new inverse compositional formulation which
shifts the computation of the update matrix to a one time initialisation
step. The proposed approach thus reduces the computational complex-
ity of each iteration, compared to the existing forwards approach. The
approaches are compared both in terms of algorithmic complexity and
quality of the estimation.

1 Introduction

Tracking based on color distributions [1,2,3,4] has drawn increasing interest re-
cently, as it offers a flexible and generic framework for object tracking in videos. It
is especially useful for non rigid objects, for which the integration of the informa-
tion over spatially extended regions offers more allowance to slight misalignment
compared to pixel based template matching [5].

The basic kernel tracking method associates a single color distribution to an
object, and maximises the color similarity with a reference model using Mean-
Shift [1]. Alternative approaches such as particle filters may be involved in order
to take into account tracking ambiguities [6].

The parameter estimation of higher order motion models such as affine or ho-
mographic motion involves the use of an extended representation, which incorpo-
rates more information than just color. This was experimented with spatial-color
distribution [7] [8] as well as with multi-kernel color distributions, where each
spatial kernel is associated to a distinct color model [3,4]. An intermediate ap-
proach was recently proposed in [9] where a “texture of blobs” is used that is
constituted of many overlapping kernels covering the surface of the object to
track.

One of the difficulty with such multi-kernel tracking is the increased complex-
ity introduced by the additional parameters to estimate. Previous works adopted
an iterative optimisation framework based on Gauss-Newton optimisation [3,4],
on quasi-Newton optimisation [9], or on the trust-region approach [10]. These
methods are all based on an additive approach, where the motion parameters
are incrementally refined by adding a correcting parameter until convergence.
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The goal of this paper is to propose a new framework for multi-kernel tracking,
similar to the approach Baker and Matthews [11] introduced in image template
based tracking. It covers the existing multi-kernel tracking approach, while al-
lowing to derive a new efficient technique : the inverse compositional approach
allows to use a fixed Jacobian for gradient based optimisation, which shifts a
computationally costly part of the algorithm to the initialisation step and de-
creases the complexity of online computations.

The rest of the paper is organised as follows. In section 2, multi-kernel color
distribution tracking will be exposed and the compositional framework
introduced. This will serve as a global framework to present, in section 3, the
classical forwards additive approach and, in section 4, the proposed inverse com-
positional approach. Finally, the techniques will be experimented and compared
in section 5.

2 Tracking Using Color Distributions

This section presents the compositional framework for multi-kernel color distri-
bution tracking. After formalising the notion of a multi-kernel color distribution,
the framework will be exposed, and be shown to cover both the existing forwards
additive approach, and a new inverse compositional approach.

2.1 Motion Model

The tracking occurs between two images Iref and I related by an unknown 2D
transformation f of parameter θ∗,

∀x ∈ D Iref(x) = I(f−1(x, θ∗)) (1)

where D represents a region of interest in image Iref .
In the sequel, the motion model is assumed to exhibit a group property. This

is the case for most models of interest, and in particular non degenerate homo-
graphies or affine motion [11]. The latter will be exploited in this paper. For the
sake of notational convenience, the group property is extended to the parameters
using the following notations:

f( · , θ−1) = f−1( · , θ) (2)
f( · , Δθ ◦ θ) = f( · , Δθ) ◦ f( · , θ) = f(f( · , θ), Δθ) (3)

and θ = 0 represents the parameters of the identity transformation.

2.2 Multi-Kernel Color Distribution

Color distribution tracking is based on the computation of the color distribution
of an image region. In the sequel, this region is defined using real valued kernels,
that associate a weight to each pixel. In order to estimate non-translational
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movements, a general multi-kernel approach is used, that is now presented. The
reader interested in a discussion on the choice of the kernels is refered to [3].

