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Abstract. This paper presents an approach of fusing the information provided
by visible spectrum video with that of thermal infrared video to tackle video
processing challenges such as object detection and tracking for increasing the
performance and robustness of the surveillance system. An enhanced object de-
tection strategy using gradient information along with background subtraction is
implemented with efficient fusion based approach to handle typical problems in
both the domains. An intelligent fusion approach using Fuzzy logic and Kalman
filtering technique is proposed to track objects and obtain fused estimate ac-
cording to the reliability of the sensors. Appropriate measurement parameters
are identified to determine the measurement accuracy of each sensor. Experi-
mental results are shown on some typical scenarios of detection and tracking of
pedestrians.

1 Introduction

With the advances in sensor and computing technologies, new generation video sur-
veillance and security system will be required to be persistent (ability to function
continuously for 24 hours and in a variety of scenarios) and intelligent in combining
multimedia information for robust operation. Color and grayscale video cameras have
an obvious limitation of daytime operation only, whereas Infrared media are more
informative in dark environment (especially in night). Traditional approaches analyze
video only in a single modality; either using the visible spectrum or using another
modality such as mid-wave or long-wave infrared images [1]. Since, the visible spec-
trum and thermal infrared are inherently complementary; having their own unique
characteristics, combining them can be advantageous in many scenarios, when either
may perform poorly. For example, in foggy weather condition and in night, IR sensor
will outperform visible range camera. Sudden lighting changes, shadows and camou-
flage, in visible spectrum, can often cause the foreground detection to incorrectly
classify pixels. Combining the visible analysis with infrared imaging seems very
beneficial, as it is very robust to the above mentioned problems. However, in good
lighting and stable background conditions, visible spectrum video would give better
results because of containing strong edges, robust color and other features with com-
paratively low noise. Although humans and other hot objects usually appear as areas
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of high contrast and are more distinctive in infrared but well insulated clothing can
cause the torso to have very low contrast and appear as background noise. Sudden
temperature change, heat diffusion through objects in contact and “Halo effect” pro-
duced by some infrared sensors, which appears as a dark or bright halo surrounding
very hot or cold objects respectively, are some additional difficulties that cause incor-
rect segmentation of object region. The challenge therefore is to determine the best
approach to combine both modalities so that typical problems in both the domains can
be addressed. This is made more challenging by the fact that some sources of data
may give misleading or incorrect information. For example, changes in lighting, such
as those caused by clouds blocking the sun’s light during the daytime, can cause in-
correct change detection in the visible spectrum. In a recent review on surveillance
research [2], Hu et al. conclude in their section on Future Developments in Surveil-
lance that “Surveillance using multiple different sensors seems to be a very interesting
subject. The main problem is how to make use of their respective merits and fuse
information from such kinds of sensors”. In another review of video surveillance and
sensor networks research [3], Cucchiara argues that the integration of video technol-
ogy with sensors and other media streams will constitute the fundamental infrastruc-
ture for new generations of multimedia surveillance systems.

This paper presents an approach of fusing the information provided by thermal
infrared video and that of visible spectrum video for robust object detection and accu-
rate object tracking thereby increasing the performance and robustness of the surveil-
lance system. An enhanced object detection strategy is implemented with efficient
fusion based approach. We collected a database of known scenarios in indoor and
outdoor situations captured simultaneously by video and IR cameras. These image
sequences (video and IR) are time synchronized and geometrically corrected to co-
register them with their counterparts. For both sensor sequences, we apply our
enhanced background subtraction algorithm using gradient information, to identify
region of interests (ROI) and extract blobs corresponding to the objects in the scene.
For individual sensor sequence, blobs have to be matched with the objects (tracked at
fusion level) present in the previous frame and some measurement parameters are
computed. For tracking purpose, track-to-track fusion scheme is used, where a sepa-
rate Kalman Filter is used for each track to obtain a filtered estimate. An intelligent
fusion algorithm subsequently proceeds to obtain fused measurement data for each
object according to the reliability of the sensors. A Fuzzy Inference System (FIS) is
employed to assign suitable weights to each sensors filtered estimate, based on the
value of two parameters called ‘Confidence’ and ‘Appearance Ratio’, computed for
all the objects in each sensor output. Finally, a defuzzificator obtains the fused esti-
mated measurement based on the weightage values. The Experimental results are
done to demonstrate the effectiveness of fusing visible and IR in some typical scenar-
ios of detection and tracking of pedestrians.

