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Abstract. This paper presents a novel approach to construct an eigen
space representation from limited number of views, which is equivalent
to the one obtained from large number of images captured from multiple
view points. This procedure implicitly incorporates a novel view synthesis
algorithm in the eigen space construction process. Inherent information
in an appearance representation is enhanced using geometric computa-
tions. We experimentally verify the performance for orthographic, affine
and projective camera models. Recognition results on the COIL and
SOIL image database are promising.

1 Introduction

Recognition is an active area of research in computer vision. The problem of
view-independent object recognition has received considerable amount of atten-
tion in recent years [1,2,3,4,5]. Recognition techniques can be broadly classi-
fied into (a) Shape representation based and (b) Appearance based techniques.
Shape representation based techniques are popular for specific categories of ap-
plications, where the object’s structure is more important than the intensity in-
formation within its boundaries. Plenoptic function captures object appearance
across views and allows to completely model an object. However, estimation of
this appearance representation is not a viable intermediate step in recognition.
A popular alternative is to model the subspace that will contain all views of
the object. Appearance based matching techniques attempt to model this space.
Since images are bulky in nature, dimensionality reduction is usually sought to
reduce the complexity of the appearance based representation. One of the very
popular approaches for this purpose is the eigen image representation [5,6].

Following the successful application of Eigen spaces for face recognition [6], a
real-time system [5] was built to recognize hundred objects imaged from multiple
view points. This system employed parametric hypersurfaces constructed in the
eigenspace, to model the appearance of the objects in different views. View
based models are built from a large number of training images in [7]. Correlation
between views of an object is exploited to construct the appearance models.
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Performance and applicability of these systems is often limited by the number
of views. With reduction in number of views, the parametric representations
also become poorer approximations of the real appearance models. A direct
method to address this problem is to capture or synthesize additional views
of the object and construct the appearance model from these images. When
an object is viewed with multiple cameras, there holds some constraints in the
geometry of the views [8] which allows the synthesis of novel views.

This paper presents a new approach to solve the view-independent recognition
problem from limited number of views. We construct an eigen space, from a
limited number views, equivalent to the one obtained from a large number of
views. We show that these two are mathematically equivalent, except for the
occluded pixels. The following sections have been written with the emphasis on
linear Principal Component Analysis (PCA) but it may be extended to nonlinear
techniques like Kernel PCA. Note that the output of the proposed technique is a
data matrix of new views interpolated in the pose space. A linear PCA, Kernel
PCA and many other nonlinear Component Analyses can equally well be applied
over this data matrix.

The rest of the paper is organized as follows. Section 2 revisits Principal
Component Analysis and introduces the notation used. Section 3 describes the
details of the eigen space construction process in the proposed scheme for simple
case of orthographic camera projection model. Section 4 discusses its extension
to other camera projection models and application to object recognition. In
Section 5, we demonstrate that the eigen space constructed from limited views
practically approximates the ideal one for orthographic, affine and projective
camera models. Performance of recognition is verified on a set of synthetic images
and images from the COIL [9] and SOIL [10] databases.

2 Eigen Images for Representation

Eigen space representation is very popular for compression [11] and recogni-
tion [5,6]. Eigen space compactly represents the appearance in the presence of
variations in instantiation of the object, say human face, due to pose or illumi-
nation [6]. A new set of bases vectors (eigenvectors of the covariance matrix)
along the direction of maximal variance is employed to build the representation.
The decorrelation of features achieved by PCA, allows discarding of features that
contribute less to the content of an image, without significant loss of information.

Given a set of images {I1, I2, . . . , IP }, each of size N = h×w, the eigen space
is obtained as follows: Each image is arranged as a vector by concatenating the
pixels in row order. The image vectors are normalized by subtracting the mean
vector from each of the images, i.e., ˜Ii = Ii − μ where μ = 1

P

∑P
i=1 Ii. These

normalized images are arranged to form a data matrix A of dimensions N × P .