Given
– a set of κ spatial kernels (K1, . . . Kκ) defined as piecewise differentiable

weighting functions Kk(x) expressed in the reference coordinates x,
– a parametric motion model f( · , θ) with parameter vector θ, which trans-

forms each point m in the current image coordinates into a point x = f(m, θ)
in the reference coordinates, and its inverse transformation m = f−1(x, θ),

– a quantification indicative function δu( · ) whose value is 1 for colors belong-
ing to color bin u and null otherwise,

the multi-kernel color distribution of image I with parameters θ is defined as a
vector q(I, θ) = (qk,u(I, θ))k,u, where

qk,u(I, θ) = Ck

∫∫
x∈R2

Kk(x) δu(I(f−1(x, θ)))dx (4)

The normalisation constant Ck is chosen such that
∑

u qk,u(I, θ) = 1 for all k.
The subvector (qu,k(I, θ))u represents the local color distribution, over the

spatial kernel Kk, of image I after it has been aligned onto the reference co-
ordinates according to parameters θ. The relationship of (4) with expressions
used in previous works [3,4,9] will be discussed in section 4.2. The choice of this
expression is motivated by its invariance with respect to any 2D motion model
group, even non-affine ones. Indeed

q(I, θ) = q(I(f(·, θ−1)), 0) (5)

or more generally
q(I, Δθ ◦ θ) = q(I(f(·, θ−1)), Δθ) (6)

2.3 Compositional Framework for Multi-Kernel Tracking

Let us now consider two images related by equation (1). In the following, p will
be used for the reference image Iref and q for the current image I

p(θ) = q(Iref , θ) and q(θ) = q(I, θ) (7)

Because of (6) the following holds for any θp:

p
(
θp

)
= q

(
θp ◦ θ∗) (8)

Multi-kernel image alignment can be formalised as finding θp and θq that min-
imise the dissimilarity between p(θp) and q(θq).

The actual matching relies on the minimisation of an error measure E(θq, θp).
Several error functions can be used, such as the Bhattacharyya distance or the
Kullback-Leibler divergence. Following [4] and [3], the Matusita’s metric will be
used in this work:

E(θq, θp) =
∑
k,u

ek,u(θq, θp)2 (9)

with a bin specific error vector ek,u(θq, θp)
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ek,u(θq, θp) =
√

qk,u(θq)−
√

pk,u(θp) (10)

By equating θq and θp ◦ θ∗ in equation 8, the estimated alignment parameter is
then

θ∗ = θ−1
p ◦ θq (11)

This formalisation shows the central role that composition plays for the image
alignment problem using multi-kernel distributions. We call it the compositional
framework, as the effective parameter estimation θ∗ is obtained by composing
the estimates θq and θp.

This framework covers existing forwards additive multi-kernel tracking meth-
ods [3,4,9], which optimise the error criterion with respect to θq = θ̂ + Δθ. We
propose to optimise with respect to θp = Δθ instead, which leads to inverse
compositional multi-kernel tracking.

The terms forward additive and inverse compositional come from the analogy
with the classification Baker and Matthews [11] proposed in the context of image
template tracking. The framework we introduced formalises the adaptation of
this classification to the context of multi-kernel histogram based representation.
In particular, a more complex error function has to be taken into account, which
is a distance between histograms derived from the images, instead of direct
pixelwise compensated image difference. This will play a role in the gradient
based optimisation.

The forwards additive approach will be briefly presented in section 3, in order
to compare its structure to the proposed inverse compositional approach, which
will be presented in section 4.

3 Forwards Additive Optimisation

The forwards additive approach used in [3] relies on the Gauss-Newton optimi-
sation of the error E(θ̂ + Δθ, 0) with respect to Δθ, where a single iteration is
estimated using

Δθ = A(θ̂) e(θ̂, 0) (12)

where A(θ̂) is an update matrix

A(θ̂) = −(
Je|θ̂

tJe|θ̂
)−1

Je|θ̂
t (13)

and Je|θ̂ represents the Jacobian of the error vector e(θ, 0) with respect to θ,

computed at θ = θ̂. It can be expressed by using the gradient of eu,k with respect
to θ, as well as the partial derivative of e according to each coefficient θm of θ

Je|θ̂ =

⎡
⎢⎢⎣

...
∇eu,k(θ)|θ̂

...

⎤
⎥⎥⎦ =

[
· · · ∂e(θ)

∂θm

∣∣∣∣
θ̂

· · ·
]

(14)
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A robust estimator version of this approach is used in [4]. In [9], a quasi-Newton
optimisation was used instead, based on JE|θ̂ which also depends on θ̂.