2 Literature Review and Background

Object Detection and Tracking beyond Visible Spectrum: Recent literature on the
exploitation of near-infrared information to track humans generally deals only with
the face of observed people and a few are concerned with the whole body [4] but
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these approach rely on the highly limiting assumption that the person region always
has a much brighter (hotter) appearance than the background. In [5], the author pro-
poses a novel contour based background subtraction strategy to detect people in ther-
mal imagery, which is robust across a wide range of environmental conditions. First
of all, a standard background-subtraction technique is used to identify local region-of
interest (ROI), each containing the person and surrounding thermal halo. The fore-
ground and background gradient information within each region are then combined
into a contour saliency map (highlighting the person boundary). Using a watershed-
based algorithm, the gradients are thinned and thresholded into contour fragments and
A* search algorithm is used to connect any contour gaps. However use of highly
computational techniques, makes their approach inappropriate for use in real time
surveillance settings.

Modality Fusion: Multi modal fusion is the process of combining data from multiple
sources (of different spectrum) such that the resulting entity or decision is in some
sense better than that provided by any of the individual sources [6]. Data fusion tech-
niques have had a long history in radar and vision based military applications to en-
hance the information content of the scene by combining multispectral images in one
image. However, only recently data fusion is being considered for enhancing the
capabilities of automatic video-based detection and tracking system for surveillance
purpose. In [7], the fusion of thermal infrared with visible spectrum video, in the
context of surveillance and security, is done at the object level. Detection and tracking
of blobs (regions) are performed separately in the visible and thermal modality. An
object is made up of one or more blobs, which are inherited or removed as time
passes. Correspondences are obtained between objects in each modality, forming a
master-slave relationship, so that the master (the object with the better detection or
confidence) assists the tracking of the slave in the other modality. In a recent work,
Davis et al. [8] propose a new contour-based background-subtraction technique using
thermal and visible imagery for persistent object detection in urban settings. Their
algorithm requires co-registered image from two streams. Statistical background sub-
traction in the thermal domain is used to identify the initial regions-of-interest. Color
and intensity information are used within these areas to obtain the corresponding
regions of-interest in the visible domain. Within each image region (thermal and visi-
ble treated independently), the input and background gradient information are com-
bined as to highlight only the boundaries of the foreground object. The boundaries are
then thinned and thresholded to form binary contour fragments. Contour fragments
belonging to corresponding regions in the thermal and visible domains are then fused
using the combined input gradient information from both sensors.

Multi-Sensor Fusion: The determination of the target’s position and velocity from a
noisy time-series of measurements constitute a classical statistical estimation problem
and it involves the use of sequential estimation techniques such as the Kalman filter
or its variants. Observational data may be combined, or fused, at a variety of levels
from the raw data (or observation) level to feature level, or at the decision level. In the
fusion process, it is essential to asses the reliability of sensor data because the results
could be seriously affected in the case of malfunctioning sensor. Therefore for fusing
data collected from different sensors requires the determination of measurements’
accuracy so that they can be fused in a weighted manner. In [9], the authors propose a
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multi-sensor data fusion method for video surveillance, and demonstrated the results
by using optical and infrared sensors. The measurements coming from different sen-
sors were weighted by adjusting measurement error covariance matrix by a metric
called Appearance Ratio (AR), whose value is proportional to the strength of the
segmented blobs. In [10], the authors propose a hybrid multi-sensor data fusion archi-
tecture using Kalman filtering and fuzzy logic techniques. They feed the measurement
coming from each sensor to separate fuzzy—adaptive kalman filters (FKF), working in
parallel. Based on the value of a variable called Degree of Matching (DOM) and the
measurement noise covariance matrix R coming from each FKF, a fuzzy inference
system (FIS) assigns a degree of confidence to each one of the FKFs output. Finally, a
defuzzificator obtains the fused estimated measurement based on the confidence val-
ues. They demonstrated the result on a simulated dataset, by taking example of four
noisy inputs.

3 Object Detection

Simple background subtraction and Thresholding is ineffective in detecting the ob-
jects in various situations because of typical problems (as noted before) in both the
domains. We employ a fusion based enhanced and efficient detection strategy using
both visible and thermal imagery, which is well suited to handle typical problems in
both the domains. Our approach is based on the use of gradient information along
with background subtraction, as proposed and demonstrated in [5] but differs in the
sense that we don’t use computational intensive techniques for real timeliness. Addi-
tionally we take a fusion approach with visible spectrum video based on mutual
agreement between the two modalities.

