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Abstract. This paper proposes an object recognition system that is invariant to 
rotation, translation and scale and can be trained under partial supervision. The 
system is divided into two sections namely, feature extraction and recognition 
sections. Feature extraction section uses proposed rotation, translation and scale 
invariant features. Recognition section consists of a novel Reflex Fuzzy Min-
Max Neural Network (RFMN) architecture with “Floating Neurons”. RFMN is 
capable to learn mixture of labeled and unlabeled data which enables training 
under partial supervision. Learning under partial supervision is of high impor-
tance for the practical implementation of pattern recognition systems, as it may 
not be always feasible to get a fully labeled dataset for training or cost to label 
all samples is not affordable. The proposed system is tested on shape data-base 
available online, Marathi and Bengali digits. Results are compared with “Gen-
eral Fuzzy Min-Max Neural Network” proposed by Gabrys and Bargiela. 

1   Introduction 

Object recognition is an important component in computer vision. Object recognition 
broadly involves two steps namely, feature extraction and pattern classification. Effi-
cient object recognition demands rotation, translation and scale invariant (RTSI) fea-
tures. Pattern classification extracts the underlying structure in the data and performs 
the recognition. Fuzzy interpretation of patterns is very natural in cases where precise 
partitions of data are not known. Zadeh [1] elaborated the importance of fuzzy logic 
for pattern classification in his seminal paper. The merge of fuzzy logic and neural 
network for pattern classification can be found in “Fuzzy Min Max Neural Network” 
(FMNN) proposed by Simpson [2][3]. Gabrys and Bargilela [4] proposed a merge of 
FMNN classification and clustering algorithms called as “General Fuzzy Min-max 
Neural network” (GFMN). This hybridization allowed learning under partial supervi-
sion. Semi-supervised learning is of high importance for the practical implementation 
of pattern recognition systems, as it may not be always feasible to get a fully labeled 
dataset for training or cost of labeling all the samples is not affordable. 

The proposed Object Recognition System (ORS) uses a new set of RTSI features. 
Recognition is carried out using proposed “Reflex Fuzzy Min-Max Neural Network 
with Floating Neurons” (RFMN). RFMN is trainable by means of partial supervision. 
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It uses aggregation of fuzzy hyperbox sets (called as hyperbox neurons) [2][3] to 
represent classes or clusters. A variety of ORS methods are available such as, bound-
ary based analysis via Fourier descriptors [5], neural networks models [6] and invari-
ant moments [7]. However, most of these methods are too computationally expensive 
or are not invariant under the three types of transformations i.e., rotation, translation 
and scaling (RTS). An inexpensive ORS was proposed by Torres-Mendez et al [8] 
based on radial coding technique. 

The proposed RFMN with floating neurons exploits use of reflex mechanism in-
spired from human brain for the pattern classification and clustering. It uses Compen-
satory Neurons (CN) to overcome the hyperbox overlap and containment problems 
[9] [10]. CNs are inspired from the reflex system of human brain [11]. CNs maintain 
the hyperbox dimensions and control the membership in the overlapped region. Dur-
ing the training RFMN tries to label the unlabeled data, thus it is possible to learn 
from mixture of labeled and unlabeled data. The unlabeled hyperbox neurons created 
during training are kept floating and are restrained from contributing to the classifica-
tion. This approach has improved performance of RFMN compared to GFMN [4]. 
Gabrys and Bargiela advocated the use of a new activation function [4] for FMNN 
based algorithms. But we observed that their activation function can lead to errors and 
is discussed in section 3.   

The main contribution of this work is development of a new architecture for semi-
supervised learning and new set of RTSI features for object recognition. Rest of the 
paper is organized as follows. Section II elaborates new RTSI features. The proposed 
new RFMN architecture is explained in section III. Detailed learning algorithm and 
recall procedure is explained in section IV. Section V shows the experimental results 
on real datasets. Section VI concludes with summery. 

2   RTSI Features 

Feature can be defined as quantitative description of input within a lower dimensional 
space [12]. It plays an important role in object recognition systems (ORS) since the 
information related to an object is contained within the extracted features. In an ORS, 
pre-processing is required to extract the features. This may include image enhance-
ment, filtering, segmentation [13] etc. Object segmentation is a must to recognize it. 
For an invariant ORS feature extraction must be invariant to translation, rotation and 
scale. Here we propose a new set of RTSI features for object recognition.  This in-
cludes 1) normalized moment of inertia, 2) max to average ratio, 3) average to max-
min difference ratio, 4) radial coding [8] and 5) radial angles.  