The parameter update follows the forwards additive scheme of (15), and the
whole process is repeated until convergence

θ̂ ← θ̂ + Δθ (15)

The expression of Je|θ̂ depends on the error metric used. In particular, when
using the Matusita’s objective function of equation (10),

Je|θ̂ =
1
2
diag(q(θ̂))−1/2Jq|θ̂ (16)

where Jq|θ, the Jacobian of q(θ), will be studied in more details in section 4.2.

4 Inverse Compositional Optimisation

In the previous approach, the computation of equations (12) and (13) is the bot-
tleneck of the algorithm. Indeed, the update matrix A(θ̂) needs to be computed
for each new iteration, which involves in particular the computation of Je|θ

tJe|θ .
An alternative approach is now proposed, that takes advantage of the general

framework introduced in section 2.3 and allows to use a constant update matrix
A, which can be pre-computed once during the model initialisation.

4.1 Principle

In a similar way as the forwards approach, a Gauss-Newton iteration is com-
puted, but the parameter correction now applies to the kernel position in the
reference image. The Gauss-Newton parameter update of E(θ̂, Δθ) with respect
to Δθ satisfies:

Δθ = A e(θ̂, 0) (17)

The update matrix A is now a constant matrix

A = −(
Jê|0

tJê|0
)−1

Jê|0
t (18)

where Jê|0 represents the Jacobian of e(θ̂, Δθ) with respect to Δθ computed at
Δθ = 0. When using the Matusita metric, Jê|0 does not depend on θ̂.

Jê|0 = − 1
2
diag(p(0))−1/2Jp|0 (19)

The estimation rule (17) can be compared to the analogous rule (12) in the
forwards approach, as it has the same structure. The main difference is that in
the inverse approach, the A matrix does not depend on θ̂ anymore, which allows
to pre-compute it offline, thus removing most of the online complexity.
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In this approach, the correction parameter Δθ represents an update on the
kernel locations in the reference image. In order to convert it into an updated
parameter vector for the motion between the two images, the compositional
framework is invoked through equation (11), which corresponds to the update
rule:

θ̂ ← Δθ−1 ◦ θ̂ (20)

The estimate θ̂ is iteratively updated while it corresponds to a decrease of the
error E(θ̂, 0) and until convergence.

4.2 Jacobian Computation

The computation of the Jacobian Jp,0 or its more general form Jq,θ is not direct
from equation (4), as δu is not easily differentiable. This part is detailed in the
current section through the computation of the gradient of qk,u.

An equivalent formulation of qk,u is used in [9], which is based on the coordi-
nates m in the current image :

qk,u(I, θ) = Ck

∫∫
m

Kk(f(m, θ)) δu(I(m)) j(m, θ) dm (21)

where j(m, θ) =
∣∣Jf(m,θ)|m

∣∣ is the absolute value of the determinant of the
Jacobian of f with respect to m.

For affine transformations, j(m, θ) is constant with respect to m, which leads
to a simplified expression

qk,u(I, θ) = Ck,θ

∫∫
m

Kk(f(m, θ)) δu(I(m)) dm (22)

with Ck,θ = Ckj(m, θ) corresponding to the kernel normalisation parameter
that now depends on θ. This equation is very similar to the definitions of qk,u

used in [4,3]. Note that for non-affine motion this equivalence does not hold, so
that the computation of the Jacobian for more complex models should instead
use the full expression (21).

By differentiating (22) and after taking into account the kernel normalisation∑
u qk,u = 1, the gradient can be simplified as (23).

∇qu,k |θ̂ = Ck,θ̂

∫∫
m

∇Kk(x)|f(m,θ̂) Jf(m,θ)|θ̂
(
δu(I(m)) − qk,u(θ̂)

)
dm (23)

In the simpler case of inverse composition, the Jacobian is

∇pu,k|0 = Ck

∫∫
x

∇Kk(x)|x Jf(x,Δθ)|0
(
δu(Iref(x)) − pk,u(0)

)
dx (24)

The −qk,u(θ̂) term in the previous equations is related to the gradient of the
normalisation constant Ck,θ with respect to θ. Its influence is null for translation
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and rotation components, but should be taken into account when considering
scale. Neglecting this term, as was done in [4], results in a biased estimation of
the Jacobian. This is illustrated for the scale estimation in figure 3(d), where it
leads to the under-estimation of the motion parameters.

