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Abstract. Signature verification is a common task in forensic document
analysis. It is one of determining whether a questioned signature matches
known signature samples. From the viewpoint of automating the task it
can be viewed as one that involves machine learning from a population
of signatures. There are two types of learning to be accomplished. In
the first, the training set consists of genuines and forgeries from a gen-
eral population. In the second there are genuine signatures in a given
case. The two learning tasks are called person-independent (or general)
learning and person-dependent (or special) learning. General learning
is from a population of genuine and forged signatures of several indi-
viduals, where the differences between genuines and forgeries across all
individuals are learnt. The general learning model allows a questioned
signature to be compared to a single genuine signature. In special learn-
ing, a person’s signature is learnt from multiple samples of only that
person’s signature– where within-person similarities are learnt. When a
sufficient number of samples are available, special learning performs bet-
ter than general learning (5% higher accuracy). With special learning,
verification accuracy increases with the number of samples.

Keywords: machine learning, forensic signature examination, biomet-
rics, signature verification, digital document processing.

1 Introduction

The most common task in the field of forensic document analysis [1, 2, 3, 4, 5]
is that of authenticating signatures. The problem most frequently brought to a
document examiner is the question relating to the authenticity of a signature:
Does this questioned signature (Q) match the known, true signatures (K) of this
subject? [6] A forensic document examiner– also known as a questioned docu-
ment (QD) examiner–uses years of training in examining signatures in making
a decision in case work.

The training of a document examiner involves years of learning from signa-
tures that are both genuine and forged. In case-work, exemplars are usually
only available for genuine signatures of a particular individual, from which the
characteristics of the genuine signature are learnt.

Algorithms for visual signature verification are considered in this paper. The
performance task of signature verification is one of determining whether a ques-
tioned signature is genuine or not.
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Visual signature verification is naturally formulated as a machine learning
task. A program is said to exhibit machine learning capability in performing a
task if it is able to learn from exemplars, improve as the number of exemplars in-
crease, etc. [7]. Paralleling the learning tasks of the human questioned document
examiner, the machine learning tasks can be stated as general learning (which
is person-independent) or special learning (which is person-dependent) [8].

In the case of general learning the goal is to learn from a large population
of genuine and forged signature samples. The focus is on differentiating be-
tween genuine-genuine differences and genuine-forgery differences. The learning
problem is stated as learning a two-class classification problem where the input
consists of the difference between a pair of signatures. The verification task is
performed by comparing the questioned signature against each known signature.
The general learning problem can be viewed as one where learning takes place
with near misses as counter-examples [9].

Special learning focuses on learning from genuine samples of a particular per-
son. The focus is on learning the differences between members of the class of
genuines. The verification task is essentially a one-class problem of determining
whether the questioned signature belongs to that class or not.

There is scattered literature on automatic methods of signature verification
[10, 11, 12, 13, 14]. Automatic methods of writer verification– which is the task
of determining whether a sample of handwriting, not necessarily a signature,
was written by a given individual– are also relevant [15]. Identification is the
task of determining as to who among a given set of individuals might have
written the questioned writing. The handwriting verification and identification
tasks parallel those of biometric verification and identification for which there
is a large literature. The use of a machine learning paradigm for biometrics has
been proposed recently [16].

The rest of this paper is organized as follows. Section 2 describes feature ex-
traction in general. Section 3 describes the two methods of learning. Section 4
deals with how the learnt knowledge is used in evaluating a questioned signature
(called the performance task). A comparison of the accuracies of the two strate-
gies on a database of genuines and forgeries, along with the particular feature
description is described in Section 5. Section 6 is a paper summary.