To extract these features one needs to compute centroid of an object. Here we as-
sume that after segmentation a binary image of the object is available for post proc-
essing. The centroid (Cx, Cy) of a two-dimensional object is given by,  ( y) j
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xi, yi : co-ordinate values and N: total number of object pixels. 
Once the centroid is computed other features are extracted as follows: 

1) Normalized moment of Inertia (NMI) 
In general the moment of inertia quantifies the inertia of rotating object by consider-
ing its mass distribution. The moment of inertia (MI) is normally calculated by divid-
ing the object into N-small pieces of mass m1, m2,..,mN , each piece is at a distance di 
from the axis of rotation. MI is given by, 
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In case of object in a binary image, we consider pixel as unit pieces (i.e. m=1). Due 
to the finite resolution of any digitized image, a rotated object may not conserve the 
number of pixels. So moment of inertia may vary but normalized moment of inertia 
reduces this problem.  Normalized MI is invariant to translation, rotation and scale.  
This can be observed from Table 1 depicting features for an object shown in Fig. 1(a). 
The normalized moment of inertia (MI) of an object is [8] computed by, 
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where (Cx,Cy) are centroid co-ordinates and xi,yi  are object pixel co-ordinates. di pixel distance 
from centroid.  

2) Max to average length ratio (MAR) 
MAR is a ratio of maximum (dmax) of distance of object pixels from centroid to the 
average pixel distance (davg) from centroid.  
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Note the RTS invariance of this feature from Table 1.  

3) Average to Max-Min Difference (AMMD) Ratio 
AMMD is a ratio of average pixel distance from centroid davg to difference between 
maximum (dmax) and minimum (dmin)of pixel distance from centroid. It is given by, 
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Table 1 indicates AMMD is a RTS invariant feature. 

4) Radial Coding (RC) and Radial Angles (RA) 
The radial coding features are based on the fact that circle is the only geometrical 
shape that is naturally and perfectly invariant to rotation. RC is computed by counting 
the number of intensity changes on circular boundaries of some radius inside the ob-
ject. This simple coding scheme extracts the topological characteristics of an object 
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Table 1. NMI, MAR and AMMD for Fig.1(a) with various rotations, translations and scales  

Rotation 
(Degrees) 

NMI MAR AMMD 

0 0.193 2.161 0.465 
25 0.193 2.166 0.464 
55 0.193 2.179 0.463 
85 0.194 2.176 0.463 

105 0.194 2.145 0.468 

 

Size 
(%) 

NMI MAR AMMD 

120 0.193 2.164 0.466 
140 0.194 2.154 0.465 
160 0.193 2.174 0.462 
180 0.193 2.169 0.463 
200 0.193 2.171 0.462 

regardless of its position orientation and size. The methodology to obtain the radial 
coding features of an object can be seen in [8]. Along with RC, proposed radial angles 
(RA) are found out as follows: 

1) Obtain the centroid of the object. 
2) Generate K equidistant concentric circles Ci around the centroid. The spacing is 

equal to the distance between centroid and furthest pixel of the object divided by K. 
3) For each circular boundary, count the number of intensity changes (zero to one or 

one to zero) that occur in the image. These are radial coding features. 
4) Find the largest angle (θ) between the two successive intensity changes for every 

circle. These are called as Radial Angles. If θ2πasθtakethenπθ −> . This is a nec-

essary step to avoid the dependency of angle measurement on reference point or di-
rection of  the measurement. If there is no intensity change then take θ=0. 

Fig. 1(b) shows an example of radial coding and angles. Extracted features are 
shown in Fig.1(c). These features are also rotation, translation and scale invariant and 
can be noted from Table 2 and 3. We used seven concentric circles to code an object. 
Thus total feature vector length used in the proposed ORS is 17 (7RC+7RA+ 
NMI+MAR+AMMD). 

y g

 

Fig. 1. (a) Object (b) Radial Codes and Angles (c) RC and RA  

Table 2. RA for various rotations of Fig 1(a) 

Rotation (deg) / Ring 1 2 3 4 5 6 7 
0 0 0 1.08 2.68 2.64 2.56 0 

25 0 0 1.1 2.78 2.44 2.56 0.06 
55 0 0 1.82 2.26 2.02 2.56 0.24 
85 0 0 1.82 2.76 2.22 0.46 0 

