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Abstract. Local feature detection and description have gained a lot of
interest in recent years since photometric descriptors computed for in-
terest regions have proven to be very successful in many applications. In
this paper, we propose a novel interest region descriptor which combines
the strengths of the well-known SIFT descriptor and the LBP texture
operator. It is called the center-symmetric local binary pattern (CS-LBP)
descriptor. This new descriptor has several advantages such as tolerance
to illumination changes, robustness on flat image areas, and computa-
tional efficiency. We evaluate our descriptor using a recently presented
test protocol. Experimental results show that the CS-LBP descriptor
outperforms the SIFT descriptor for most of the test cases, especially for
images with severe illumination variations.

1 Introduction

Local features extracted from images have performed very well in many applica-
tions, such as image retrieval [1], wide baseline matching [2], object recognition
[3], texture recognition [4], and robot localization [5]. They have many advan-
tages over the other methods. They can be made very distinctive, they do not
require segmentation, and they are robust to occlusion. The idea is to first de-
tect interest regions that are covariant to a class of transformations. Then, for
each detected region, an invariant descriptor is built. In this paper, we focus on
interest region description. For more information on interest region detection the
reader is referred to [6].

A good region descriptor can tolerate illumination changes, image noise, im-
age blur, image compression, and small perspective distortions, while preserving
distinctiveness. In a recent comparative study the best results were reported for
the SIFT-based descriptors [7]. For some interesting recent work on interest re-
gion description done after this study, see [8,9,10,11]. The local binary pattern
(LBP) texture operator [12], on the other hand, has been highly successful for
various problems, but it has so far not been used for describing interest regions.
In this paper, we propose a novel interest region descriptor which combines the
strengths of the SIFT descriptor [3] and the LBP operator [12]. Our descriptor
is constructed similarly to SIFT, but the individual features are different. The

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 58–69, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Description of Interest Regions 59

gradient features used by SIFT are replaced with features extracted by a center-
symmetric local binary pattern (CS-LBP) operator similar to the LBP operator.
The new features have many desirable properties such as tolerance to illumi-
nation changes, robustness on flat image areas, and computational simplicity.
They also allow a simpler weighting scheme to be applied. For evaluating our
approach, we use the same test protocol as in [7]. It is available on the Internet
together with the test data [13]. The evaluation criterion is recall-precision, i.e.,
the number of correct and false matches between two images.

The rest of the paper is organized as follows. In Section 2, we first briefly
describe the SIFT and LBP methods, and then introduce the proposed descriptor
in detail. The experimental setup is described in Section 3, and Section 4 presents
the experimental results. Finally, we conclude the paper in Section 5.

2 Interest Region Description

Our interest region descriptor is based on the SIFT descriptor [3] which has
shown to give excellent results [7]. The basic idea is that the appearance of an
interest region can be well characterized by the distribution of its local features.
In order to incorporate spatial information into the representation, the region is
divided into cells and for each cell a feature histogram is accumulated. The final
representation is achieved by concatenating the histograms over the cells and
normalizing the resulting descriptor vector. The major difference between the
proposed descriptor and the SIFT descriptor is that they rely on different local
features. Instead of the gradient magnitude and orientation used by the SIFT,
we introduce novel center-symmetric local binary pattern (CS-LBP) features
that are motivated by the well-known local binary patterns (LBP) [12]. Before
presenting in detail the CS-LBP descriptor, we give a brief review of the SIFT
descriptor and the LBP operator.

2.1 SIFT and LBP

SIFT Descriptor. The SIFT descriptor is a 3D histogram of gradient locations
and orientations. Location is quantized into a 4×4 location grid and the gradient
angle is quantized into 8 orientations, resulting in a 128-dimensional descriptor.
First, the gradient magnitudes and orientations are computed within the inter-
est region. The gradient magnitudes are then weighted with a Gaussian window
overlaid over the region. To avoid boundary effects in the presence of small shifts
of the interest region, a trilinear interpolation is used to distribute the value of
each gradient sample into adjacent histogram bins. The final descriptor is ob-
tained by concatenating the orientation histograms over all locations. To reduce
the effects of illumination change the descriptor is first normalized to unit length.
Then, the influence of large gradient magnitudes is reduced by thresholding the
descriptor entries, such that each one is no larger than 0.2, and renormalizing
to unit length.
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Fig. 1. LBP and CS-LBP features for a neighborhood of 8 pixels