2 Feature Extraction and Similarity Computation

Signatures are relied upon for identification due to the fact that each person
develops unique habits of pen movement which serve to represent his or her
signature. Thus at the heart of any automatic signature verification system are
two algorithms: one for extracting features and the other for determining the
similarities of two signatures based on the features. Features are elements that
capture the uniqueness. In the QD literature such elements are termed discrim-
inating elements or elements of comparison. A given person’s samples can have
a (possibly variable) number of elements and the combination of elements have
greater discriminating power.
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A human document examiner uses a chart of elemental characteristics [6]. Such
elements are ticks, smoothness of curves, smoothness of pressure changes, place-
ment, expansion and spacing, top of writing, base of writing, angulation/slant,
overall pressure, pressure change patterns, gross forms, variations, connective
forms and micro-forms. Using the elemental characteristics such as speed, pro-
portion, pressure and design are determined. These in turn allow rhythm and
form and their balance are determined.

Automatic signature verification methods described in the literature use an en-
tirely different set of features. Some are based on image texture such as wavelets
while others focus on geometry and topology of the signature image. Types of fea-
tures used for signature verification are wavelet descriptors [17], projection distri-
bution functions [18,14,19], extended shadowcode [18] and geometric features [20].

The features are considered representative characteristics of the signature. In
order to compare two signatures and to quantify their similarity, a similarity
measure or a distance measure is used to compute a score that signifies the
strength of match between the features of the two samples. Eventually, irrespec-
tive of the method used, one can arrive at a distance space representation of
the data that characterizes the strength of match between two signatures. It is
usefull to note here that, the learning strategies that ensue are general and are
applicable not just to signature veriication but to any bio-metric. As long, as
there exist a similarity measure that maps the feature values between a pair of
samples, to a score, the below mentioned learning strategies can be used. The
particular set of features used for signature verification are described in detail
in the experiment and result section 5.

3 Learning Strategies

Person-independent or general learning is a one-step approach that learns from
a large population of genuine and forged samples. On the other hand person-
dependent(person specific) learning focuses on learning from the genuine samples
of a specific individual.

3.1 Person-Independent (General) Learning

The general learning approach uses two sets of signature pairs: genuine-genuine
and genuine-forgery. Forgeries in forensic document examination can be either
simulated or traced. In this sense task is analogous to learning from near misses
in the machine learning literature.

Features are extracted for each pair of signatures and a similarity measure
is used to compute the distance between each pair. Let DS denote the vector
of distances between all pairs in set one, which represents the distribution of
distances when samples truly came from the same person. Similarly let DD

denote the vector of distances between all pairs in set two, which represents
the distribution of distances when samples truly came from different persons.
These distributions can be modeled using known distributions such as Gaussian
or gamma. The Gaussian assigns non-zero probabilities to negative values of



764 H. Srinivasan, S.N. Srihari, and M.J. Beal

distance although such values are never encountered. Since this problem in not
there with the gamma it is to be preferred. The probability density function of
the gamma distributions is as follows: Gamma(x) = xα−1 exp(−x/β)

(Γ (α))βα Here α and
β are gamma parameters which can be evaluated from the mean and variance
as follows α = μ2/σ2 and β = σ2/μ. ‘α’ is called the shape parameter and ‘β’
is the scale parameter. The parameters that need to be learnt for such a model
are typically derived from the sufficient statistics of the distribution, and are
namely μ (mean) and σ (variance) for a Gaussian, or α (shape) and β (width)
for a gamma. These distributions are referred to as genuine-genuine and genuine-
impostor distributions in the domain of biometrics.

3.2 Person-Dependent Learning (Person Specific Learning)

In questioned document case work there are typically multiple genuine signatures
available. They can be used to learn the variation across them– so as to determine
whether the questioned signature is within the range of variation. First, pairs of
known samples are compared using a similarity measure to obtain a distribution
over distances between features of samples — this represents the distribution of
the variation/similarities amongst samples — for the individual. The correspond-
ing classification method involves comparing the questioned sample against all
available known samples to obtain another distribution in distance space. The
Kolmogorov-Smirnov test, KL-divergence and other information-theoretic meth-
ods can be used to obtain a probability of similarity of the two distributions,
which is the probability of the questioned sample belonging to the ensemble of
knowns. These methods are discussed below.