105 0 0 0.74 2.66 2.32 2.56 0 
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Table 3. RA for various sizes of Fig 1 

Size (%)/ Ring 1 2 3 4 5 6 7 
120 0 0 1.08 2.6 2.54 2.54 0 

140 0 0 1.1 2.7 2.54 2.56 0 

160 0 0 1.08 2.7 2.62 2.58 0 

180 0 0 1.1 2.7 2.54 2.58 0 

200 0 0 1.06 2.7 2.64 2.58 0 

3   Reflex Fuzzy Min-Max Neural Network with Floating Neurons  

The proposed ORS uses a novel Reflex Fuzzy Min-Max Neural Network (RFMN) 
with floating neurons for the recognition purpose. RFMN uses aggregation of hyper-
box fuzzy sets to represent classes or clusters. It can be trained in two ways i.e. classi-
fication (supervised learning) and hybrid mode (semi-supervised learning). During 
training RFMN tries to accommodate the training samples in the form of hyperbox 
fuzzy sets. The class overlaps are handled by reflex section. In hybrid mode, RFMN 
tries to label the unlabeled data using knowledge acquired from available labeled data. 
After completion of training, many hyperbox fuzzy sets may remain unlabeled due to 
lack of evidence for these sets. Neurons representing such hyperbox fuzzy sets are 
restrained from contributing to the output. Such neurons are called as “Floating Neu-
rons”. Floating neurons (FN) can be labeled and are allowed to contribute to the out-
put if evidence for a class is found out later on. Since RFMN learns on-line whenever 
data is made available it can be trained without hampering performance on the earlier 
acquired knowledge. 

3.1   RFMN Architecture 

The proposed architecture of Reflex Fuzzy Min-Max Neural Network (RFMN) is 
shown in Fig. 2.  

 

Fig. 2. RFMN Architecture 
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It is divided into three sections: 1) The classifying neuron section (CL) 2) Reflex 
section and 3) Floating Neuron section. The classifying section contributes in calcu-
lating memberships for different classes. The Reflex section consists of two subsec-
tions, Overlap Compensation neuron (OCN) section and Containment Compensation 
neuron (CCN) section. Reflex section is active whenever a test sample falls in the 
class overlap area. This action is very similar to the Reflex action of human brain 
which takes over the control in hazardous conditions. It compensates the output of 
classifying section and solves the dispute of membership in class overlapped area. 
Floating neuron section represents hyperbox fuzzy sets whose labels are not con-
firmed. These neurons are transferred dynamically during training to the classifying 
neuron section if class evidence is found. 

An n-dimensional input Ah= (ah1, ah2,…ahn) is applied to the input nodes a1-an. The 
neurons b1-bj are classifying neurons. Classifying section collects output of these 
neurons at class nodes C1-Ck. During training hyperboxes belonging different classes 
do overlap as depicted in Fig3(b), 4(b). These overlaps and containments infer OCNs 
and CCNs respectively in the reflex section. The nodes d1-dp are overlap 
compensation neurons and e1-eq represent the containment compensation neurons. 
Outputs of OCN & CCN are collected at a class node Ci in respective compensation 
sections. The output of floating neurons (FNs) f1 -fr are not connected to any class 
node. The activation function of the classifying neuron bj is given by [3], 

∑
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where V, W: min-max point of the hyperbox bj.  γ : Fuzziness controller, f(x,y) is a two 
parameter ramp threshold function, n- dimension of data. 
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Eq.7 finds membership for a given input as an average of memberships along each 
dimension. Membership depends on the distance of applied input from hyperbox min 
and max point along each dimension. Gabrys and Bargiela [4] modified the above 
activation function and advocated use of their new activation function given by Eq.9 
for FMNN based algorithms. It is stated in [4] that Simpson’s activation function 
(Eq.7) [3] offers a large memberships even though very few features are close to the 
range specified by the hyperbox min-max points. To solve this problem Eq.9 [4] 
offers a membership based on the minimum of the memberships (match) along each 
dimension. 

))])(())([(( γγ ,avf1,,waf1minmin)W,V,A(b hijijihin..1ijjhj −−−−=
=

          (9) 

But we observe that this criterion of offering membership based on minimum 
membership is not suitable universally. The search for the minimum membership 
penalizes too heavily and leads to errors in cases where matching of features is more 
important rather than searching for a minimum match. In case of proposed features 
for object recognition, the requirement is to see how many features of an input match  
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to the learned patterns, thus we found that Eq.7 is more suitable than Eq.9. This is 
supported by our results of experiment 1, in Section 5. 