Since the algorithm requires registered imagery from the two sensors, we initialize
the system by manually selecting four corresponding feature points from a pair of
thermal and visible images. A homography matrix created from these points is used to
register the thermal and visible images. First of all, localized regions of-interest
(ROIs) are identified in both domains by applying standard gaussian background-
subtraction, which generally produces regions that encompass the entire foreground
object with surrounding halo in IR and shadows in visible, if present. The statistical
background model for each pixel (in thermal or visible intensity) is created by com-
puting weighted means and variances and the foreground pixels in the ROI then ob-
tained using the squared Mahalanobis Distance by using following equation:

(1(x,y)— u(x, )’
~ - =77 100
ROI(x,y) = oty (1)

0 otherwise

Now, at this step we examine the ROI’s from both the domains, to get fused ROI that
will be used to cue further processing in both the domains. Since the ROIs will in-
clude shadow in visible and halo in IR (if present) along with the foreground objects,
taking intersection of both ROIs, will eliminate regions that are not present in both the
modalities (like shadows, noise, etc.). However, if either of the sensor is performing
poorly, either due to malfunctioning or environmental conditions, taking intersection
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will degrade the output of other sensor as well. Hence, we take the intersection only
when both the ROIs have reasonable amount of mutual agreement in detecting fore-
ground regions. Otherwise, we continue processing with the original ROIs separately
for each domain and leave the detection of noise region at later stage. For determining
the mutual agreement in both modalities, we use the following ratio (R), defined as:
L

P(LO) + P(O,l)

2

where P(x,y) is the total sum of pixels whose visible classification is x and whose
infrared classification is y. Therefore, R is the ratio of the agreed foreground pixels to
the total disagreed pixels. Now if R is greater than a predefined threshold, we assume
that there is a high degree of mutual agreement in both the modalities, and we choose
the fused ROI for further processing.

We again examine the difference image in each domain within resultant ROI in an
attempt to extract gradient information corresponding only to the foreground object.
Sobel operator is applied to calculate foreground gradient magnitudes from difference
image and background gradient magnitudes. As proposed in [5] a gradient map is
formed by taking pixel wise minimum of the normalized foreground gradient magni-
tudes and the normalized foreground-background gradient-difference magnitudes (as
shown in equation 3), preserving the foreground object gradients that are both strong
and significantly different from the background.

{1, y) Il 11((Bx— BGx),(Iy - BGy))

GradientMap = min ,
max max

3)

By Thresholding the gradient map and applying morphological operations like closing
and dilation, we obtain blobs corresponding to actual foreground objects (without
halo or diffused shadows). The approach is equally applicable to both thermal and
visible imagery. Figure 1 shows the output of the various steps of object segmentation
applied to an infrared image having halo effect.

Fig. 1. Segmentation Output shown for infrared image with halo effect a) original image b)
ROI ¢) Foreground gradient d) Background gradient e) Gradient map f) after Thresholding g)
blobs h) objects detected
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4 Target Tracking

Achieving better trajectory accuracy and continuity is of great importance for the
successive steps of behavior understanding performed by a surveillance system. In
particular, the trajectories of the objects in the scene have to be analyzed to detect
suspicious events [11]. Tracking takes place at two levels. In the first level of the
tracking procedure the system matches the blobs detected in the current frame with
those extracted in the previous frame. Second level of tracking takes place at fusion
level, where the objects (combination of one or more blobs) are tracked, using a fu-
sion filter to obtain fused estimate of the object state. For getting an estimate of seg-
mentation output and reliability, we compute certain measurement parameters for
blobs, which are defined as follows:

1. “Appearance Ratio (AR)”: Let D be the difference map obtained as the absolute
difference between the current frame and a reference image with T as threshold
to binarize D , and let B; be the j-th blob extracted from the sensor, then the Ap-
pearance Ratio for that blob is defined as

Dy DY)
I Bj | xT

“)

AR(B)) =

where | B; | is the number of pixels of the blob B;. The value of AR is proportional to
the strength of the segmented blobs from each sensor. A low AR value indicates that
the pixel intensity in the blob region has barely crossed the threshold. Thus AR value
can be compared to determine which sensor is more informative

2. “Overlapping”: Overlapping O(a,b), between blobs a and b, is defined as:

Omax(a,b) = Maximum( IA(a,b) / A(a), IA(a,b) / A(D))
Omin(a,b) = Minimum( IA(a,b) / A(a), IA(a,b) / A(b))

&)

where A(i) is the area of the i" blob’s bounding box, and /A(a,b) is the intersection

area between them. These two factors are used in matching blobs.

