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Abstract. A unique way in which content based image retrieval (CBIR)
for remote sensing differs widely from traditional CBIR is the widespread
occurrences of weak textures. The task of representing the weak textures
becomes even more challenging especially if image properties like scale,
illumination or the viewing geometry are not known.

In this work, we have proposed the use of a new feature ‘texton his-
togram’ to capture the weak-textured nature of remote sensing images.
Combined with an automatic classifier, our texton histograms are robust
to variations in scale, orientation and illumination conditions as illus-
trated experimentally. The classification accuracy is further improved
using additional image driven features obtained by the application of a
feature selection procedure.

1 Introduction

For many years, information extracted from remote sensing image archives has
been exploited for specialized applications like monitoring land cover and land
usage, identifying cases of floods or fires, urbanization, deforestation, and so on.
Building such applications have been relatively easy with existing domain
knowledge and readily available information about image properties like scale, ori-
entation, and illumination conditions. This scenario is changing rapidly as tech-
nological advances such as Google Earth demand a generic framework to satisfy
unpredictable ‘casual’ user queries with possibly unknown image properties.

Remote sensing images are essentially textured images with lands, grass,
forests, mountain ranges, water, clouds, snow, buildings, and the like. Major-
ity of these categories exhibit weak textures and a highly irregular structure.
Hence the focus of remote sensing CBIR systems should be on identifying the
texture features correctly. In the past, many CBIR systems have tried capturing
characteristic textures using features like local texture patterns [1], Gabor multi-
scale features [2,3,4], Markov random field (MRF) textures [5,6], Gibbs Markov
models [7], and wavelet features [8,9]. The SIMPLIcity (Semantics-Sensitive Inte-
grated Matching for Picture Libraries) [10] system uses a combination of texture
and color features.

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 849–860, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



850 N. Sawant, S. Chandran, and B.K. Mohan

Based on our experiments, we find that the success of these methods limited
owing to the problems in handling unknown imaging conditions and the inability
to capture weak textures effectively. Gabor features for example, respond well to
strong textures but are not able to capture the weak textures effectively. Multi-
scale filter based techniques, like Gabor or wavelet based approaches, extract
features at multiple scales and try to find the best match across them. Consider-
ing the weak-textured nature of remote sensing images, it is often difficult to get
distinguished texture readings across scales. Moreover, features from different
texture categories at different scales may falsely appear similar, thus limiting
the classification accuracy further. MRF features represent weak textures well,
but they are not scale independent.

A classic problem faced by most of the existing systems is the misleading
image appearances. The color and texture appearances of the same surface vary
significantly with the changes in illumination and camera angle properties. Fig. 1
shows an example where water appears green in one image and blue in another.
To a human observer, there is no confusion regarding the presence of water.
However this similarity will not be detected if only low level features are used.

Fig. 1. The color of ocean water exhibits a spectrum from green to dark blue

The effect of imaging condition on textures is explained in [11,12,13] using the
CUReT textures database. Different textures might appear very similar resulting
in large inter-class similarities or the same surface might exhibit different textures
leading to large intra-class variations. Misleading image appearances is a common
problem for remote sensing applications as the illumination varies with the time
and season. The pose of camera does not vary much for the satellite images
taken from great heights but it plays a significant role for aerial images taken
from surveillance helicopters.

1.1 Our Contributions

1. We propose a new texture feature, the ‘texton histogram’ to represent the
characteristic weak textures of remote sensing images. We have shown that
this feature is largely robust to the problems of unknown scaling, orientation,
and global illumination.

2. We develop a classifier system to identify image contents semantically, using
the texton histogram as the base feature. The accuracy of semantic classifica-
tion is further improved using additional features obtained from an extensive
feature selection procedure. We show that our system can handle the problems
of misleading image appearances as well as that of unknown image properties.
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3. We develop an efficient end-to-end system that retrieves results containing
similar semantic contents in about 100ms (Matlab based, database size of 400
images).

1.2 Proposed Approach

The problem of similarity retrieval is posed as a semantic matching problem
where an image is represented as a composition of high level concepts. We use
six frequent remote sensing categories, viz., bushes (forest), clouds, plains, snow,
urban, and water as the high level concepts. The application of a semantic ap-
proach helps in identifying image contents independent of the scale, orientation
conditions as well as the intra-class feature variations and the inter-class feature
similarities.

The mapping from low-level features to high-level concepts is done by Sup-
port Vector Machine (SVM) classifiers trained using multiple-instance learning
approach. A feature selection technique, the gain-ratio method is used to choose
concept-specific selective low-level features from the feature-space of color and
texture features.

1.3 Organization of Paper

The paper is organized as follows. Sec. 2 discusses the features chosen to represent
remote sensing imagery. The focus of this section is on the construction of the
texton histogram, followed by a discussion of its ability to detect weak textures,
irrespective of illumination, scale and orientation conditions. Sec. 3 discusses
our semantic learning approach. The overall system architecture is described in
Sec. 4. Experimental results are given in Sec. 5 followed by concluding remarks
in the last section.

2 Features

The accuracy of a CBIR system can only be as good as the features used to
represent images. If only gray-scale texture features are used, water and snow
covers might be indistinguishable. Similarly, if only color is used, snow and clouds
might appear indistinguishable. Hence, it is better to use a combination of care-
fully chosen multiple features to distinguish a category from another. In our
experiments, we selected category-specific features from a feature-space of color,
weak textures and strong texture features and used them to train a single SVM
classifier for that category.