A =
[

˜I1
˜I2 . . . ˜IP

]

(1)

The matrix A is multiplied with its transpose, AT , to yield the scaled version of
the covariance matrix Σ. Eigenvectors corresponding to the larger eigenvalues
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Fig. 1. Three different methods to construct Eigenspace representation. Popular
method (a) capture multiple images of the object under different pose. We propose
two alternate methods for eigen space construction. Method (b) constructs eigen space
by synthesis of many additional images. Method (c) does the same without explicit
synthesis of novel views from two views of an object.

act as the basis vectors for the new representation. If the images are not mean
centered, we will get a correlation matrix whose eigenvectors are directly related
to those of Σ.

To build a view-independent recognition system, a large number of images of
an object is needed and the eigenspace is typically constructed [5] from these im-
ages. We propose two alternate schemes for constructing high resolution appear-
ance space from limited number of input images. Recent advances in multiview
geometry [8] permit us to interpolate or extrapolate from two input views I1

and I2 to obtain new views I3, . . . , IP . Incorporation of the geometric informa-
tion into the appearance representation adds the otherwise missing information,
which could not be obtained from limited number of images. We propose to
construct the eigen space from a set including the synthesized ones. On a closer
look, synthesis of novel views seems to be a redundant step in the construction
of the eigen space. In the next section, we demonstrate that without the in-
termediate views, one could directly construct the eigen space and hence carry
out recognition from limited views. A conceptual explanation of these alternate
procedures is presented in Fig. 1. Although appearance of objects from multiple
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views can be learnt with method (a) (Fig. 1); it generally requires sophisticated
camera(s) and/or light(s) setup. There are a good number of scenarios (for ex-
ample surveillance) where such freedom is unavailable. Hence there is a need for
techniques such as proposed in this paper; which can build a denser eigenspace
with limited available views in a computationally efficient manner.

3 Eigenspace Construction for Orthographic Cameras

We start with a simple case, where two orthographic cameras related by a Y -axis
rotation provides the input. Let I1 and I2 be the input images of size h × w. If
x1 and x2 are x-coordinates of corresponding points in the two images, then the
corresponding point x3 in a third (novel) image I3 is given by (see [12])

x3 = ax1 + bx2, (2)

where a and b depend on the translation and rotation that the camera undergoes
to image I1, I2 and I3. The y-coordinate remains the same. Note that it is the
coordinates of the corresponding points, which are linearly related, and this does
not directly imply anything on the eigenspace constructed from the intensity
values. More over, since a and b can be fractional values, x3 need not be an
integer. The intensity at a point in the novel view can be expressed as a linear
combination of intensities in its neighborhood, which can be computed from the
original image.

Let GT
j =

[

I1(j, 1), I1(j, 2), . . . I1(j, w)
]

denote the intensity values in row j of
image I1. If Cl

j =
[

y1 y2 . . . yw

]

represents a vector of interpolation coefficients
for the lth pixel in the jth row, then the intensity at any point in row j can be
expressed as

I3(j, l) =
w

∑

k=1

I1(j, k) · yk = GT
j · Cl

j (3)

Let (xk1 , j), (xk2 , j) and (xk3 , j) be corresponding points in I1, I2 and the novel
view I3. These are related by Equation (2). To synthesize the digital image,
we need to interpolate from the synthesized real coordinates. The point (xk3 , j)
contributes to the intensity of I3(l, j) only if the distance between the two points
is less than one unit on the integer grid. The contribution varies inversely with
distance. Thus the element yk, 1 ≤ k ≤ w is given by

1 − dist if dist < 1
0 if dist ≥ 1 , (4)

where dist = |aix1k + bix2k − l|. The interpolation vector Cl
j is determined for

each pixel in the novel view. Then, the product GT
j Cl

j is computed for each point
(j, l) in the novel view. These products are arranged to obtain the vector form
of the novel view I3. Hence the novel view I3 is given as

[

GT
1 C1

1 . . . GT
1 Cw

1 . . . GT
h C1

h . . . GT
h Cw

h

]T

= G [

C1
1 . . . Cw

1 . . . C1
h . . . Cw

h

]T
= GC3,
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where G is a hw×hw2 matrix obtained by appropriately arranging the Gi’s and
C3 is a hw2×1 vector obtained by column order concatenation of Cl

j ’s. Each row
of G can be considered as the concatenation of hw vectors of size w × 1. In each
row, hw − 1 of these hw vectors are zero. The remaining vector is assigned the
value of Gj . It may be noted that G is highly sparse and the non-zero elements
can be efficiently computed.