LBP Operator. The local binary pattern is a powerful graylevel invariant texture
primitive. The histogram of the binary patterns computed over a region is used
for texture description [12]. The operator describes each pixel by the relative
graylevels of its neighboring pixels, see Fig. 1 for an illustration with 8 neighbors.
If the graylevel of the neighboring pixel is higher or equal, the value is set to one,
otherwise to zero. The descriptor describes the result over the neighborhood as
a binary number (binary pattern):

LBPR,N (x, y) =
N−1∑

i=0

s(ni − nc)2i, s(x) =
{

1 x ≥ 0
0 otherwise

, (1)

where nc corresponds to the graylevel of the center pixel of a local neighborhood
and ni to the graylevels of N equally spaced pixels on a circle of radius R. The
values of neighbors that do not fall exactly on pixels are estimated by bilinear
interpolation. Since correlation between pixels decreases with distance, a lot
of the texture information can be obtained from local neighborhoods. Thus,
the radius R is usually kept small. In practice, (1) means that the signs of
the differences in a neighborhood are interpreted as an N -bit binary number,
resulting in 2N distinct values for the binary pattern. The LBP has several
properties that favor its usage in interest region description. The features are
robust against illumination changes, they are very fast to compute, do not require
many parameters to be set, and have high discriminative power.

2.2 CS-LBP Descriptor

In the following, we provide details on our interest region descriptor which com-
bines the strengths of the SIFT descriptor and the LBP texture operator.

Region Preprocessing. We first filter the region with an edge-preserving adaptive
noise-removal filter (we used wiener2 in Matlab). The edge-preserving nature of
the filter is essential for good performance, since much of the information comes
from edges and other high-frequency parts of a region. Our experiments have
shown that this filtering improves the performance on average around 5 percent
(depending on the test images), and therefore all the experiments presented in
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this paper are carried out with this kind of filtering. Furthermore, the region
data is scaled between 0 and 1 such that 1% of the data is saturated at the low
and high intensities of the region. This increases the contrast of the region.

Feature Extraction with Center-Symmetric Local Binary Patterns. After pre-
processing, we extract a feature for each pixel of the region using the center-
symmetric local binary pattern (CS-LBP) operator which was inspired by the
local binary patterns (LBP). The LBP operator produces rather long histograms
and is therefore difficult to use in the context of a region descriptor. To produce
more compact binary patterns, we compare only center-symmetric pairs of pix-
els, see Fig. 1. We can see that for 8 neighbors, LBP produces 256 different binary
patterns, whereas for CS-LBP this number is only 16. Furthermore, robustness
on flat image regions is obtained by thresholding the graylevel differences with
a small value T :

CS−LBPR,N,T (x, y)=
(N/2)−1∑

i=0

s(ni−ni+(N/2))2i, s(x) =
{

1 x > T
0 otherwise

, (2)

where ni and ni+(N/2) correspond to the grayvalues of center-symmetric pairs
of pixels of N equally spaced pixels on a circle of radius R. The value of the
threshold T is 1% of the pixel value range in our experiments. Since the region
data lies between 0 and 1, T is set to 0.01. The radius is set to 2 and the size of
the neighborhood is 8. All the experiments presented in this paper, except the
parameter evaluation, are carried out for these parameters (CS − LBP2,8,0.01)
which gave the best overall performance for the given test data. It should be
noted that the gain of CS-LBP over LBP is not only due to the dimensionality
reduction, but also to the fact that the CS-LBP captures better the gradient
information than the basic LBP. Experiments with LBP and CS-LBP have shown
the benefits of the CS-LBP over the LBP, in particular, significant reduction in
dimensionality while preserving distinctiveness.

Feature Weighting. Different ways of weighting the features are possible. For
example, in the case of SIFT, the bins of the gradient orientation histograms
are incremented with Gaussian-weighted gradient magnitudes. A comparison of
different weighting strategies, including the SIFT-like weighting, showed that
simple uniform weighting is the most suitable choice for the CS-LBP features.
This is, of course, good news, as it makes our descriptor computationally very
simple.

Descriptor Construction. In order to incorporate spatial information into our
descriptor, the region is divided into cells with a location grid. Our experiments
showed that a Cartesian grid seems to be the most suitable choice. For the
experiments presented in this paper, we selected a 4×4 Cartesian grid. For each
cell a CS-LBP histogram is built. In order to avoid boundary effects in which
the descriptor abruptly changes as a feature shifts from one histogram bin to
another, a bilinear interpolation is used to distribute the weight of each feature
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Fig. 2. The CS-LBP descriptor

into adjacent histogram bins. The resulting descriptor is a 3D histogram of CS-
LBP feature locations and values, as illustrated in Fig. 2. As explained earlier,
the number of different feature values depends on the neighborhood size of the
chosen CS-LBP operator.