As training progresses hyperbox size goes on increasing to accommodate the 
applied input. The maximum hyperbox size is controlled by the expansion coefficient   
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As stated earlier while training the network, hyperboxes representing different 
classes may overlap, or a hyperbox of one class may contain a hyperbox of another 
class as depicted in Fig. 3(b), 4(b) respectively. The overlap compensation and 
containment compensation neurons are trained to handle these situations. Fig. 3(a) 
depicts the details of overlap compensating neuron (OCN), which represents a 
hyperbox of size equal to the overlapping region between two hyperboxes. OCN is 
active only when the test sample falls in the overlap region. The activation function is 
given by Eq.(11) and (12).  
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p=1,2. dj1 and dj2 are Class1 and Class2 outputs. V,W: OCN min-max points. 
V1,W1,V2,W2: min-max point of overlapping hyperboxes U(x) : a unit step function. 
bj() is same as Eq.(7). 

The unit step function with threshold of ‘1’ allows OCN to be active whenever 
applied input falls inside the overlap region represented by it. If the test data is outside 
the OCN region, membership calculated by bj() is less than one and thus U(bj() -1) 
term is zero. This makes compensatory neurons inactive i.e. no compensation is 
added. Compensation is produced whenever the test data falls inside overlapped 
region. If data is contained in OCN region (as shown in Fig.3(b)), its membership is 
calculated for the respective classes depending on its distance from the min-max 
points.The activation function of this neuron is such that it protects the class of the 
min-max point of the overlapping hyperboxes, which improves the learning accuracy. 
The output of this neuron is connected to the two class nodes of overlapping classes 
(OCN section Fig. 1).  

j

 

Fig. 3. Overlap Compensatory Neuron  
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Fig. 4. Containment Compensatory Neuron 

Referring to the overlap shown in Fig. 3(b) note that the resulting membership 
grade after adding compensation decreases gradually from point C to B for class 1 
(Fig. 3(c)) and from B to C for class2. Thus activation function tries to give a 
membership grade for the applied input considering its position in the OCN region. 

The containment compensation neuron (CCN) is shown in Fig. 4(a). This 
represents a hyperbox of size equal to the overlap region between two classes as 
shown in Fig. 4(b). Similar to OCN activation function the term U(bj() -1)  finds 
whether the input data falls inside the overlapped region represented by CCN. This 
neuron is also active only when the test data falls inside the overlapped region. The 
activation function of CCN is: 

1))- )(( ,V,WAbUO hjcj
−=                                         (13) 

where Ocj: output, V,W: CCN min-max points, U(x) : unit step function,  bj(): same as 
Eq.(7)  

This activation function allows a hyperbox of one class to be contained in a 
hyperbox of different class. The output of CCN is connected to the class that contains 
the hyperbox of other class (CCN Section Fig.2). 

In hybrid mode of learning, there may be generation of hyperboxes without labels 
due to lack of class evidence. These hyperbox neurons are kept in Floating Neuron 
section without connection to output and thus are not allowed to contribute to the out 
put. Floating neurons are brought dynamically into the classifying neuron section if 
evidence of a class is found.  

The number of output layer nodes in CL section is same as the number of classes 
learned. The number of class nodes in the CCN, OCN section depends on the nature 
of overlap the network faces during the training process. The final membership 
calculation is given by, 
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where U,Y,Z are the connection matrices for the neurons in the three sections. 
j,p,q are number of neurons in respective sections. 

Eq.(14) takes care of multiple class overlaps. It gives maximum grade to a class 
from the available grades considering its compensation. 

3.2   Comparison of RFMN with GFMN and FMNN 

FMNN and GFMN use a process called as contraction to solve the class overlaps. 
Nandedkar and Biswas [9] [10] pointed out that the contraction process causes errors 
during training. To overcome this problem, contraction process was removed and a 
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reflex mechanism was added in to the FMNN architecture. It is observed that in case 
of GFMN hybrid mode of learning, many hyperboxes remain unlabeled after training 
due to no class evidence for them. Thus any test sample falling in these hyperboxes 
are not classified. But in situations where we need to take a decision based on existing 
knowledge, one needs to ignore the output of these neurons. Thus we propose a 
concept of “Floating Neurons” to overcome this problem. Floating neurons are 
labeled dynamically and are allowed to contribute to the output if evidence for a class 
is found.   