Novel views can also be generated in a similar manner for different placements
of the camera and the corresponding values of a and b. A new variable i is
introduced into the notation of the interpolation vector Cl

j to index the novel
views. Thus, the view Ii is synthesized using the interpolation vector Cl

ij as

G [

C1
i1 . . . Cw

i1 . . . C1
ih . . . Cw

ih

]

= GCi (5)

Eigen space representation of the set of images involves computation of eigen-
vectors of AAT as explained in Section 2. The data matrix A is rearranged as
product of two matrices,

A = [I1, I2, . . . IP ] = G[C1C2 . . .CP ] = GC (6)

where C is obtained by arranging C1, . . . , CP as columns of a matrix. Even though
the dimension of these two matrices are huge, the number of operations required
to compute the product is small. This is so because both G and C are highly
sparse.

Since we are considering camera rotation around one axis, let α and θ be the
angles between the camera plane for generating I2 and I3 from that of I1. Given
these angles, Ullman and Basri [12] show that

a =
sin(α − θ)

sin(α)
and b =

sin(θ)
sin(α)

. (7)

Given the two input views I1 and I2, and the angle α, a and b are computed for
different values of θ using Equation (7). The choice of resolution of θ depends on
the tradeoff between density of eigenspace needed and the computational effort
needed. Let the value of a and b corresponding to θ = θi be denoted by ai and
bi respectively. For each pair (ai, bi), Cl

ij is computed for each pixel in the novel
image using Equation (4). From the intensity values of the images and Cl

ij , the
matrices G and C are generated and then the eigenvectors corresponding to A
are computed as explained above.

4 Extension to Other Camera Models

Affine Camera The process of construction of eigen space for an object imaged
with an affine camera is similar to an object imaged with an orthographic camera.
The difference is in the determination of the constants a and b, which is done as
follows. We assume that the world is imaged with an affine camera P1 to generate
image I1. The world is imaged again after transforming P1 with a transformation
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T1, which is rotation by an angle α, to yield I2. For a given θ, we compute T2,
the rotation matrix about Y-axis by θ. Now we assume the world is imaged after
P1 is transformed by T2 to yield I3. Since Equation (2) holds for corresponding
points in the three views, we obtain a system of equations in terms of a, b, P1,
T1 and T2. These system of equations can be solved to obtain the values of a
and b. Using this procedure, ai’s and bi’s are generated and the remaining steps
are followed as for an orthographic camera.

Perspective Camera. The novel view synthesis with general perspective cameras
has been explored in [13]. In this technique, trilinear relationships between two
views are created and then a tensorial operator is used to create the tensor
relating the desired and two initial views. This tensor (say αij

k ) is later used to
get the coordinates of a point in new views using the coordinates in the initial
view. The relation used is as follows

x′′ =
x′α31

i pi − α11
i pi

α13pi − x′α33
i pi

, y′′ =
y′α32

i pi − α12
i pi

α13pi − y′α33
i pi

.

This relation can be used to modify dist as dist =
√

(x′′ − x)2 + (y′′ − y)2,
where x′′ and y′′ are given by above equations. Note that in this case, since
the y-coordinate changes as well, the process for creating one pixel would be
modified to include the whole image (as raster scanned row vector), instead of
just one row as earlier. This would also result in an increase in the coefficient
vector of one pixel. This coefficient vector would correspondingly be of hw × 1
size as well. The rest of the process of stacking up pixel to build G and C matrices
remains the same except for the above change. In this case, the dimensionality
of G and C would also increase to hw×h2w2 and h2w2×n respectively. However
the matrices are still highly sparse and their product can be computed efficiently.
It should be noted that perspective novel view synthesis (NVS) relationship is
general and is applicable for general motion and not just y-axis rotation as in
the previous cases.

4.1 Eigenspace Construction from More Than Two Views

If there are more than two views, even then the eigenspace can be constructed
with minor modifications to the algorithm described above. Let there be m views
of an object, I1 . . . Im, imaged with an orthographic or affine camera. We will get
(m−1) pairs of consecutive views. Also, let αn be the angle between the camera
plane for In and In+1 , 1 ≤ n ≤ m − 1. For every pair of consecutive views, the
matrices G and C are computed. For the nth pair of consecutive views, let these
be denoted by Gn and Cn. The data matrix A will be defined as

A = [G1C1 . . .Gm−1Cm−1] = G1[C1,
G2

G1
C2 . . .