Descriptor Normalization. The final descriptor is built by concatenating the fea-
ture histograms computed for the cells to form a (4 × 4 × 16) 256-dimensional
vector. The descriptor is then normalized to unit length. The influence of very
large descriptor elements is reduced by thresholding each element to be no larger
than 0.2. This means that the distribution of CS-LBP features has greater em-
phasis than individual large values. Finally, the descriptor is renormalized to
unit length.

3 Experimental Setup

For evaluating the proposed descriptor, we use the same test protocol as in [7].
The protocol is available on the Internet together with the test data [13]. The
test data contains images with different geometric and photometric transforma-
tions and for different scene types. Six different transformations are evaluated:
viewpoint change, scale change, image rotation, image blur, illumination change,
and JPEG compression. The two different scene types are structured and tex-
tured scenes. These test images are shown on the left of Fig. 3. The images
are either of planar scenes or the camera position was fixed during acquisition.
The images are, therefore, always related by a homography (included in the test
data). In order to study in more detail the tolerance of our descriptor to illumi-
nation changes, we captured two additional image pairs shown on the right of
Fig. 3.

The evaluation criterion is based on the number of correct and false matches
between a pair of images. The definition of a match depends on the matching
strategy. As in [7], we declare two interest regions to be matched if the Euclidean
distance between their descriptors is below a threshold. The number of correct
matches is determined with the overlap error [14]. It measures how well the
regions A and B correspond under a known homography H , and is defined by
the ratio of the intersection and union of the regions: εS = 1−(A∩HT BH)/(A∪
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Graf Wall Boat Bark Mvlab1

Bikes Trees Leuven Ubc Mvlab2

Fig. 3. Test images (left): Graf (viewpoint change, structured scene), Wall (view-
point change, textured scene), Boat (scale change + image rotation, structured scene),
Bark (scale change + image rotation, textured scene), Bikes (image blur, structured
scene), Trees (image blur, textured scene), Leuven (illumination change, structured
scene), and Ubc (JPEG compression, structured scene). Additional test images (right):
Mvlab1 (illumination change, structured scene) and Mvlab2 (illumination change,
textured scene).

HT BH). A match is assumed to be correct if εS < 0.5. A descriptor can have
several matches and several of them may be correct. The results are presented
with recall versus 1-precision:

recall =
#correct matches

#correspondences
, 1 − precision =

#false matches

#all matches
, (3)

where the #correspondences stands for the ground truth number of matching
regions between the images. The curves are obtained by varying the distance
threshold and a perfect descriptor would give a recall equal to 1 for any precision.

The interest region detectors provide the regions which are used to compute
the descriptors. In the experiments, we use two different detectors: Hessian-
Affine [6] and Harris-Affine [15]. The two detectors output different types of
image structures. Hessian-Affine detects blob-like structures while Harris-Affine
looks for corner-like structures. Both detectors output elliptic regions of varying
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size which depends on the detection scale. Before computing the descriptors, the
detected regions are mapped to a circular region of constant radius to obtain scale
and affine invariance. Rotation invariance is obtained by rotating the normalized
regions in the direction of the dominant gradient orientation, as suggested in [3].
For region detection and normalization, we use the software routines provided by
the evaluation protocol. In the experiments, the normalized region size is fixed
to 41 × 41 pixels.

4 Experimental Results

In this section we first evaluate the performance of our CS-LBP descriptor for
different parameter settings and then compare the resulting version to the SIFT
descriptor.

Descriptor Parameter Evaluation. The evaluation of different parameter set-
tings is carried out for a pair of images with a viewpoint change of more than
50 degrees. The images are shown in Fig. 4. We use the Hessian-Affine detec-
tor which extracts 2454 and 2296 interest regions in the left and right images,
respectively. The performance is measured with nearest neighbor matching, i.e.,
a descriptor has only one match. We keep the 400 best matches and report the
percentage of correct matches. Note that there are 503 possible nearest neighbor
correspondences identified between the images.

