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Abstract. Dynamic events comprise of spatiotemporal atomic units. In
this paper we model them using a mixture model. Events are represented
using a framework based on the Mixture of Factor Analyzers (MFA)
model. It is to be noted that our framework is generic and is applicable
for any mixture modelling scheme. The MFA, used to demonstrate the
novelty of our approach, clusters events into spatially coherent mixtures
in a low dimensional space. Based the observations that, (i) events com-
prise of varying degrees of spatial and temporal characteristics, and (ii)
the number of mixtures determines the composition of these features,
a method that incorporates models with varying number of mixtures is
proposed. For a given event, the relative importance of each model com-
ponent is estimated, thereby choosing the appropriate feature composi-
tion. The capabilities of the proposed framework are demonstrated with
an application: recognition of events such as hand gestures, activities.

1 Introduction

Characterization of dynamic events, which are spatiotemporal in nature, has
been a problem of great interest in the past few years [1,2,3,4,5,6]. Early methods
employ segmentation and tracking of individual parts to model the dynamism in
events [2,7]. They are based on identifying moving objects – typically referred to
as blobs – constrained by their size or shape. Tracked trajectories of these blobs
are used to distinguish events. Naturally, these methods are very sensitive to the
quality of segmentation and tracking of blobs. A popular approach has been to
represent the dynamism in events as image features [1,5,8]. Typically these ap-
proaches, of identifying a fixed feature set (or interesting regions), are applicable
to a limited set of events. As observed by Sun et al. [9], techniques that learn an
optimal set of features from the given event set are of much interest for real life
applications. In today’s scenario, wherein events can be captured as videos under
different conditions, there is also a need to model the variations across videos in
a probabilistic framework. Models such as Hidden Markov Models (HMMs) are
popular to accomplish this [10]. However, these models fail to capture the events
in a low dimensional space. Although there have been attempts to use dimen-
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Fig. 1. A sample of events performed by humans (shown as image strips) and action
representatives (shown as individual frames). A set of actions constitute an event. Four
events and their corresponding actions are shown as distinct groups here (Green (Top
Left) - Jumping, Red (Top Right) - Flapping, Blue (Bottom Left) - Squatting, Magenta
(Bottom Right) - Waving). The arrows denote the temporal transitions between the
actions and the number on each arrow denotes the temporal sequencing of the event.
Note that the action ‘standing’ is common to all these events.

sionality reduction methods in combination with these models [9], they fail to
be generic. Thus, to characterize events efficiently we need a representation that
not only discards the acceptable statistical variability across multiple instances
of an event, but also discriminates among different events.

We propose a method to learn a compact representation of events preserving
their discriminatory characteristics. An event is modelled as a sequence of atomic
spatiotemporal units called actions. Actions can be interpreted as subsequences
from the event sequence. A probabilistic approach is employed to estimate the
actions and the compositional rules for the events, in a low dimensional manifold.
This is achieved using a Mixture of Factor Analyzers (MFA) model [11] com-
bined with a probability transition matrix, which encodes the transitions among
the action mixtures. The mixtures represent the actions while the transitions
represent the compositional rules. In other words, the number of mixtures de-
termines the composition of spatial and temporal features in events. Fixing the
number of mixtures for the entire event set is not optimal, as the spatiotempo-
ral characteristics vary among events. A unifying framework which incorporates
models with varying number of mixtures (which form the model components) is
proposed. For a given event, the relative importance of each model component
is estimated from an example set.

The model is based on the observation that events comprise of more fun-
damental units, actions. Similar observations were made in the past in differ-
ent ways [6,7,8,10,12]. Actions were represented as components of PCA [7], the
hidden states of HMMs [10], key frames in the event video, canonical poses,
etc. It has also been a common practice to analyze the event sequences in a
window-based fashion [13] to capture the atomic characteristics in events. In
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addition to this, we exploit the fact that most of the events have a large degree
of overlap among them. This is evident in the form of common actions among
various events. An example of this is shown in Figure 1 where the events share
the action ‘standing’. Furthermore, actions capture the spatial (or the appear-
ance) features in events, while transitions among actions capture the temporal
features. The main advantages of the model are: (a) It represents events in a
low dimensional manifold retaining their discriminative characteristics, (b) It
recognizes events in a real-time fashion, (c) It chooses the appropriate spatial
and temporal feature extent by analyzing the event.