Within-person distribution. If a given person has N samples,
(
N
2

)
defined

as N !
N !(N−r)! pairs of samples can be compared as shown in Figure 1. In each

comparison, the distance between the features is computed. This calculation
maps feature space to distance space. The result of all

(
N
2

)
comparisons is a

{(N
2

)×1} distance vector. This vector is the distribution in distance space for a
given person. For example, in the signature verification problem this vector is the
distribution in distance space for the ensemble of genuine known signatures for
that writer. A key advantage of mapping from feature space to distance space is
that the number of data points in the distribution is

(
N
2

)
as compared to N for a

distribution in feature space alone. Also the calculation of the distance between
every pair of samples gives a measure of the variation in samples for that writer.
In essence the distribution in distance space for a given known person captures
the similarities and variation amongst the samples for that person. Let N be the
total number of samples and NWD =

(
N
2

)
be the total number of comparisons

that can be made which also equals the length of the within-person distribution
vector. The within-person distribution can be written as

DW = (d1, d2, . . . , dNWD )� (1)

where � denotes the transpose operation and dj is the distance between the pair
of samples taken at the jth comparison, j ∈ {1, . . . , NWD}.
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Fig. 1. Person-dependent (special) learning involves comparing all possible genuine-
genuine pairs, as shown for four genuine samples, to form the vector DW , which in
this example is of length NWD =

�
4
2

�
= 6 comparisons

4 Performance Task

The performance task of signature verification is to answer the question whether
or not a questioned signature belongs to the genuine signature set. The person-
independent method uses knowledge from a general population to determine
whether two samples, one a questioned and the other a genuine, belong to the
same person. This task is called 1:1 verification. Person-dependent classification
tasks involves matching one questioned sample against multiple known samples
from the person. Details of the two performance algorithms are given below.

4.1 Person-Independent Classification

The process of 1 : 1 verification(one input sample compared with one known
sample) starts with feature extraction and then computing the distance d be-
tween the features using a similarity measure. From the learning described in
Section 3.1, the likelihood ratio defined as P (DS |d)

P (DD |d) can be calculated, where
P (DS |d) is the probability density function value under the DS distribution
at the distance d and P (DD|d) is the probability density function value un-
der the DD distribution at the distance d. If the likelihood ratio is greater
than 1, then the classification answer is that the two samples do belong the
same person and if the ratio is less than 1, they belong to different persons.
If there are a total of N known samples from a person, then for one ques-
tioned sample N , 1 : 1 verifications can be performed and the likelihood ratios
multiplied. In these circumstances it is convenient to deal with log likelihood-
ratios rather than with just likelihood ratios. The log-likelihood-ratio (LLR) is
given by log P (DS |d) − log P (DD|d). The decision of same-person is favored if
log P (DS |d) − log P (DD|d) > 0, and the decision of different-person chosen if
log P (DS |d)−logP (DD|d) < 0. When N of these 1 :1 verifications are performed
these LLR’s are summed and then the decision is taken.

4.2 Person-Dependent Classification

When multiple genuines are available then the within-person distribution is ob-
tained in accordance with equation 1. A questioned can be compared against
the ensemble of knowns for verification. The classification process consists of
two steps.
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(i) obtaining questioned vs known distribution; and
(ii) comparison of two distributions: questioned vs known distribution and

within-person distribution.

Questioned vs Known Distribution. In Section 3.2 and with equation 1 the
within-person distribution is obtained by comparing every possible pair of sam-
ples from within the given persons samples. Analogous to this, the questioned
sample can be compared with every one of the N knowns in a similar way to ob-
tain the questioned vs known distribution. The questioned vs known distribution
is given by

DQK = (d1, d2, . . . , dN )� , (2)

where dj is the distance between the questioned sample and the jth known
sample, j ∈ {1, . . . , N}.