We compare the matching performance (percentage of correct matches) for
differently spaced location grids, different parameters of the CS-LBP operator,
and two weighting schemes. Fig. 5 shows that a 4×4 Cartesian grid outperforms
all the other grid spacings. The left graph clearly shows that a uniform weighting
outperforms a SIFT-like one and that a neighborhood size 8 is better than 6 or
10. The graph on the right compares different values for the radius and the
threshold and shows that a radius of 1 and a threshold of 0.01 give best results.
In conclusion, the 4 × 4 Cartesian grid and the CS − LBP1,8,0.01 with uniform
weighting give the best performance. For the given image pair, the best results
are obtained with a radius of 1. However, experiments with many other image
pairs have shown that a radius of 2 actually gives better overall performance.
Thus, in the comparison with SIFT, we set the radius to 2 instead of 1. The
results also show that our descriptor is not very sensitive to small changes in its
parameter values. Note that due to space constraints, Fig. 5 does not cover all

Image 1 Image 2
CS-LBP SIFT

Recall 0.386 0.316

1 - Precision 0.515 0.603

Correct Matches 194 / 400 159 / 400

Fig. 4. Left: Image pair with a viewpoint change of more than 50 degrees. Right: The
matching results for the 400 nearest neighbor matches between the images.
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Fig. 5. Evaluation of different parameter settings. See text for details.

the tested parameter settings and that the omitted results are consistent with
our conclusions.

The dimensionality of the CS-LBP descriptor can be reduced without loss
in performance. When reducing the dimension from 256 to 128 with PCA, the
results seemed to remain unchanged. The performance of the 64-dimensional
descriptor is still very close to that of the original one. This property makes our
descriptor applicable in systems where the matching speed is important. Note
that a data set different from the test data was used to estimate the covariance
matrices for PCA. The comparison experiments presented next are carried out
without using dimension reduction.

Comparison with the SIFT Descriptor. Figures 6 and 7 show the comparison
results for Hessian-Affine and Harris-Affine regions, respectively. For Hessian-
Affine regions, our descriptor is better than SIFT for most of the test cases
and performs about equally well for the remaining ones. A significant improve-
ment of CS-LBP is obtained in the case of illumination changes. For example,
for the Leuven images, our descriptor gives approximately 20% higher recall
for 1-precision of 0.4. The difference is even larger for the additional two test
pairs (Mvlab1 and Mvlab2 ). Clearly better results are also obtained for the Graf,
Bikes, and Ubc images which measure the tolerance to viewpoint change, image
blur, and JPEG compression, respectively. As we can see, the CS-LBP descriptor
performs significantly better than SIFT for structured scenes, while the differ-
ence for textured scenes is smaller. Similar results are achieved for Harris-Affine
regions. Both descriptors give better overall results for Hessian-Affine regions
than for Harris-Affine ones. This is consistent with the findings in [6] and can
be explained by the fact that Laplacian scale selection used by the region detec-
tors works better on blob-like structures than on corners [7]. In other words, the
accuracy of interest region detection affects the descriptor performance.

Additional experiments were carried out for the scale invariant versions of
the detectors, i.e., Hessian-Laplace and Harris-Laplace [7]. They differ from the
affine invariant detectors in that they omit the affine adaptation step [15]. The
results are not presented due to space limitation, but the ranking of the two
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Fig. 6. Comparison results for Hessian-Affine regions
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Fig. 7. Comparison results for Harris-Affine regions
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descriptors for the scale invariant regions is comparable to that of the affine
invariant regions.

We also performed an additional matching experiment which uses the same
setup that was used in the parameter evaluation. Fig. 4 presents recall, 1-
precision, and the number of correct matches obtained with the two descriptors
for a fixed number of 400 nearest neighbor matches. As we can see, the CS-LBP
descriptor clearly outperforms the SIFT descriptor.

5 Conclusions

A novel CS-LBP interest region descriptor which combines the strengths of the
well-known SIFT descriptor and the LBP texture operator was proposed. In-
stead of the gradient orientation and magnitude based features used by SIFT,
we proposed to use center-symmetric local binary pattern (CS-LBP) features
introduced in this paper. The CS-LBP descriptor was evaluated against the
SIFT descriptor using a recently presented test framework. Our descriptor per-
formed clearly better than SIFT for most of the test cases and about equally
well for the remaining ones. Especially, the tolerance of our descriptor to illu-
mination changes is clearly demonstrated. Furthermore, our features are more
robust on flat image areas, since the graylevel differences are allowed to vary
close to zero without affecting the thresholded results. It should be also noted
that the CS-LBP descriptor is computationally simpler than the SIFT descrip-
tor. Future work includes applying the proposed descriptor to different computer
vision problems such as object recognition and tracking.
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