Section 2 presents an overview of the event recognition model. It also anal-
yses the dependency of event recognition accuracy on the number of mixtures.
Preliminary results on the CMU MoBo database [14] are also presented in this
section. The method to combine model components to capture various degrees
of appearance and temporal features is described in Section 3. In Section 4 re-
sults on human event and Sebastian Marcel Dynamic Hand Posture Database
available at [15] are presented along with a discussion. Conclusions are presented
in Section 5.

2 Events as Mixture of Actions

Events are represented as a mixture of actions and the transitions among these
actions. The representation model consists of an MFA coupled with a probability
transition matrix. MFA is essentially a reduced dimension mixture of Gaussians.
The model learns action mixtures in a low dimensional space, i.e. it accomplishes
the task of clustering and estimating a low dimensional representation simulta-
neously. There are two reasons that argue for action clustering in a subspace
representation. Firstly, different actions may be correlated in different ways, and
hence the dimensionality reduction metric needs to be different between action
mixtures. Secondly, a low dimensional representation may provide better sepa-
rated mixtures. We choose the MFA model to accomplish this task.

Let the total number of frames from examples of all the events be N and
let xt (of dimension d), t = 1 . . .N , denote the t th frame. Subsequences of xt

form actions. For instance, if we consider the event Squatting (which consists of
two distinct actions – standing and sitting), the initial few frames represent the
action standing and the other frames represent the action sitting (refer Figure 2).
The subsequent frames of an action are highly correlated and therefore, for
each xt, a p (� d) dimensional representation zt exists. That is, xt is modelled
as xt = Λjzt + u, where Λj represents the transformation basis for the j th
action and u is the associated noise. Multiple such subsequences, occurring across
different events, are used to learn Λj for each action, and hence the corresponding
low dimensional representation.

Consider a generative process for the ensemble of events based on the MFA
model. An event, which is captured as a set of frames, is composed of var-
ious actions. A typical frame of the event, xt, can be generated as follows. The
action to which it belongs is chosen according to the discrete distribution P (ωj),
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Fig. 2. A few sample frames showing events performed by humans: Squatting (top row),
Flapping (bottom row). Note the presence of a common action – Standing – between
these events. The initial few frames of the event Squatting represent the action standing
while the other frames represent the action sitting. The action standing also occurs in
the initial few frames of the event Flapping.

j = 1 . . .m. Depending on the chosen action, a continuous subspace representation
zt is generated according to p(zt|ωj). Having learnt zt and action ωj , the observa-
tion xt is obtained according to the distribution p(xt|zt, ωj), i.e. xt is modelled
as a “mixture model of actions” according to p(xt) =

∑m
j=1

∫
p(xt|zt, ωj)p(zt|ωj)

P (ωj)dzt, where ωj , j = 1 . . .m, denotes the j th action. This is a reduced dimen-
sion mixture model where the m mixture components are the individual actions.
The probability p(xt) describes the probability of generating a frame given the ac-
tion which it belongs to, and its corresponding subspace representation. The gen-
erative process is to be inverted to learn the parameters of these distributions from
the event sequences. This is achieved using an Expectation Maximization (EM) al-
gorithm. It is a general method of finding the maximum-likelihood estimate of the
parameters of an underlying distribution from a given data set when the data has
missing or unknown values [11]. In this case, the data corresponds to the frames,
the unknown values to the low dimensional representations of these frames and the
actions to which these frames are associated.

The EM algorithm alternates between inferring the expected values of hidden
variables (subspace representation and actions) using observed data (frames),
keeping the parameters fixed; and estimating the parameters underlying the dis-
tributions of the variables using the inferred values. All the event videos are
represented as a sequence of frames and are used for estimating the parameters.
The two phases of the EM algorithm – Inference and Learning – are executed
sequentially and repeatedly till convergence. The E-step (Inference) proceeds
by computing E[ωj |xt], E[zt|ωj , xt] and E[ztz

T
t |ωj , xt] for all frames t and ac-

tions ωj [11]. In the M-step (Learning), the parameters πj , Λj, μj and Ψ are
computed.
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During the E-step the following equations are used.