Comparing Distributions. Once the two distributions are obtained, namely the
within-person distribution, denoted Dw (Section 3.2, equation 1), and the Ques-
tioned Vs Known distribution, DQK (Section 4.2, equation 2), the task now is to
compare the two distributions to obtain a probability of similarity. The intuition
is that if the questioned sample did indeed belong to the ensemble of the knowns,
then the two distributions must be the same (to within some sampling noise).
There are various ways of comparing two distributions and these are described
in the following sections.

Kolmogorov-Smirnov Test. The Kolmogorov-Smirnov (KS) test can be applied
to obtain a probability of similarity between two distributions. The KS test is
applicable to unbinned distributions that are functions of a single independent
variable, that is, to data sets where each data point can be associated with a
single number [21]. The test first obtains the cumulative distribution function of
each of the two distributions to be compared, and then computes the statistic,
D, which is a particularly simple measure: it is defined as the maximum value
of the absolute difference between the two cumulative distribution functions.
Therefore, if comparing two different cumulative distribution functions SN1(x)
and SN2(x), the KS statistic D is given by D = max−∞<x<∞ |SN1(x)−SN2(x)|.
The statistic D is then mapped to a probability of similarity, P , according to
equation 3

PKS = QKS

(√
Ne + 0.12 + (0.11/

√
Ne)D

)
, (3)

where the QKS(·) function is given by (see [21] for details):

QKS(λ) = 2
∞∑

j=1

(−1)j−1e−2j2λ2
, such that : QKS(0) = 1 , QKS(∞) = 0 , (4)

and Ne is the effective number of data points, Ne = N1N2(N1 + N2)−1, where
N1 is the number of data points in the first distribution and N2 the number
in the second. The following sections discuss other methods of comparing two
distributions.
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Kullback-Leibler Divergence and other methods. The Kullback-Leibler (KL) di-
vergence is a measure that can be used to compare two binned distributions. The
KL divergence measure between two distributions is measured in bits or nats. An
information theoretic interpretation is that it represents the average number of
bits that are wasted by encoding events from a distribution P with a code which
is optimal for a distribution Q (i.e. using codewords of length − log qi instead of
− log pi). Jensen’s inequality can be used to show that DKL = KL(P‖Q) ≥ 0
for all probability distributions P and Q, and DKL = KL(P‖Q) = 0 iff P = Q.
Strictly speaking, the KL measure is a divergence between distributions and
not a distance, since it is neither symmetric nor satisfies the triangle equality).
The KL divergence so obtained can be converted to represent a probability by
exp (−ζDKL) (for the sake of simplicity we set ζ = 1 in this article). If the di-
vergence DKL is 0, then the probability is 1 signifying that the two distributions
are the same. In order to use this method and other methods discussed in the
following sections it is first necessary to convert the two unbinned distributions
to binned distributions with a probability associated with each bin. The KL di-
vergence between two distributions is given in equation 5 below, where B is the
total number of bins, Pb and Qb are the probabilities of the bth bin of two distri-
butions respectively. PKL denotes the probability that the two distributions are
the same. Other related measures between distributions P and Q that we will
examine are given in equations 6, 7 and 8

Kullback-Leibler: DKL =
B∑

b=1

Pb log(
Pb

Qb
) PKL = e−ζDKL (5)

Reverse KL:DRKL = KL(Q‖P ) =
B∑

b=1

Qb log(
Qb

Pb
)PRKL = e−ζDRKL (6)

Symmetric KL: DHKL =
1
2
KL (P‖Q) +

1
2
KL (Q‖P ) =

DKL + DRKL

2
PHKL = e−ζDHKL

(7)

Jensen-Shannon KL: DJS =
1
2
KL

(
P

∥∥∥∥P + Q

2

)
+

1
2
KL

(
Q

∥∥∥∥P + Q

2

)
PJS = e−ζDJS

(8)

Combined KL and KS measure. A combination of the Kolmogorov-Smirnov and
Kullback-Leibler measure, denoted KLKS, has been found to outperform the
individual measures as will be analyzed in the performance evaluation section
following this. The method to combine is very simple and is obtained by aver-
aging the probabilities defined in equations 3 and 5.