From a practical point of view, the integrals must be replaced by discrete
sums, on either the integer pixels {mi} of the current image for (23) and (24),
or on a regular grid {xj} in the reference coordinates for (23). In order to improve
the running time, this sampling was done on x, which allows to pre-compute the
kernel values and gradients at the sampling points.

A large choice of kernel functions can be used in this framework in the same
way as with the forwards approach [3]. In this paper, Epanechnikov kernels are
used. The kernel Kk, with centre xk and covariance matrix Bk is defined by

Kk(x) = max(0, 1− (x− xk)t
Bk

−1(x− xk)) (25)
∇Kk(x)|x = −2(x− xk)t

Bk
−1 where Kk(x) > 0 (26)

5 Experiments and Discussion

The properties of the forwards additive multi-kernel tracking approach have been
experimentally studied and compared to the image template based approach in
[4]. It was shown that the kernel approach allows for a larger region of con-
vergence, thanks to the integration of the kernels. This comes at the cost of
a slightly less precise alignment, which was resolved by combining the two ap-
proaches. As the inverse compositional approach proposed in this paper uses the
same multi-kernel representation as the forwards approach, these experiments
will not be duplicated here. The proposed method is expected to be faster to
compute than the forwards method because of its algorithmic structure, while
bearing similar tracking performances. This section will therefore be devoted to
checking this hypothesis.

5.1 Computational Performance

The algorithmic structures of both the forwards additive and the inverse com-
positional are summed up and compared in figure 1.

For the complexity analysis, the following notations will be used : κ is the
number of kernels, P the mean number of pixels for which a kernel is non null,
U the number of color bins in each color histogram and T the number of degrees
of freedom in θ. The cost of each step is of the order of O(κP ) for {1} and {3},
O(κU) for {4}, O(κPT ) for {5}, O(κUT 2) for the computation of Je|θ̂

tJe|θ̂ and
O(T 3) for its inversion in {6}, and O(κUT ) for {7}.

Given that U and P are large compared to the other parameters (of the
order of 100 to 1000), steps {5} and {6} are the two most costly steps in the
algorithm. Therefore, moving them to a pre-computation phase decreases the
overall complexity of each iteration significantly.

In particular, with our current Matlab implementation, one iteration for κ = 9
kernels each covering P = 150 pixels and with the color quantised into U = 64
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Forwards Additive Inverse Compositional

Pre-computations

{1} Reference distribution p (7)

Pre-computations

{1} Reference distribution p (7)
{5} Jacobian Je|0 (19) (24)
{6} Update matrix A (18)

For each new frame

{2} Initial estimate θ̂

Iterate until convergence:

{3} Current distribution q(θ̂) (7)
{4} Current error e(θ̂, 0) (10)
{5} Jacobian Je|θ̂ (16) (23)

{6} Update matrix A(θ̂) (13)
{7} Step Δθ (12)
{8} New estimate : θ̂ ← θ̂ + Δθ

For each new frame

{2} Initial estimate θ̂

Iterate until convergence:

{3} Current distribution q(θ̂) (7)
{4} Current error e(θ̂, 0) (10)

{7} Step Δθ (17)
{8} New estimate : θ̂ ← Δθ−1 ◦ θ̂

Fig. 1. Algorithm comparison. The pre-computations occur only during the model
initialisation, and is not repeated for a new frame. For each step, the equation that
defines the related computation is shown at the right.

color bins with an affine motion model (T = 6) requires 168 ms with the inverse
compositional approach, instead of 359 ms with the classical forwards additive
approach.

5.2 Convergence Properties

The forwards additive approach is a typical Gauss-Newton optimisation of the
error E(θ̂, 0). The inverse compositional approach adopts an hybrid scheme.
Indeed, the general optimisation criterion is still E(θ̂, 0), but each iteration uses
the E(θ̂, Δθ) criterion. These functions both express the matching error as was
shown in section 2.3. They are not identical when the error is large, which is
why the convergence properties of the two approaches are now compared.

Figure 3(a-d) shows the return map of the two methods (forwards additive
from section 3, inverse compositional from section 4), when perturbated with a
pure translation (b), a pure rotation (c), and a pure scale (d). Nine Epanechnikov
kernels centred on a regular 3× 3 grid were used, as shown1 in (a).

