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Abstract. This paper proposes a new method of feature extraction called two-
dimensional optimal transform (2D-OPT) useful for appearance based object 
recognition. The 2D-OPT method provides a better discrimination power 
between classes by maximizing the distance between class centers. We first 
argue that the proposed 2D-OPT method works in the row direction of images 
and subsequently we propose an alternate 2D-OPT which works in the column 
direction of images. To straighten out the problem of massive memory 
requirements of the 2D-OPT method and as well the alternate 2D-OPT method, 
we introduce bi-projection 2D-OPT.  The introduced bi-projection 2D-OPT 
method has the advantage of higher recognition rate, lesser memory 
requirements and better computing performance than the standard PCA/2D-
PCA/Generalized 2D-PCA method, and the same has been revealed through 
extensive experimentations conducted on COIL-20 dataset and AT&T face 
dataset. 
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1   Introduction 

Appearance based object recognition methods have demonstrated their success in 
various visual learning and recognition chores such as 3D object recognition, face 
recognition, ear recognition, palm recognition, and tracking.  In particular, principal 
component analysis (PCA) [5, 7, 8, 9] based methods have been proposed and shown 
to have good performance. The PCA has also been exploited for accurate 
identification of faces [2, 10, 13], palms [11], and ears [2]. The drawback of the 
conventional PCA based approaches is the curse of dimensionality as the size of the 
covariance matrix is proportional to the size of images. In addition to this, specifically 
to the application of face recognition, an alternative model, Fisherfaces [1], a 
derivative of Fisher’s Linear Discriminant (FLD) has been proposed. The objective of 
the FLD is to find the optimal projection for the samples such that the discrimination 
ratio of between-class scatter matrices to within-class scatter matrices reaches its 



 Two-Dimensional Optimal Transform for Appearance Based Object Recognition 651 

maximum. So far, the FLD method and its variants have been well received by the 
face recognition community. However, it should be noticed that the PCA/FLD 
methods [2, 5, 7, 8, 9, 10, 13] are based on the analysis of vectors. When dealing with 
images, we should firstly tranform the image matrices into vectors. Then based on 
these vectors, the covariance matrix is calculated and the optimal projection is 
obtained. As object images are high-dimensional patterns, it is difficult to evaluate the 
covariance matrix in such a high-dimensional vector-space. To overcome this 
drawback, Yang et al. [15] proposed a image projection technique called 2D-PCA that 
is directly based on the analysis of original image matrices. The Generalized 2D-PCA 
method proposed by Kong et al. [4] overcomes the limitations of 2D-PCA. 

On the other hand, we have also seen an evolutionary improvement in the use of 
PCA based approach for efficient representation and recognition of 3D objects. The 
major advantage of the approach is that both learning and recognition are performed 
using just two-dimensional intensity images without any low-level or intermediate-
level processing. However, as noticed by many researchers [5, 8, 9, 10] the method in 
its standard form cannot handle problems such as occlusion, and of varying 
background. Pentland et al. suggested the use of modular eigenspaces [10] to alleviate 
the problem of occlusion. Ohba and Ikeuchi [9] proposed the eigen-window method 
to be able to recognize partially occluded objects. But, due to local windows, these 
methods lack the global aspect and usually require further processing. To eliminate 
the effects of varying background, Murase and Nayar [8] introduced the search 
window, which is the AND area of the object regions of all the images in the training 
image set. However, the assumption is too restrictive and fails for some class of 
object models as mentioned in their work itself. Moreover, the target object may be 
occluded by other target objects which are the images of the training set only, rather 
than some foreign object. In order to alleviate these problems, Leonardis and Bischof 
[5] proposed a robust and an efficient approach which is based on multiple 
eigenspaces. A novel self-organizing framework has been used in their work to 
construct multiple, low-dimensional eigenspace from a set of training images.  