3. “Resemblance”: between two blobs is estimated with respect to the degree of
match between two blobs (using Omin) and similarity factor. R(a,b) is defined as:

R(a,b) = Omin(a,b) X[ I - [Abs(Aa-Ab)/ Maximum(Aa, Ab)] (6)

4. “Confidence (C)”: It gives the persistence of a blob over time and is defined by
the following equation:

C(a) =(iR(a,b)><C(b))+l (7)

b=0

where a is the new blob, b is the preceding blob, and n the number of preceding blobs
that matched to the present one. As seen from the equation, the confidence on match-
ing from #-1 to ¢ increases if the blob has been tracked for a long time and the
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resemblance from two time steps is large. Note that the minimum value of confidence
of any blob is 1, which is in case of its first appearance in the scene.

Initially an object can be made up from an isolated blob or many closer blobs. The
system first of all matches the current set of blobs with the objects detected in the
previous frames by simple spatial occupancy overlap tests between the predicted
locations of objects and the locations of blobs in current frame. The maximum over-
lapping factor (Omax) is used for this purpose. The system then establishes corre-
spondence between the individual blobs (of current and previous frames) that corre-
spond to same object. This is done by maintaining a list of blobs in the previous
frames that correspond to each object. Subsequently, specific parameters like resem-
blance and confidence factor are calculated for each blob. The object’s confidence is
computed as the average of the confidence of individual blobs comprising the object.
The appearance ratio for an object is calculated by summing up the numerator and
denominator for each individual blobs and then dividing. The confidence C and ap-
pearance ratio AR is used in the fusion process to estimate the measurement accuracy
of each sensor for extracted objects.

5 Fusion Process

We employ second order Kalman filter to model the motion of each object in the
scene. The fusion procedure maintains its own list of targets. In the fusion process, the
fused estimate should be more biased by accurate measurements and almost unaf-
fected by inaccurate or malfunctioning ones. An intelligent fusion algorithm based on
fuzzy logic techniques is designed to obtain fused measurement data (for each object).
The main advantages derived from the use of fuzzy logic techniques with respect to
traditional schemes are the simplicity of the approach, the capability of fuzzy systems
to deal with imprecise information, and the possibility of including heuristic knowl-
edge about the phenomenon under consideration [10].

The reliability of the sensors is estimated by two input parameters, the Appearance
Ratio (AR) and Confidence (C). AR value reflects the strength of segmentation out-
put from each sensor at current instance. The value of C also reflects on the temporal
consistency of the sensor in maintaining good detection of a particular object. Also
the confidence for an object detected as a single blob will be more than the object
detected in fragemented parts (blobs).

Figure 2 shows the Hybrid Fuzzy logic-Kalman Fusion filter. A separate fuzzy in-
ference system (FIS) is employed to monitor each channel and assigns suitable
weights to each sensor’s filtered estimate. Based on the values of the variables C and
AR, the FIS assigns a weightage w, on the interval [0,1], to each of the KF’s outputs.
This value reflects the reliability of the sensor’s measurement and it acts as a weight
that tells the defuzzifactor, the confidence level at which it should take each KF’s
output value.

Each FIS was implemented using two inputs, the current value of C and AR; and
one output, the weight w. For C and AR, we consider three fuzzy sets: ZE=zero,
S=small, L=large. The membership function for C and AR are shown in figure 3. For
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Fig. 3. Membership function for C and AR

the output w, three fuzzy singletons were defined with the labels: G=1=good,
AV=0.5=average and P=0=poor. Thus the fuzzy rule base of each FIS comprises of
following nine rules:

If C=ZE, and AR=ZE, then w=P
If C=ZE, and AR=S, then w=P
If C=S, and AR=ZE, then w=P
If C=ZE, and AR=L, then w=AV
If C=S, and AR=S, then w=AV
If C=L, and AR=ZE, then w=AV
If C=S, and AR=L, then w=G

If C=L, and AR=S, then w=G

If C=L, and AR=L, then w=G

PN A W=

b

The above rules are based on two simple heuristic considerations. First, if both C
and AR are large for an extracted object from a sensor, it implies that the sensor’s
filtered estimate is highly reliable. Second, if both of these values are near to mini-
mum, the output is unreliable. Thus, using the compositional rule of inference sum-
prod, the FIS calculates the weight, which tells the defuzzifactor at what confidence
level it should take each output. Note that this method of fusion is suitable for any
number of sensors.