E[ωjzt|xt] = htjβj(xt − μj)
E[ωjztz

T
t |xt] = htj(I − βjΛj + Λj(xt − μj)(xt − μj)T βT

j ),

where htj = E[ωj |xt] = πjN (xt − μj , ΛjΛ
T
j + Ψ), βj = ΛT

j (ΛjΛ
T
j )−1. The pa-

rameters μj , Λj, j = 1 . . .m, denote the mean and the corresponding subspace
bases of the mixture j respectively. The mixing proportions of actions in the
event are denoted by π. The noise in the data is modelled as Ψ . The expectation
htj can be interpreted as a measure of the membership of xt in the j th action.
Interested readers may derive the equations for M-step easily from [11].

Although the MFA model captures the spatial features as actions effectively,
it does not account for the temporality in events. As shown by Veeraraghavan et
al. [16] both spatial and temporal features are important for event recognition.
This issue is addressed by modelling the dynamism in events as transitions across
the learnt actions ω1, ω2, . . . , ωm. The transition probabilities are computed by
observing zts across the various actions for each event. After the EM algorithm
converges, the action transition matrix Tk = [τk

pq], for each event k, is formed as
follows.

τk
pq =

N−1∑

t=1

[ct = p][ct+1 = q] 1 ≤ p, q ≤ m, (1)

where ct denotes the class label of the frame xt and is given by ct = argmaxj htj ;
j = 1 . . .m. Normalizing the entries in the transition matrix gives the corre-
sponding probability transition matrix Pk. Thus, a compact representation of
the events by automatically learning the m actions in a low dimensional mani-
fold, and the sequencing information are obtained. The structure of the ensemble
of events is contained in the parameters of the actions and the probability tran-
sition matrix, i.e. {(μj , Λj)m

j=1, π, Ψ}, {Pk}K
k=1.

When recognizing events in a new video sequence, the learnt parameters are
used to compute the action mixture (cluster) assignment, ct for each frame xt.
Let c1, c2, . . . , cNs , denote the action assignments for the respective frames of a
Ns frame-long event sequence. The probability that the video frames belong to
the k th event, Sk, is given by Sk =

∏Ns−1
t=1 Pk[ct][ct+1]. The video sequence is

assigned to be the event k∗, which maximizes Sk.
This model is validated using the CMU MoBo database [14]. The frames of the

video sequence are processed minimally before learning the event-set representa-
tion using the EM algorithm described above. The available background images
are used to obtain the corresponding silhouette images. The silhouette images,
represented as vectors, are used to learn the event representation. After the al-
gorithm converges the sequence probabilities of all the events are computed. The
transition probability of a new event video is estimated via the inference step
of the EM algorithm, and is labelled following a maximum likelihood approach.
Even though the four activities in the database (Slow walk, Fast walk, Incline
walk, Walking with a ball) had subtle differences, an average accuracy of 85%
is achieved. These results compete with, and also outperform, those reported
in [16].
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3 Combining Mixture of Actions Models

The relationship between the event recognition accuracy and the number of ac-
tion mixtures is interesting. Varying the number of actions has minimal influence
on the accuracy, beyond a certain limit. For instance, when recognising the event
Flapping (of hands) it was observed that beyond 5 mixtures, the accuracy var-
ied negligibly. Low accuracy is observed initially, when the number of actions is
small, because the temporal characteristics of the event are not modelled. Sim-
ilar behaviour was observed for all the events, except that the optimal number
of actions varied with the event in consideration. Also each of these models cap-
tures different characteristics of the events. This argues for an integrated model
which learns the appropriate number of actions for each event.
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Fig. 3. (a) Event sequences consist of spatial (or appearance) and temporal features.
(b) A summary of the proposed appearance and temporal feature integration model: A
combination of MFAs (MFA 1 . . . MFA M) is used to have the model choose between
appearance (App), temporal (Temp), which are the two extreme cases, and a com-
bination of both features (say, MFA i) adaptively. The contribution of each of these
components in the decision making process is identified by its corresponding weight
(w i).