Gm−1

G1
Cm−1]

= G1[C1, ˜C2 . . . ˜Cm−1] = GC.

Since we want to express the data matrix as the product of two matrices, G and
C, G1 is brought out as a common factor. After bringing out G1 as the common
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factor, we get GnCn = G1
˜Cn. To compute ˜Cn, we multiply with the pseudo-

transpose of G1 on both sides of the above equation and compute the matrix ˜Cn.
Having arranged A as a product of the matrices G and C, the eigenvectors are
computed.

4.2 Application to Object Recognition

Suppose there are m objects, that need to be recognized. Also, assume there are
at least two views for each object and the angle by which the camera has been
rotated for each pair of consecutive views is known. For the nth object, Gn and
Cn, are computed, 1 ≤ n ≤ m. The data matrix A is arranged as a product of
C and G, by arranging all the Gn and Cn, 1 ≤ n ≤ m, and then performing the
necessary transformations. The eigen subspace for A is constructed by computing
its eigenvectors and discarding eigenvectors corresponding to lower eigenvalues.
Recognition is performed by projecting a test sample into this space and then
classifying.

5 Results and Discussions

To analyze the performance of the proposed formulation, we have considered
synthetic and real-images. Synthetic models allow us to conduct the experiments
in a controlled manner to systematically study the performance. Real-images are
taken from Columbia Object Image Library(COIL) [9] and Surrey Object Image
Library (SOIL) [10].

In all the experiments, eigen space is created using the method described in the
previous section. Though the eigen space can be constructed from any arbitrary
views, for better analysis and understanding, we use input images from cameras
rotated around Y axis and separated by α (explained later). We then construct
eigen space corresponding to images at θ from the first input image. For example,
θ may take values ranging from −20◦ to +20◦ at increments of 1◦. This means
that the eigen space is created for a 40◦ view cone with a resolution restricted
by the 1◦ difference between consecutive views.

5.1 Synthetic Models

The proposed scheme is useful when a reasonably accurate eigenspace is required
when there are few input images available for each object. We conducted exper-
iments with synthetic models to test the accuracy of the eigenspace built with
the proposed method. We used the eigenspace for recognition problem. Five
synthetic objects shown in Fig. 2 (i):(a-e) are considered. These models(O1-O5),
were imaged by rotating the camera around the object about the Y-axis. Out
of these, two images were taken for construction of the eigen space. From these
two images an eigen space corresponding to the images in the range −20 to +20
from the first image (out of these two) is constructed. We found that even in the
presence of similar objects (Fig. 2(i):(c) and (d)), the eigenspace constructed as
per the proposed scheme gives 100% accuracy for a variety of cases (illustrated
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α N O1 O2 O3 O4 O5 Total(%)

5o 2 100 100 100 100 100 100
10o 2 100 100 100 100 100 100
15o 2 100 100 100 100 96.66 99.33
20o 2 100 100 100 82.22 100 96.44
30o 2 100 100 91.11 77.77 100 93.77
20o 3 100 100 100 100 100 100
30o 3 100 100 100 100 100 100

(i) (ii)

Fig. 2. (i): The first row (a-e) shows the five synthetic models considered for the exper-
iment. Second row (f-j) shows the novel views of the Policeman(object 1) corresponding
to the eigen space representation constructed. Final row (k-o) shows the images which
a real-camera could have seen. (ii) Recognition results on objects in (a). As the an-
gle between two views(α) is increased, there is a reduction in performance. But with
minimal additional views, this can be compensated. N is the number of views.

in Fig. 2 (ii) and explained in detail below). This experiment underlines the
accuracy and utility of the eigenspace created by the proposed scheme.