However, it is observed from [3, 12] that the idea of principal component 
transformaton is based on the reduction of the dimension of original image vectors 
using some linear mapping such that the resulting feature vectors show pairwise 
maximum distance. Besides, feature vectors resutling from PCA allow the 
reconstruction of images with minimal mean quadratic error. If the distribution of 
features is such that the principal axes of all classes are parallel to each other, the 
projected features will allow no discrimination of these classes. This problem is called 
as ADIDAS problem [12] and is illustrated in Fig. 1 considering a 2-D example, 
where we project the features onto the x-axis. Hence, an alternative objective function 
is introduced in [3] which eliminates the ADIDAS problem. However, as noticed by 
many researchers, the computational complexity in the evaluation of covariance 
matrix still exists in this approach. Motivated by [4, 15], we proposed 2D-OPT and its 
variants to eliminate the problem of massive memory requirements, higher 
computational complexity involved in covariance matrix computation, and as well to 
resolve the ADIDAS problem. 
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Fig. 1. The 2D-PCA and ADIDAS problem 

The rest of the paper is organized as follows. In section 2, we discussed the 
working model of the 2D-PCA method along with its limitations. In section 3, we 
propose 2D-OPT transform and establish that the proposed 2D-OPT works in the row 
direction of images and hence an alternate 2D-OPT which works in the column 
direction of images is introduced and in sequel a combined model, bi-projection 2D-
OPT is proposed. The results of the experiments are presented in section 4 and 
conclusions are given in section 5. 

2   Problems in 2D-PCA 

Working model of 2D-PCA: Training is a process of acquiring features from 
available training images and storing them in a knowledge base for the purpose of 
recognizing an unknown future scene image. Given a set of samples of each class, the 
2D-PCA approach extracts most informative features which could establish a high 
degree of similarity between samples of the same class and a high degree of 
dissimilarity between samples of two different classes. 

Formally, let there be T number of classes each with ki, i=1...T, number of training 

images. Therefore, we have totally ∑
=

=
T

i
ikN

1

 number of training images. Let j
iA  be 

an image of size m x n representing the jth sample in the ith class. Let C be the average 
image of all N training images. In 2D-PCA, the scatter matrix G is computed as 
follows. 
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Once G is computed, it is recommended to find the optimal projection axis X so that 
the total scatter of the projected samples of the training images is maximized. For this 
purpose, the criterion used is, 

XGXXJ T=)(  (2) 
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It is a well-known fact that the eigenvector corresponding to the maximum eigenvalue 
of G is the optimal projection axis which maximizes J(X). Generally, as it is not 
enough to have only one optimal projection axis, we usually go for d number of 
projection axes, say X1, X2,…, Xd, which are the eigenvectors corresponding to the 
first d largest eigenvalues of G. In 2D-PCA, once these X1, X2,…,Xd  are computed, 

each training image j
iA  is then projected onto these X’s to obtain the feature matrix 

j
iW of size m x d  of the training image j

iA . So, during training, for each training 

image j
iA , a corresponding feature matrix of size m x d, d<<n, is constructed and 

stored in the knowledge base for matching at the time of recognition.  
 
Limitations of 2D-PCA: Albeit the above described 2D-PCA overcomes the 
limitations of standard PCA based approaches, still it has some shortcomings. As 
noticed by many researchers, 2D-PCA has massive memory requirements for feature 
representation and hence consumes much recognition time. Problems occur if the 
distribution of features is such that the principal axes of all classes are parallel to each 
other, resulting in ADIDAS problem (see Fig. 1). Hence, the projected features will 
allow no discrimination of these classes. For this situation, projection on the y-axis 
would provide discrimination among the classes. Hence, in general, it is necessary to 
have another plausible optimization criterion, which does not show the disadvantages 
of 2D-PCA. 

3   Two-Dimensional Optimal Transform (2D-OPT) 

The scatter matrix introduced in this work is in such a way that the features of the 
same class have minimum distance and possess maximum distance to other classes. 
However, knowledge of the classified sample set, like FLD, is required in this case.   