4   Training Algorithm and Recall Procedure 

RFMN Training algorithm creates and expands hyperboxes depending on the demand 
of the problem. It utilizes the currently learned structure to label the unlabeled data. If 
there is any overlap, containment created (between hyperboxes of different classes) 
while expanding labeled hyperboxes, respective compensatory neuron is added to the 
network. Note that hyperboxes are not contracted in RFMN learning. 

a) Training Algorithm  
Training algorithm consists of mainly two steps, Data Adaptation and Overlap Test. 
Assume {Ah,Ci} is a training data, {bj,Cj} a hyperbox for class Cj. θ: current hyperbox 
size θmax: maximum hyperbox size. Initialize the network with b1 with V1=Ah, W1= Ah 
and class Ci for an ordered data pair {Ah,Ci}, Repeat the following steps 1 and 2 for 
the all-training samples. Note that for simplicity unlabeled data and hyperboxes are 
represented by C0. 

STEP 1:  Data adaptation 
Find a {bj,Cj} for training sample {Ah,Ci} such that Cj=Ci or Cj=C0 offering 
largest membership, θ≤θmax and is not associated with any OCN or CCN. Adjust 
the min-max points of hyperbox bj as:  

Vji
new= min (Vji 

old, Ahi)  Wji
new = max (Wji 

old, Ahi) where i =1,2…n                 (15) 
and If Cj =C0 and Ci≠C0 then Cj=Ci. Take a new training sample.  
If no bj is found, create a new hyperbox with Vj=Wj=Ah and class Ci. 

STEP 2: Overlap Test 
Assuming that bj expanded in previous step is compared with bk with class label 
Ck≠Ci.  
a) Isolation Test: 
  If (Vki<Wki<Vji<Wji) or (Vji<Wji<Vki<Wki) is true for any i, (i Є1..n) Then 
(bk,bj) are isolated and Check the following: 
Case1: if Cj=C0 then assign Cj=Ck  
Case2: if Ck=C0 then assign Ck=Cj  
Case3: if Cj=Ck=C0  
Stop further expansion of these hyperboxes if any of the above cases is satisfied 
and go to step1. Else go for Containment test. 

b) Containment Test: 
  If (Vki<Vji<Wji<Wki) or (Vji<Vki<Wki<Wji) is true for any i, (i Є 1.. n) then 
Create a CCN with hyperbox min-max co-ordinates given by,  
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  Vci= max(Vki,Vji),  Wci=min((Wki,Wji) for i =1,2…n                          (16) 
Else hyperboxes are not facing containment problem go to step (c) 
c) Overlap compensation neuron creation: 
 Create a OCN with hyperbox min-max co-ordinates given by,   

Voci=max(Vki,Vji), Woci=min(Wki,Wji) for i=1,2…n                             (17) 

 Avoid further expansion of hyperboxes belonging to different classes, which are 
facing the problem of overlap and containment, in the next expansion cycles.  

b) Recall Procedure 
The class nodes in each section calculate the class memberships and respective  
compensations. The summing node in the classifying neuron does the final grade 
calculation. The membership grade is computed according to Eq. 14 by adding the 
compensation to the class membership. 

5   Experimental Results 

The basic aims for the experiments were to verify 1) Effectiveness of change in acti-
vation function on the performance of RFMN, 2) To compare performance of pro-
posed set of RTSI features, 3) To verify performance of proposed ORS on various 
datasets, 4) To check performance of RFMN under partial supervision.  

a)   Effect of activation function  
Here we used shape database [14] available on line. Fig.5 depicts some examples. It 
consists of 18 different classes and 12 images for each class, in total 216 images. 
Proposed RTSI features were extracted and fifty percent samples were selected ran-
domly for training. Performance of RFMN on complete dataset with two different 
activation functions is compared with GFMN. Results are presented in Table 4.  

It is clear from the results that RFMN performance is better than GFMN with 
activation function Eq.9. But it improves a lot when Eq.7 is used. The reason is that 
for the proposed RTSI features how many features match to the learned patterns is 
more important than the mismatches. Hence we recommend using activation 
functions depending on the nature of features.  

 

Fig. 5. Few Images from Database [14] 

Table 4. Activation function comparision 

Algorithm Learning Error (%) Test Error (%) 

RFMN (Eq. 7) 0 1.39 
RFMN (Eq. 9) 0 9.26 
 GFMN 0 19.91 
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b) Performance on Various Feature Sets 
Performance of RFMN, GFMN and K-Nearest Neighbor (KNN) [12] on shape data-
base [14] using various feature sets is compared in Table 5. Training dataset is pre-
pared by selecting 50% samples randomly. Note that a better object recognition is 
achieved using RFMN and the new set of RTSI features. 