PKLKS =
PKL + PKS

2
(9)
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5 Performance Evaluation

The particular set of features used for signature verification are mentioned below.

5.1 Multiresolution Features

A quasi-multiresolution approach for features are the Gradient, Structural and
Concavity, or GSC, features [22, 23]. Gradient features measure the local scale
characteristics (obtained from the two-dimensional gradient of the image), struc-
tural features measure the intermediate scale ones (representing strokes), and
concavity can measure the characteristics over the scale of whole image (rep-
resenting concavities and topology). Following this philosophy, three types of
feature maps are drawn and the corresponding local histograms of each cell is
quantized into binary features. Fig. 2(a) shows an example of a signature, which
has a 4x8 grid imposed on it for extracting GSC features; rows and columns of
the grid are drawn based on the black pixel distributions along the horizontal
and vertical directions. A large number of binary features have been extracted
from these, as shown in Fig. 2(b), which are global word shape features [24];
there are 1024 bits which are obtained by concatenating 384 gradient bits, 384
structural bits and 256 concavity bits.

(a) Variable size grid (b) 1024-bit binary feature vector

Fig. 2. Signature feature computation using a grid: (a) variable size 4x8 grid, and (b)
binary feature vector representing gradient, structural and concavity features

A similarity or distance measure is used to compute a score that signifies the
strength of match between two signatures. The similarity measure converts the
pairwise data from feature space to distance space.

Several similarity measures can be used with binary vectors, including the
well-known Hamming distance. Much experimentation with binary-valued GSC
features, has led to the correlation measure of distance as yielding the best
asccuracy in matching handwriting shapes [25]. It is defined as follows. Let Sij

(i, j ∈ {0, 1}) be the number of occurrences of matches with i in the first vector
and j in the second vector at the corresponding positions, the dissimilarity D
between the two feature vectors X and Y is given by the formula:
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D(X, Y ) =
1
2
− S11S00 − S10S01

2
√

(S10 + S11)(S01 + S00)(S11 + S01)(S00 + S10)

It can be observed that the range of D(X, Y ) has been normalized to [0, 1].
That is, when X = Y , D(X, Y ) = 0, and when they are completely different,
D(X, Y ) = 1.

A refined method to compute the features and obtain the distance values is
discussed in [26].

5.2 Experiments

A database of off-line signatures was prepared as a test-bed [13]. Each of 55
individuals contributed 24 signatures thereby creating 1320 genuine signatures.
Some were asked to forge three other writers’ signatures, eight times per subject,
thus creating 1320 forgeries. One example of each of 55 genuines are shown in
Figure 3. Ten examples of genuines of one subject (subject no. 21) and ten
forgeries of that subject are shown in Figure 4. Each signature was scanned at
300 dpi gray-scale and binarized using a gray-scale histogram. Salt pepper noise
removal and slant normalization were two steps involved in image preprocessing.
The database had 24 genuines and 24 forgeries available for each writer as in
Figure 4. For each test case a writer was chosen and N genuine samples of that
writer’s signature were used for learning. The remaining 24−N genuine samples
were used for testing. Also 24 forged signatures of this writer were used for
testing. Figure (Fig. 5) shows the image of a questioned signature is matched
against multiple images of known signatures in figure.