3.1   Learning Formulation in 2D-OPT 

To devise 2D-OPT, we propose to compute the scatter matrix Hr as follows. Let 

iC be the average image of all ki training images of the ith class. 
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Using this scatter matrix Hr, similar to the original 2D-PCA,  in this proposed model 
also we find the optimal projection axis Y so that the total scatter of the projected 
samples is maximized using the same criterion introduced in 2D-PCA given by, 

YHYYJ r
T=)(  (4) 

Thus, the eigenvectors of Hr are computed and then r numbers of eigenvectors 
corresponding to the first r largest eigenvalues of Hr are chosen. Finally projection of 
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a training image onto these optimal projection axes results with a feature matrix of the 

respective training image. That is, if j
iZ represents the feature matrix of j

iA , then  

YAZ j
i

j
i =  (5) 

It should be noted that the above described scatter matrix (Eq. (3)) in the feature space 
is equivalent to an optimal transform ψ given by,   
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where μi, i=1…T, is the average feature matrix of all feature matrices of the ith class. 
Hence, using an optimal transform, the distance between the class centers is 
maximized.  

3.2   Recognition 

Let I be an image given for recognition. Let |I  be its projected image onto the r 

number of optimal projection axes computed by YII =| . Given two images, say 

1i
v and 

2i
v of any object(s)/face(s), represented by feature matrices 
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where 
2

ba − denotes the Euclidean distance between the two vectors a and b. If the 

feature matrices of the training images are Z1, Z2, …,ZN, and each image belongs to 

some object Oi, then for a given test image |I , if dist( |I , Zl) = min j dist( |I , Zj) and Zl 

∈ Oi, then the resulting decision is |I ∈ Oi.  

Theorem 1: The 2D-OPT approach works in the row direction of images.  
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Equation (8) implies that the image covariance matrix Hr is obtained from the outer 
product of the row vectors of mean images. Therefore we claim that the 2D-OPT 
method works in the row direction of images.                            ⁯ 
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In the following section, we present a modified version of this 2D-OPT, called 
alternate 2D-OPT, which works in the column direction of images. It shall be noticed 
that both the 2D-OPT method and the alternate 2D-OPT method help us in reducing 
dimension only either in the row direction or in the column direction. Thus, a 
combined model called bi-projection 2D-OPT which works in both the directions is 
also presented in the next section. The advantage of this combined approach is that 
the reduction in dimensionality can be achieved in both row and column directions 
without any deterioration in recognition performance. 

3.3   Alternate 2D-OPT 

In alternate 2D-OPT, we propose to compute the scatter matrix Hc as follows. 
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It shall be observed that Hc in Eq. (9) is obtained in this new formulation as outer 
products of column vectors unlike Hr (Eq. (3)) in the case of the 2D-OPT. Using this 
scatter matrix, similar to the original 2D-PCA, in this alternate 2D-OPT model also 
we find the optimal projection axes V (m x s) so that the total scatter of the projected 
samples is maximized using the same criterion given by 

T
cVVHVJ =)(  (10) 

Thus, the eigenvectors of Hc are computed and then s numbers of eigenvectors 
corresponding to the first s largest eigenvalues of Hc are chosen. Finally projection of 
a training image onto these optimal projection axes results with a feature matrix of the 

respective training image. That is if j
iU represents the feature matrix of j

iA , then  

j
i

Tj
i AVU =  (11) 

Recognition: Let I be an image given for recognition. Let |I  be the feature matrix 

obtained by projecting I onto V, i.e., IVI T=| . By using a Euclidean distance based 
nearest neighbor classifier, the class label of I is obtained as explained in section 3.2. 
Theorem 2: The alternate 2D-OPT approach works in the column direction of 
images.  
Proof 
Let ( )( ) ( )[ ] .,...
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Equation (12) implies that the image covariance matrix Hc is obtained from the outer 
product of the column vectors of mean images. Therefore we claim that the alternate 
2D-OPT method works in the column direction of images.                        ⁯ 
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3.4   Bi-projection Two-Dimensional Optimal Transform (B2D-OPT) 

In the preceding subsection, we proposed an alternate 2D-OPT concept which works 
in the column direction capturing information between columns of images. On the 
other hand, the 2D-OPT works in the row direction capturing information between 
rows of images. In this subsection, we recommend to project the images on both the 
directions simultaneously while extracting feature matrices. 

Let Y denote n x r optimal projection matrix obtained as explained in the 2D-OPT 
method (Section 3.1) and let V denote the m x s matrix obtained by the alternate 2D-

OPT method (Section 3.3). During training, each training image j
iA  is projected onto 

both Y and V simultaneously to obtain the respective feature matrix j
iF  which is of 

dimension s x r as follows. 