Overall, both approaches yield similar results. Indeed, both the forwards and
the inverse methods approximate well the correction for small perturbations, and
tend to under-estimate the correction for larger perturbations. This observation
reflect the fact that both are based on a linearisation of the error around the
initial parameters, which is valid for small perturbations.

1 Test image courtesy of Krystian Mikolajczyk, http://www.robots.ox.ac.uk/∼vgg.

 http://www.robots.ox.ac.uk/~vgg.
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Fig. 2. Comparison of the parameter estimation of a single iteration for controled
affine perturbations (see section 5.2). (a) Test image, with the supports of the nine
Epanechnikov kernels overlayed. Return maps (corrected parameters depending on the
perturbated parameters: the closer to the perturbation the better) for (b) an horizontal
shift, (c) a rotation around the centre of the image.

The scale estimation exhibits a systematic under-estimation on this example.
This is observed with other classical kernel configurations, but not when us-
ing a totally unambiguous image made of squares with unique colors. Although
the unbiased approach presented in section 4.2 slightly improves the estimation,
further work is needed to explain this behaviour. The estimations are neverthe-
less in the correct direction even for large perturbations, which make the iter-
ative optimisation eventually converge to the correct parameters even in that
case.

The quality of the parameter estimation is also evaluated in more general
conditions in figure 3(e-f), for one single iteration. The perturbations are a com-
bination of random translations within [−20, 20] pixels, rotations within [−20, 20]
degrees and scale within [1.2−1, 1.2].

The mean spatial error D corresponds to the average of the spatial error of
the kernel centers, evaluated in the reference coordinates. These two measures
allow to evaluate translation, rotation and scale errors in an unified manner.
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Fig. 3. Comparison of the parameter estimation quality of a single iteration for ran-
dom affine perturbations (see section 5.2). Ranked mean spatial error (e) and color
distribution error (f).
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Fig. 4. Tracking example with scale change on CAVIAR video for the inverse compo-
sitional approach (a). Comparison of the computational time (b) and the color distri-
bution error E(θ, 0) after convergence (c) for each frame on the same video, with both
approaches.

Results are sorted by increasing error. These results show that the inverse
approach has a slightly larger color distribution error than the forwards approach
(f), which can be explained by the fact that it does not operate directly on
the optimisation criterion E(θ̂, 0). This difference do not seem to impact the
parameter estimation, though, as the corrected parameter appear to be equally
good from a spatial point of view (e).
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Fig. 5. Tracking example for a video with affine distortions, with the parameter esti-
mation overlayed for the inverse approach (a). Comparison of the computational time
(b). Comparison of the mean spatial error (c); the error for the initialisation at each
frame is plotted to show the amount of correction needed on this sequence.

5.3 Tracking

In this section the computational performance and the quality of estimation are
compared in tracking conditions: a person with scale change2 in figure 4 and an
image part with affine distortions in figure 5. Both trackings use 9 Epanechnikov
kernels centred on a regular 3×3 grid. The parameters obtained with the forwards
and the inverse approach are very similar, which is supported by similar mean
spatial errors D with respect to the ground truth in figure 5-c, and comparable
color distribution errors E in figure 5-c. In the last case, a slightly lower error
is observed for the forwards approach, which was discussed in section 5.2. The
computational time is in both cases significantly reduced by using the inverse
approach instead of the forwards approach.

6 Conclusion

This paper presented the adaptation and the application of inverse composition,
which is already used in image template tracking, to tracking with multi-kernel
color distributions. The multi-kernel tracking paradigm was reformalised in or-
der to cover both the existing forwards additive approach and a new inverse

2 Video produced by the EC Funded CAVIAR project/IST 2001 37540.
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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compositional approach. The quality of the parameter estimation of the new
technique is similar to the multi-kernel forwards additive approach, while shift-
ing the computational burden from each iteration to a one-time initialisation
step.

The structure of the proposed approach relies on an iterative optimisation
with a constant update matrix A, which is estimated by inverting the Jacobian
of the error function. This structure offers the possibility to introduce alternative
forms for A, such as the hyperplane approximation [12], in a multi-kernel context.

Other interesting problems for future research would be to study how illumi-
nation changes, which can be taken into account in the forwards approach [4,9],
could be handled in an inverse compositional approach, and how the choice of
the kernel configuration impacts the performances of the method.
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