Fig. 3. Genuine signature samples Fig. 4. Samples for one writer: (a) gen-
uines and (b) forgeries

Two different error types can be defined for any biometric person identification
problem. False reject rate (Type 1) is the fraction of samples classified as not
belonging to the person when truly there were from that person. False acceptance
rate (Type 2) is the fraction of samples classified as belonging to the person when
truly the samples were not from that person. In the domain of signatures, Type
1 is the fraction of samples classified as forgeries when truly they were genuine
and Type 2 the fraction of samples classified as genuine when truly they were
forgeries.
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5.3 Person-Independent(General) Method

Fig. 5. Signature verification with mul-
tiple knowns

The classification decision boundary dis-
cussed in Section 4.1 is given by the
sign of the log likelihood-ratio, LLR,
log P (DS |d) − log P (DD|d). A modified
decision boundary can be constructed us-
ing a threshold α, such that log P (DS |d)−
log P (DD|d) > α. When α is varied, we
can plot ROC curves as shown in Figure 6.
The different subplots in the figure corre-
spond to the ROC curves as the number of known samples is increased from
5 to 20. For each plot, the total error rate defined as (False acceptance+False
reject)/2 is minimum at a particular value of α. This is the best setting of α
for the specified number of known samples, denoted the operating point, and is
indicated with an asterix ‘*’. When 20 samples are used for learning the error
rate is approximately 79%. Figure 7 shows the distribution of LLRs when the
questioned samples were genuine and when they were forgeries. A larger region
of overlap indicates a higher error rate.

5.4 Person-Dependent Method

The person-dependent classification discussed in Section 4.1 mentioned six dif-
ferent statistics for comparing the two distributions to obtain a probability of
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Fig. 6. ROC curves parameterized by α is varied. Each subplot is titled with the
number of knowns used for training and the optimum error rate that is possible. The
asterix ‘*’ denotes the optimal operating point α for that model.
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Fig. 7. LLR’s obtained from each test case plotted as histograms. The probability (y-
axis) that the LLR falls into a range of LLR values (x-axis) is shown for the results of
truly genuine (solid) and forgery cases (dotted). Each subplot corresponds to training
on a different number of knowns.

Table 1. Error rates for signature verification. Measures are Kolmogorov-Smirnov (KS),
Kullback-Leibler (KL), reverse KL (RKL), symmetrized KL (HKL), Jensen-Shannon
(JS), and combined KL and KS (KL and KS). These are graphed in Figure 8(a).

No. of Knowns KS KL RKL HKL JS KL and KS
5 25.88 24.70 25.61 24.96 25.26 23.87
6 23.54 25.10 25.40 24.57 24.60 22.52
7 22.71 23.35 23.83 23.57 23.31 21.54
8 21.67 23.76 24.60 23.58 23.39 21.20
9 22.17 23.31 24.01 23.03 23.03 20.94
10 21.36 21.93 22.79 21.94 21.63 20.58
11 19.27 20.74 20.96 20.28 20.18 19.02
12 21.13 20.96 21.71 20.42 20.10 19.58
13 20.14 21.73 20.81 21.25 20.78 19.72
14 19.06 20.03 20.84 19.46 19.33 18.41
15 18.28 18.88 19.15 18.10 17.76 17.32
16 19.27 19.08 20.08 18.50 18.38 17.56
17 17.37 17.28 17.36 16.68 16.43 16.07
18 17.79 17.88 18.31 17.58 17.52 17.17
19 17.39 18.09 18.42 17.75 17.37 16.97
20 17.31 17.15 18.58 16.90 17.23 16.40

match between the questioned sample and the ensemble of knowns. In order to
measure error rates for this classificaton technique, once again a decision needs
to be made based on the probability of whether or not the questioned sample
belongs to the ensemble of knowns. If the probability of match > α, then the de-
cision is in favour of the questioned signature to be genuine, and if the probability
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Fig. 8.

of match < α, the decision is in favor of a forgery (this α should not be confused
with that used in the person-independent method). By varying the parameter
α, once again ROC curves (False Accept vs. False Reject) can be plotted for
each of the six measures. The best setting of α is termed as the operating point.
This setting of α corresponds to the least total error rate possible. Note that the
ROC curves are plotted for the test data set and the operating point determined
on them. These test data set can be considered as a validation set that helps
to determine the operating point. In the curve, the operating point is the point
closest to the origin. Table 1 shows the least total error rate possible when dif-
ferent number of known samples were used for training for each of the 6 different
measures. Figure 8(a) shows the same table as a graph comparing the different
measures and it can be seen that the combined KL and KS measure performs
the best. The reason for this can be intutively explained by the fact that KS
statistic has low false accept rates whereas the KL statistic has low false reject
rates. The combination of these two in the KL and KS measure works the best.