Varying the number of actions can also be interpreted as varying the appear-
ance and temporal feature content in the event representation. The proposed
adaptive scheme chooses the appropriate model component based on the event
being recognized. The basic model, i.e. mixture of actions model with a tran-
sition matrix to capture the temporality in events, is replicated with different
number of action mixtures in each of them (see Figure 3). The two ideal extreme
cases in this framework are: modelling with (1) a single mixture for each event,
and (2) a separate mixture for every frame of an event. In the training phase,
the relevance of each component model is also estimated for all the events in the
database.
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Theoretically, one may define a single mixture for each frame in the event
sequence. However, such a scheme is inefficient and impractical due to the possi-
bly large number of transitions between these mixtures. The maximum number
of action mixtures is typically decided by the nature of the data set, but is
much lower than the total number of frames. Each mixture of actions model,
Mi, i = 1 . . .M , is trained separately with the frames of all the events using
an EM algorithm, as described in the previous section. By the end of the mix-
ture model training phase, the parameters of the model – {(μj , Λj)m

j=1, π, Ψ},
{Pk}K

k=1 are obtained for each model component.

3.1 Relevance of Each Component

Learning the event representation also involves estimating the relevance of all
the component models for any event. This is estimated by optimizing an objec-
tive function defined over the training set of N video sequences. The objective
function, J(.) is given by

J(Γ ) =
N∑

j=1

M∑

i=1

(γijdij)2,

where Γ ∈ R
MN is a matrix [γij ]. γij denotes the contribution of the i th mixture

of actions model component for the j th video sequence in the data set, and dij

is the distance metric signifying the cost of recognizing the j th sample with the
i th model component. The objective function is minimized over the space of γs.
This is done by using Lagrange multipliers with the constraint

∑M
i=1 γij = 1. The

objective function J is formulated so as to minimize the recognition accuracy
across all the component models. Given that each component model captures
a new composition of temporal and spatial features, this framework provides a
unifying scheme to describe events with different compositions of these features.

On observing that the relevance (or weights) for each event sequence are
independent, the minimization can be done independently in each column. Thus,
the Lagrangian is given by

J (λ, γj) =
M∑

i=1

(γijdij)2 − λ(
M∑

i=1

γij − 1). (2)

Differentiating Equation 2 with respect to γpq, γpq = λ/2(dpq)2. Using this equa-
tion and the constraint

∑M
r=1 γrq = 1, γpq can be computed as

γpq = 1

/

(dpq)2
M∑

r=1

(drq)2 . (3)

Equation 3 provides a method to compute the relevance of component mod-
els, given the distance metrics dij . The distance metrics, in this case, are the
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Fig. 4. A few sample frames showing hand gestures [15]: Click (top) and No (bottom)

likelihoods of the mixture of actions model component Mi, which is the prob-
ability computed from the corresponding transition matrix. Metrics based on
other models such as HMM, SVM, NN, etc., can also be incorporated. Although
the framework is generic, we limit the discussion to our mixture of actions model.

3.2 Weighted Measure to Recognize Events

Once the weights [γij ] are identified for all the events, they are used in the recog-
nition framework. Given an un-trained event video sequence, its corresponding
low dimensional representation is learnt using each of the model components,
Mi, i = 1 . . .M . The likelihood of the event being recognized as belonging to
class j using each of the mixture of actions model components is computed. The
decision criteria based on the weighted sum of posterior probabilities (for class
j) is given by

pj =
N∑

i=1

γijp(j|data,Mi).

The event is labelled as belonging to the class j∗, which maximizes the posterior
probability according to j∗ = argmaxj pj .

4 Recognizing Events

The proposed framework is used to recognise events such as hand gestures and
human events. We used hand gesture sequences from Marcel’s database [15].
Sample frames of some of the events can be seen in Figures 2 and 4. For the
experiment on human events, we used videos of 20 human subjects performing
7 different events for an average duration of 6 seconds. Three samples per sub-
ject per event were used. Video sequences of 10 human subjects, i.e. 10 × 7 × 3
sequences, and another disjoint set of sequences were used for training and test-
ing respectively. These events occur with the subject either being stationary or
indulging in locomotion. In the former category, we consider events Flapping,
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Table 1. A comparison of recognition accuracy using a single MFA model (which
has a fixed composition of appearance and temporal features) and the combination of
MFA models. On an average, 35.35 percentage reduction in error was observed. Sample
frames of some of these events can be seen in Figures 2 and 4.