Table 5. Feature Set comparison (LE- Learning Error, TE – Test Error) 

 RFMN GFMN K-NN (n=1) K-NN (n=3) 
Features LE TE LE TE LE TE LE TE 

New RTSI  Features 0 1.39 0 19.91 0 4.62 22.22 20.83 
Invariant Moments[13] 0 3.24 0 20.37 0 7.87 15.74 21.29 
Radial Coding [8] 0 7.87 0 11.11 0 7.87 22.22 19.90 

c) Test for RTS Invariance 
To test the RTS invariance performance of proposed ORS rigorously we tested it on 
Bengali, Marathi digit database and an expanded shape database created from [14]. 

 

Fig. 6. Bengali (First Row) and Marathi Digits (0-9) 

The details of the image database are given in Table 6. 

Table 6. Database details  

Database Rotations Sizes Classes Samples 
/Class Total 

Bengali ,Marathi 
Digits (0-9) 

0, 10 35, 55, 60, 75, 
90, 110, 135 Degrees Font 20,24,28 10 30 300 

Expanded Shape 
Database 

0, 45, 90  
Degrees 

50, 100, 150 % 
of size in [14] 18 108 1944 

 

For training the system, fifty percent of new RTSI features were selected randomly. 
Complete dataset is used for the test purpose. Table 7 shows that performance of 
proposed RFMN classifier is better than GFMN and KNN. A good recognition of 
proposed ORS i.e. combination of rotation, scale and translation invariance of new 
RTSI features and RFMN is demonstrated.   

d) Semi-Supervised Learning 
As stated earlier this mode of learning is suitable for the practical implementation of 
pattern recognition based systems, since practically it may not be always possible to 
label every training sample or cost of labeling is very high. To study the performance 
under partial supervision a mixture of labeled and unlabeled samples is used to train 
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Table 7. Performances on Bengali, Marathi Digits and Shape Database 

RFMN GFMN KNN (n=1) KNN (n=3) Database 
LE TE LE LE LE TE LE TE 

Bengali Digits 0 4 0 35.67 0 11 15.33 20 
Marathi Digits 0 8 0 35.33 0 12.66 1.33 21 
Expanded Shape  0 1.75 0 7.87 0 2.82 4.01 6.79 

RFMN and GFMN. RFMN tries to apply the acquired knowledge from the labeled 
sample to label unlabeled and extract the underlying data structure. In this experi-
ment, fifty percent of shape database and expanded shape database were selected 
randomly for training. Out of the selected training samples 2/3 samples were unla-
beled randomly. This mixture was used to train GFMN and RFMN. Testing was car-
ried out on complete dataset.  

Table 8 compares results for RFMN, GFMN and KNN on shape and expanded 
shape database (Table 6). For training KNN we used available labeled data. RFMN 
and GFMN expansion coefficients were 0.1 and 0.05 for shape, expanded shape data-
set respectively. It is clear that RFMN performance is better than GFMN and KNN. 
Compared to the hybrid mode learning of RFMN, performance of GFMN is poor due 
to the problems of unlabeled hyperboxes and its activation function. The interference 
of unlabeled hyperboxes leads to no classification of the input for GFMN.   

Table 8. Semi-Supervised Test Error 

 Database RFMN GFMN KNN(n=1) KNN(n=3) 
Shape  [14]  11.57 48.61 21.29 30.55 
Expanded Shape  11.98 45.37 18.10 23.14 

6   Conclusion 

A new rotation, translation and scale invariant object recognition system along with a 
novel RFMN architecture with floating neurons is presented. The need to select an 
activation function for neurons depending on the nature of features is discussed. The 
problem in GFMN hybrid mode learning is elaborated. The concept of floating neu-
rons has improved the performance of RFMN in hybrid mode of learning. It helped to 
solve the problem due to unlabeled hyperboxes in GFMN. Experimental results show 
that the proposed object recognition system with RFMN classifier learns efficiently 
even with very few labeled samples added to unlabeled data. This is an important 
consideration for the practical implementation of pattern recognition system. More-
over performance of proposed set of RTSI features is found to be better than radial 
coding and invariant moments feature. 
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