YAVF j
i

Tj
i =  (13) 

Recognition: Let I be an image given for recognition. Let |I  be the feature matrix 

obtained by projecting I onto V and Y simultaneously, i.e., YIVI T=| . By using a 

Euclidean distance based nearest neighbor classifier, the class label of I is obtained as 
explained in section 3.2. 

Thus, the B2D-OPT algorithm for training a system is as follows. 
 

Algorithm: B2D-OPT [TRAINING PHASE] 

Input: Set of images: { }i
j

i kjTiA ...1,...1 ==  

Output: Knowledge base: F = { }i
j

i kjTiF ...1,...1 ==  

Procedure: 

A. [Computation of optimal projection axes in the row direction: Y] 

a. Compute the image scatter matrix Hr as explained in section 

3.1 (Eq. (3)). 

b. Find the eigenvectors of Hr. 

c. Choose r eigenvectors say Y1, Y2,…,Yr associated with the first 

r largest eigenvalues of Hr and let Y = (Y1, Y2,…,Yr).  

B. [Computation of optimal projection axes in the column direction: V] 

a. Compute the image scatter matrix Hc as explained in section 

3.3 (Eq. (9)). 

b. Find the eigenvectors of Hc. 

c. Choose s eigenvectors, say V1,V2,…,Vs associated with the first 

s largest eigenvalues of Hc and let  V = (V1,V2,…,Vs).  
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C. [Creation of Knowledge base: F ] 

a.     F  =  { i
j

i
Tj

i kjTiYAVF ...1,...1| === } 

Algorithm B2D-OPT Training ends. 
 
The corresponding recognition algorithm is as trivial as follows. 

Algorithm:  B2D-OPT Recognition   

Input:   Test image, I (m x n) 

   Knowledge base, F,  
Optimal projection axes: Y, 

                    Optimal projection axes: V  

Output:  Class label of I 

    Procedure: 

1. Obtain the feature matrix |I of the input image I using Y and V, 

YIVI T=| . 

2. Find q
pF such that 

( )i
j

i
q
p kjTiFIFI ...1,...1,minarg

2

|

2

| ==∀−=− , 

where 
2

⋅  denotes Euclidean distance. 

3. Classify the test image I as a member of pth class. 

Algorithm B2D-OPT Recognition ends. 

4   Experimental Results 

Experiments on COIL dataset: In this section, we present several experiments 
conducted to demonstrate the performance of the proposed method for object 
recognition. We performed all experiments on the standard set of images, COIL-20 
[http://www1.cs.columbia.edu/CAVE/research/softlib/coil-20.html] which is used by 
many researchers as a bench mark dataset to verify the validity of their proposed 
object recognition models. Each object is represented in the database by 72 views 
obtained by rotating the object in 5o intervals (1440 views in total).  

We have conducted a series of experiments to compare the performances of the 
2D-OPT, the alternate 2D-OPT, the B2D-OPT and the standard PCA (1D-PCA) [7] 
methods with varying number of training views. More specifically, we have 
considered alternate views and tested with the remaining views. Similarly, we have 
conducted experiments considering 480, 360, 240, 160 and 120 views as training 
views of the COIL-20 database choosing 24, 18, 12, 8 and 6 views respectively from 
each object and the recognition performances have been obtained considering the 
remaining views as test views. The computing time taken by each method (1D-PCA 
[7], 2D-OPT, alternate 2D-OPT and B2D-OPT) during feature extraction for different 
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training samples is given in Table-1. Table-1 also summarizes the recognition 
accuracy of each method. It should be noticed that the 2D-OPT method and its 
variants consume less time when compared to 1D-PCA method for feature extraction 
and in addition, they have relatively higher recognition rate. As the number of training 
samples per object set is increased, the relative gain among the 2D-OPT, alternate 2D-
OPT, the B2D-OPT and the 1D-PCA becomes more apparent. Figures 2(a), 2(b), 2(c), 
and 2(d) show respectively the recognition performance of the 1D-PCA, the 2D-OPT, 
the alternate 2D-OPT and the B2D-OPT methods with varying number of dimensions 
of feature vector with varying number of training samples. This experiment is 
conducted to reveal the superiority of the proposed approach over a well accepted 
method (Murase and Nayar [7]) for 3D object recognition. 