The test set contained 450 images, 90 images per object. The views ranged
from −450 to 44o at steps of 1o. These images were obtained by explicitly rotating
the camera and capturing the views thus obtained. These test images (Fig. 2(k
- o)), in fact, deviate from the synthesized images for the same angle(Fig. 2(f -
j)). The test set was projected into the eigenspace and classified using a Nearest
Neighbor algorithm. Eigen space is spanned by 15 eigen vectors corresponding to
the largest eigen values. The recognition accuracy was equal to or near 100% for
the various values of α. The results of some experiments on this set are provided
in Table 2. When α is increased to 30◦, the accuracy is found to be above 90%
with only two views. When three views were used, 100% accuracy was achieved.

This experiment indicates that for large α the accuracy can be further im-
proved by using additional views. The eigenspace created by using more number
of seed views provides a better estimation of the true eigenspace. Although the
accuracy with two seed views is high, additional views can be used to improve
the performance to suit practical applications.

Interpolated eigenspace Vs Sparse eigenspace. The motivation behind the current
work is to capture the information contained in views from different orientation
by doing Novel View Synthesis (NVS). In many real life applications very few
images per object are available. NVS allows creation of a denser set of images
from a relatively sparse set. Intuitively such an interpolated eigenspace (created
by NVS) would be closer to the actual eigenspace of an image (which could
be created by exhaustively taking images at various orientation). We validated
this intuition by considering a 3D Face model (see Fig. 3 (a)). We considered 48
equally spaced images of this 3D Face model by moving the camera around the
model from −60◦ to +60◦. It can be assumed that these 48 images make up the
true eigenspace of this object. N (∈ {4, 6, 8, 12, 16, 24}) equally spaced images
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Fig. 3. (a) Few images of the 3D Face model used to compare the sparse eigenspace
with interpolated eigenspace. (b) A comparison between the average re-construction
error per image for sparse eigenspace and interpolated eigenspace.

were selected from this set to create a sparse set of images. Each image was
segmented to a uniform size of 70× 60 pixels. We built an eigenspace limited to
this sparse set and calculated the average re-construction error for each of the 48
original images. We performed NVS on this sparse set and synthesized 25 × 48

N
new images between every pair of consecutive images in this sparse set. We cre-
ated an eigenspace with these images and calculated the re-construction error for
this interpolated eigenspace. In both cases top eigenvectors corresponding to en-
ergy factor k = 0.99 (k =

∑k
i σi/

∑T
i σi, where σis are the eigenvalues and T is

the total number of eigenvalues) were picked. For the intermediate set of N = 6
initial images the error with interpolated images was 534.4 while with sparse
eigenspace, it was 723.3. This error is over a total of 60 × 70 = 4200 pixels. In
Fig. 3 (b) more detailed comparison of the re-construction errors between sparse
and interpolated eigenspaces is shown. Clearly, the interpolated eigenspace rep-
resents the appearance of objects better than the sparse eigenspace.

5.2 Application to Recognition

We conducted recognition experiments on two datasets (e.g. COIL-20 [9], SOIL-
47 [10]) to show the applicability of the proposed eigenspace in the context of
object recognition. Good performance with recognition accuracy in the range of
> 90% was achieved.

Experiments on COIL images. We verified the performance of the proposed
scheme on COIL [9] images (Fig. 4 (a)). The Columbia Object Image Library was
developed for conducting experiments on object recognition [5]. This database
has been widely used by researchers for verification of object recognition al-
gorithms. This library provides images of objects rotated about the Y-axis at
intervals of 5◦.

The training set consisted of 180 images, with views ranging from −20o to
20o (inclusive) at steps of 5o. In fact, only two images per object are used for
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(a)

(b)

α 5 10 15 α 5 10 15 α 5 10 15

O1 100 100 100 O8 100 100 100 O15 100 84.21 73.68

O2 100 100 100 O9 100 89.47 84.21 O16 100 100 100

O3 100 100 100 O10 100 100 100 O17 89.47 100 100

O4 100 100 100 O11 100 100 100 O18 100 73.68 84.21

O5 73.68 100 100 O12 100 73.68 85.73 O19 100 100 100

O6 100 68.42 84.73 O13 94.74 100 89.47 O20 100 94.74 73.68

O7 100 84.21 52.63 O14 100 100 100 Total(%) 97.89 93.42 91.42

Fig. 4. (a)All COIL-20 Objects used for the recognition experiment. (b) Recognition
results on COIL images. With only two images, most of the images in 90◦ view cone can
be recognized with good accuracies. With minimal increase in the number of images,
100% accuracy is achieved. See text for details.

constructing the eigen space. i.e., in reality only 40 images were used to get an
effective representation, which we could have computed from all the 180. The
test set consisted of 380 images, 19 images for each object at increments of 5o

from −45o to 45o (inclusive). The results of the experiment on the real world
images are provided in Fig. 4 (b).