Figure 8(b) shows how the operating point (best setting of α) varies with the
number of known samples used. It can be seen that in order to obtain the least
total error rate, the value of α changes with the number of knowns for certain
measures. The value of α explains a lot about what each statistic learns from
the known samples. For example, the high value of α for the KS statistic when
large numbers of known samples were used explains that the KS statistic focuses
on learning the variation amongst the known samples. Presence of large known
samples accounts for greater variation amongst them. Hence if KS focuses on
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Fig. 9. Error rates as the percentage of allowed rejected (no decision) cases increases.
The rejection rate is indirectly controlled by varying the β which assigns the probability
region 50 − β and 50 + β where no decisions are made and considered as rejects. The
different subplots show the plots for different number of knowns used for learning. We
have plotted only the trend for the combined KL and KS measure.

learning the variation, then almost every questioned sample ends up receiving
a high probability of match as the majority of questioned samples (genuines
and forgeries) invariably fall within the variation. Thus by setting a high value
of α the decision that a sample is truly genuine is made only if probability is
really high. In simple terms this means that when more samples are used for
training the KS statistic will declare a sample as genuine only if the probability
of match is really high. In contrast to this measure the KL measure captures the
similarities amongst the known samples a lot. This is evident by the low value of
α for large number of knowns. Presence of large number of samples accounts for
observing more similarities. The KL measure focuses on learning the similarities
amongst the samples and it returns a high probability of match very rarely and
only when every similarity that is learnt amongst the known samples is present
in the questioned sample. Hence the majority of questioned sample receive a
low probability of match by the KL measure. To counter this a low value of
α ensures that the KL measure will declare a sample as forgery only if the
probability of match is really low. Similar comments can be made about other
measures and it is important to note that those measures for which the operating
point does not vary with the number of knowns and those which are around the
50% mark can be a useful property. This basically shows that irrespective of the
number of knowns used for training, one can make a decision using the same
operating point, and also if the operating point is around the 50% mark there is
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an equal range of probabilties across which the two different decisions fall. And
it is also intuitive that the combined KL KS measure has this fine property. It
can be seen that the operating point for the combined KL and KS measure is
closest to the 50% mark amongst other measure and is also independent of the
number of known samples to some extent. Proceeding with the conclusion that
the combined KL KS measure has a few desired properties and also outperforms
other measures in terms total error rate, we can now consider allowing rejections
to reduce the error rates even further. Consider probabilities between .5−β and
.5+β for some β > 0 as the region for reject probabilities. No decision is made if
.5− β < Probability < .5 + β. This can significantly reduce the total error rate.
Figure 9 shows the total error rate as it the rejection percentage is changed by
changing the value of β. This analysis enables the operator to select a value of
β that will induce a certain rejection rate and in turn result in a certain desired
error rate. For example, in order to obtain a error rate of 10% with 20 knowns
in this data set one should set β to .15 and that accounts for 35% reject rate.
Similarly for an error rate of 5% for 20 knowns, β needs be set to .30 which
accounts for 62% reject rate.

6 Summary and Discussion

Automatic signature verification is a task where machine learning can be used as a
natural part of the process.Two different machine learning approaches, one involv-
ing genuines and forgeries in a general set and another involving only genuines for
a particular case were described. The first approach is analogous to using counter-
examples with near misses in the learning process. Both approaches involve using a
similarity measure to compute a distance between features of two signatures. Spe-
cial learning outperforms general learning particularly as the number of genuines
increases. General learning is useful when the number of genuines is very small
(less than four). A refined method of extracting features for signatures was also
discussed which can further increase verification accuracy. Future work should con-
sider combining the two types of learning to improve performance.
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