   
(a) (b) 

Fig. 2. Recognition performance with varying number of training samples and varying number 
of principal components- (a) Standard PCA (1D-PCA); (b) 2D-OPT; (c) Alternate 2D-OPT; (d) 
B2D-OPT, on COIL-20 database 

Table 1. Object recognition performance of 1D-PCA, 2D-OPT, alternate 2D-OPT and  
B2D-OPT 

Computing time for feature extraction  
(in secs.) 

Percentage of recognition No.of 
views 
used 

to 
train 

No. of 
views 
used 

to test 1D-
PCA  
(20-D 
PCs) 

2D-
OPT 
(128x10 
PCVs) 

Alterna
te 2D-
OPT 
(10x128 
PCVs) 

B2D-
OPT 
(10x10 
PCVs) 

1D-
PCA 
(20-D 
PCVs) 

2D-
OPT 
(128x10 
PCVs) 

Alternat
e 2D-
OPT 
(10x128 
PCVs) 

B2D-
OPT 
(10x10 
PCVs) 

720 720 4080.68 72.578 72.453 67.921 100 100 100 100 

480 960 1091.33 48.812 47.296 47.218 99.27 99.79 99.90 100 

360 1080 167.98 35.468 35.359 34.421 96.48 99.26 98.98 99.35 

240 1200 58.906 23.609 23.765 24.015 94.50 97.42 97.58 98.00 
160 1280 35.953 16.281 16.375 17.468 90.86 94.92 94.22 95.08 

120 1320 28.766 12.375 12.671 13.609 86.67 90.23 90.83 91.67 
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Experiments on AT&T dataset: We have also conducted experiments on the 
standard AT&T face database [http://www.uk.research.att.com/facedatabase.html] in 
order to corroborate the success of the proposed methodology even for face 
recognition. This face database contains images from 40 individuals, each providing 
10 different images of size 112x92. In our experiment, we have considered alternate 
five samples per class during training and the remaining samples for testing. The 
recognition performances of the methods 2D-PCA [15], Generalized 2D-CPA [4], 
2D-OPT, alternate 2D-OPT and B2D-OPT with varying dimension of feature vectors 
are given in Fig. 3. The running times of 2D-PCA [15], Generalized 2D-PCA [4], 2D-
OPT, alternate 2D-OPT and B2D-OPT with varying dimension of feature vectors are 
given in Fig. 4. Table-2 gives a comparative analysis of the methods [4, 15] with 
respect to their running times and dimension of feature vectors. It can be observed 
from Table-2 that the proposed 2D-OPT and alternate 2D-OPT have better 
recognition rate with least running time when compared to the 2D-PCA method. The 
proposed B2D-OPT method achieves the best recognition rate with reduced 
dimension of feature vector among all the approaches. Nevertheless, it has relatively 
better running time. 

   
                                                 (c)    (d) 

Fig. 3. Contd. 

    

Fig. 4. Recognition performance of different approaches with varying dimension of feature 
vectors on AT&T face database 
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Table 2. Running times, Dimension of feature vectors and Recognition rate 

Method Running time 
(in secs.) 

Dimension 
of feature 

vector 

Best 
Recognition 

rate (%) 

2DPCA [15] 5.265 112x9 97.25 

Generalized 2DPCA [4] 2.719 6x6 97.75 

2D-OPT (Proposed method) 3.766 112x4 97.75 

Alternate 2D-OPT (Proposed 

method) 

3.812 92x5 98.00 

B2D-OPT (Proposed method) 2.703 5x5 98.25 

      

Fig. 5. Running time of different approaches with varying dimension of feature vectors on 
AT&T face database 

5   Conclusions 

In this paper, an efficient appearance based object representation and recognition 
method called 2D-OPT and its variants are introduced. The major advantage of the 
proposed method, B2D-OPT, is that it requires fewer coefficients for object/face 
image representation unlike the standard PCA/2D-PCA as it works simultaneously on 
both row and column directions. Experimental results reveal that the proposed 
approach is relatively faster and has better recognition rate when compared to the 
other standard approaches available in the literature for 3D object recognition and 
face recognition, and, hence, is suitable for real-time recognition applications. 
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