The recognition accuracy ranging from 88% to 95%, is achieved by using two
images per object. This outperforms the direct methods for recognition by ex-
plicitly constructing eigen spaces. Crowley [14] achieved around 90% recognition
from four views. Their results were verified only for a smaller view cone, com-
pared to that of ours. Additionally, we have exhaustively tested images beyond
the scope of the training images. i.e., even if we construct the eigen space for −20◦

to +20◦, applicability was verified for −45◦ to +45◦. In general, the proposed
method is found to give good results even for such test images. Additionally the
recognition accuracy is found to improve if the number of initial seed images is
increased.

Experiments on SOIL images. The Surrey Object Image Library (SOIL [10])
consists of 25 planar and 22 complex shaped objects (some of which are shown in
Fig. 5 (a)). This dataset is also widely used for testing recognition performance
in literature along with COIL-20. There are 2 sets, SOIL-47A and SOIL-47B
which differ in overall illumination. We conducted our experiments on SOIL-47A.
There are 20 images per object taken at approximately 9◦ intervals spanning
180◦.

We considered 2 images of all 47 objects in the 90◦ middle sector. Here we
varied initial angle α as 9◦ and 18◦ and generated 18 (2α, α = 9) and 36(2α, α =
18) images respectively per object, separated at 1◦ intervals spanning the central
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(a)

(b)

α 9 18 α 9 18 α 9 18 α 9 18

O1 83.66 83.66 O13 100 83.33 O25 100 83.33 O37 100 100

O2 66.67 66.67 O14 83.33 100 O26 100 100 O38 100 100

O3 100 83.33 O15 100 83.33 O27 100 100 O39 100 100

O4 100 100 O16 66.67 83.33 O28 66.67 83.33 O40 100 100

O5 100 100 O17 100 83.33 O29 100 100 O41 100 100

O6 66.67 83.33 O18 83.33 83.33 O30 100 100 O42 100 100

O7 83.33 66.67 O19 100 100 O31 100 100 O43 66.67 83.33

O8 100 83.33 O20 83.33 83.33 O32 100 100 O44 100 100

O9 100 100 O21 83.33 66.67 O33 100 100 O45 100 100

O10 83.33 66.67 O22 83.33 83.33 O34 66.67 83.33 O46 100 100

O11 66.67 100 O23 83.33 83.33 O35 66.67 83.33 O47 100 100

O12 83.33 100 O24 100 83.33 O36 100 100 Total(%) 90.43 90.07

Fig. 5. (a) Few images taken from the SOIL-47 database. (b) Recognition results on
SOIL-47 images. With only two images, most of the images in the 90◦ cone are recog-
nized. See text for details.

2α section. These (47 × 18 = 846, 47 × 36 = 1692) images were taken as the
training set. The testing set consisted of images in the range −2α to 2α (5 and 7
images respectively per object for 47 objects). Recognition accuracies above 90%
validate the use of the proposed technique. More detailed results are in Fig. 5
(b). The recognition experiments show that the eigenspace estimated from view
in a limited range can be used to recognize the views outside the range. It is
evident that the multi-view relationships can be used to enhance appearance
models to enable view independent recognition of objects.

6 Conclusion

The major contribution of this work is in construction of eigenspace from lim-
ited number of views. The algorithms proposed for the construction of eigenspace
involve matrices that are very sparse. Efficient algorithms for performing oper-
ations on sparse matrices are used for implementation. A detailed analysis of
the computational complexity of these algorithms is beyond the scope of the
current work. The reconstruction error per pixel for various camera models are
found to be less than 1%, validating the correctness of eigenspace construction
process. Further, the recognition experiments conducted on both synthetic and
real world data ascertain that the approach presented can be used to build
view independent recognition systems. Future work would focus on the appli-
cability of this for accurate pose estimation from limited views for deformable
objects.
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