Events
% Accuracy

Single MFA Comb. of MFAs

Hand gestures:

Click 89 94

No 88 93

StopGraspOk 90 92

Rotate 86 90

Human Activities:

Flapping 83 88

Jumping 80 86

Squatting 83 90

Waving 82 86

Limping 85 92

Walking 87 93

Hopping 84 90

CMU MoBo database:

Slow walk 84 92

Fast walk 85 94

Incline walk 86 93

Walk with Ball 85 93

Jumping, Squatting and Waving, while in the latter category (involving locomo-
tion), we consider Limping, Walking and Hopping. All the videos were captured
with a Panasonic Digital Video Camera at 24 fps. The model is also validated on
the MoBo Database [14] available from the Robotics Institute, Carnegie Mellon
University. The database consists of 25 subjects performing 4 different walk-
ing activities on a treadmill. Each sequence is 11 seconds long recorded at 30
fps. Data corresponding to one of the view angles (vr03 7 of [14]) is used for
experimentation. The training and testing data sequences were disjoint in all
the three validations.

Minimal preprocessing is done on the video sequences. In order to retain
the visually significant information, background subtraction and normalization
is performed on all the frames. The intensity values obtained are used in the
process henceforth. For the events involving locomotion, the frames are motion
compensated to centre the subject performing the event. Using a set of exam-
ple videos as the training set, the appropriate composition of appearance and
temporal features is learnt, and the parameters that describe them for all the
events (refer Section 3). Same training sequences are used in all the component
models. To recognize an unlabelled test event, the frame sequence transitions
are computed via the inference step of EM algorithm. This results in a set of
sequence probabilities computed for each event. The test video is then labelled
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as the event whose corresponding weighted probability measure is maximum (re-
fer Section 3.2). The recognition accuracy results obtained using the proposed
model and an MFA model are presented in Table 1. When compared to the single
MFA model, we achieved 35.35 percentage reduction in error on average.

4.1 Discussion

We performed a quantitative analysis of the subspace by reconstructing the orig-
inal sequences from the learnt representations. Using Λj and the low dimensional
representation, zt, the original frames, xt, ∀t, are recovered, thereby generating
the entire sequence. The reconstruction error is found to be 0.5%. A comparison
of some of the original and recovered frames is shown in Figure 5.

Fig. 5. A comparison of the original (top) and the reconstructed (bottom) frames of the
activity Squatting. Even though we achieve 99.94% reduction in size, the reconstruction
error is negligible (0.5%).

The recognition process over frames is displayed in Figure 6, as a plot of the
log likelihood for each possible activity. The correct activity Squatting – the
topmost plot in the figure – is clearly disambiguated within the first few frames
(around 5), which shows the ability of the model to obtain all the aspects of the
activity quickly and accurately.

The proposed approach differs from various time-series models in many as-
pects. Our techniques for preprocessing, feature extraction and representation
have considerable advantages, as described below.

– In comparison with a standard left-to-right HMM based on [9], the mixture
model provides superior recognition. For example, HMM results in 88% ac-
curacy for the hand gesture Click, while the mixture model provides 94%
accuracy. Similar improvement (of 6 − 8%) is observed in the case of other
events.
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Fig. 6. Cumulative sequence probabilities for the activity Squatting. The horizontal
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sequence probability. The topmost plot (blue dotted line) corresponds to Squatting. A
closer view of the graph (shown in inset) indicates that the activity is recognized after
observing a few frames – 5 in this case. Best viewed in pdf

– The proposed method is related to a standard left-to-right HMM. However,
we work at a lower dimension, which is simultaneously obtained while mod-
elling the event structure. Furthermore, a single observation model is used
to train all the events in the ensemble unlike HMMs where each event is
modelled separately [9].

– Events have been modelled, in the past, using a variety of features [1,7,9].
Most of these methods involve large amount of preprocessing. In contrast,
we perform minimal preprocessing and avoid any explicit feature extraction.
It is limited to background subtraction and binarization of the individual
frames.

5 Conclusion

The mixture model presented in this paper adapts based on the set of events
being considered. It learns an optimal combination of various mixture of ac-
tions model components. It can also be interpreted as a unifying framework for
combining appearance and temporal features in events. The composition of the
feature content is controlled by the number of mixtures in the model. The ap-
plicability of this framework has been demonstrated using the Mixture of Factor
Analyzers model. However, it can easily incorporated in other mixture modelling
schemes such as Gaussian Mixture Models. Other video (or event) analysis prob-
lems which require a higher level of semantic understanding are yet to explored.
Incorporating a discriminant based scheme into this framework is another inter-
esting direction.
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