536 P. Kumar, A. Mittal, and P. Kumar

6 Experimental Results

For experiments, we used the Sony TRV65 Hi8 Camcorder with 37mm 1000nm IR
filter that allows recording of daytime video (visible spectrum) and nighttime images
in indoor situation. For outdoor situation we used MATIS thermal camera with InSb
detector (320x284) and spectral range of 3-5 um, for capturing good quality infrared
images. The program implementation was done in Matlab 7.0. We tested our ap-
proach at every stage to analyze the improvement in the performance obtained by
combining visible and infrared imagery.

Object Detection: The object detection approach is robustly able to detect objects
across a wider range of environmental conditions than is possible with standard ap-
proaches as demonstrated in [5]. Here we have also tested the method over different
ranges of IR sensors (with varying degree of noise, halo effect etc) suitable for indoor
and outdoor surveillance. We collected samples of IR images from three sensors rang-
ing from high, medium and low quality. Figure 4 shows segmentation result on sam-
ple images from these sensors taken in indoor and outdoor situations.

Fig. 4. First column shows the original IR images, second column shows the corresponding
gradient map, third column shows the blobs extracted and the fourth one show the objects
detected in the images

The IR images in the first and second row are night shot images (from Sony Cam-
corder) taken in indoor situations. The IR image in first row contains Halo around
people and the second row image is extremely noisy. The third row shows an outdoor
situation where the person’s body is quite insulated by clothing and only the head
portion appears as hot spot. In spite of these challenges, the output shows properly
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Fig. 5. First row shows the image in visible domain having shadow and the second row shows
the corresponding IR image, after registration. The second column shows the Fused ROI in
both domain and the third column shows the blob extracted. Finally the detected object region
(shown in visible image) does not contain shadow.

segmented out objects. In Figure 5, an outdoor situation of one pedestrian walking
near a building is presented and it shows that the IR image can be helpful in removing
shadows from the visible image.

Object Tracking: For comparison of accuracy in tracking the trajectory, the follow-
ing performance measures were adopted:

1 n

J, = _Z:(Zak_zk)2 ®)
n o
1 & N2

Jze = _Z(Zak - Zk) (9)
n

Where za, is the actual value of the position; z; is the measured position; and ik is

the estimated position at an instant of time k. Figure 6 (appendix) shows a pedestrian
being tracked with fused measurement of centroid position (shown with red cross)
and fused estimate (with green cross) is shown in visible imagery. Actual position
was calculated by manually segmenting the pedestrian. Table 1 shows the perform-
ance measures obtained by using only visible, only thermal and using both modalities.

Table 1. Comparison of tracking accuracy obtained by using only visible, only thermal and
using both

Sensor Jo Je
Only Visible 2.04 2.92
Only Infrared 3.35 3.20
Visible and Infrared 1.87 2.45
(fused)
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Fig. 6. A pedestrian being tracked in outdoor situation

Since it is a daytime situation with sufficient lighting and temperature difference in
the environment, the two sensors are reporting a track similar to the ground truth.
Nonetheless, a better result is obtained through data fusion. We haven’t shown obvi-
ous case of night situation, where visible sensor fails completely and the fused output
is according to the infrared sensor only.

7 Conclusion

In this paper, we presented the framework for combining visible and IR for robust
object detection and accurate tracking in a surveillance system. The problems that
arise in each domain and the potential of combining both modalities in addressing
these problems were discussed. Fusion approach for combining information from
visible and infrared source at segmentation level and tracking level was discussed in
detail. An enhanced object detection strategy is implemented with efficient fusion
based approach to handle typical problems of both the domains The following are the
contributions of our work. The novelty of our work lies in using Fuzzy logic based-
Kalman filtering technique to track objects and obtain fused estimate according to the
reliability of the sensors. Suitable measurement parameters are identified to automati-
cally estimate the measurement accuracy of each sensor so that they can be fused in a
weighted manner.
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