2.1 Texton Histogram

Textons are the putative units of preattentive human texture perception [14].
Different definitions are given in different works to compute textons. [15] gives an
operational definition where textons are computed as the frequently co-occurring
combinations of oriented linear filter responses. [13] defines textons as the joint
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distribution of intensity values over extremely compact neighborhoods. Our def-
inition of textons is inspired by the work in [13]. Our design is equally focused
on local property that is a function of a 3 x 3 neighborhood and the texton his-
togram which is more global in nature. Based on an extensive set of experiments
with one thousand seven hundred 128 x 128 image tiles, a texton dictionary is
learned using an unsupervised process. Each item in the dictionary (a texton)
is a pixel label computed from a large number of 3 x 3 local neighborhoods of
various pixels. The process is summarized in Fig. 2 and Fig. 3.
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Fig. 2. Constructing a texton dictionary
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Fig. 3. Constructing a texton histogram. A texton histogram captures the local prop-
erty of weak texture, but is also invariant to various effects.

Details. For a pixel p under consideration, the 3 x 3 local neighborhood without
p is linearized to form an 8-element string representation s. This string is circu-
larly shifted to yield a canonical form S. The canonical representation satisfies
two properties:

1. For any string representation s′ of the same neighborhood, S is lexicograph-
ically smaller than or equal to s′.

2. The left and right neighbors for every element in S are the same as in s,
under circular shift condition.

Pixel p is then appended at the end to form a 9 element vector for the next step.
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The canonical representations for a large number of pixels are clustered using
the K-means algorithm, where K is found automatically. The cluster centers
are chosen as the representative textons to form the dictionary. Each texton is
thus a 9-element array of tuples (mean, variance) corresponding to each of the
9 dimensions of the 3 x 3 local neighborhood. The textons in the dictionary
are identified by a unique identifier, the texton-id. This procedure is depicted in
Fig. 2. It is performed offline, and done exactly once in the system.

To summarize the weak textures for any candidate image, we build a proba-
bilistic model, the texton histogram. After an image is intensity normalized, each
image pixel is labeled with the closest item in the texton dictionary. The tex-
ton histogram feature is computed as the fraction of the total number of image
pixels assigned per texton. The procedure for computing the texton histogram
is shown in Fig. 3.

2.2 Texton Histogram Properties

1. Invariance to global illumination changes: Preprocessing images using
mean-center intensity normalization makes the process more robust to illu-
mination effects.

2. Invariance to local neighborhood orientations: Using a canonical form
to represent a pixel neighborhood ensures that any orientation of the 3 x 3
neighborhood still maps to the same texton. Strictly speaking, we must scan
convert a circle and use a circular neighborhood. The 3 x 3 neighborhood we
use is simply a practical measure that works well.

3. Invariance to noise in local neighborhoods: Clustering ensures that the
textons are well separated from each other in space. By binning pixel neigh-
borhoods to closest textons, the problem arising from small noise and inten-
sity fluctuations is overcome. Even if some pixels are mapped to the wrong
textons, it does not have a significant effect on the final texton histogram
representation.

4. Invariance to scale: Combining a local representation with an unsupervised
voting process enables scale tolerance. Unlike ours, the texton histogram fea-
ture described in [13] is capable of resolving the misleading texture problem;
however, it is not scale-independent. The scale associated with a remote sens-
ing image is quasi-global [16]. This global nature is captured in a histogram
model whereas the basic unit texton captures the local textures.
Experimental proof for this appears in Fig. 4 which shows the behavior of
texton histogram feature for a sample image under scaling. The plots show
the behavior of texton histograms at zoom-in factors 1.5, 2.0 and 2.5 and
3.0 of the original image size. Observe that the overall shape of the texton
histogram remains similar under scaling, and especially note that the peak
positions match nicely. Fig. 5 demonstrates the behavior of texton histogram
for the same image at a zoom factor of 0.2 marking its robust nature under
zoom-out situations. After observing a similar behavior for a large number
of images we conclude that the texton histogram feature is robust to image
scaling to a large extent.
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(a) Zoom-in factor=1.5
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(b) Zoom-in factor=2.0
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(c) Zoom-in factor=2.5
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Fig. 4. Effect of scaling on texton histograms. The red and blue colors correspond to
the texton histograms at the original scale and at the zoom factor respectively.

Fig. 5. Effect on texton histogram under “zoom-out” (factor=0.2)
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2.3 Color and Strong Texture Features

To boost the identification of categories, we selected additional features from
a feature-space encompassing color and strong texture features. In addition to
the texton histogram (termed TH), we chose six color features, the dominant
Y, Cb, Cr (DY, DCb, DCr) and the average Y, Cb, Cr (AY, ACb, ACr) values.
The choice of YCbCr color space over RGB and HSV was made experimentally.
We computed the strong texture features using a thresholded response of pixels
to Sobel masks corresponding to the edges in directions 0, 45, 90, 135 degrees
(termed EH0, EH45, EH90, EH135).

3 Learning Semantics

The association of distinguishing low level features to semantic categories is
learned using a multiple instance learning (MIL) approach [17].

3.1 Multiple Instance Learning

In the multiple instance learning approach, an image is labeled positive for all
the categories present in it. For a category, the task of learning distinguish-
ing features reduces to identifying features which are common to the positively
labeled images and absent from the negative images along with their relative
weights. We use the ‘gain-ratio’ attribute selection [18] procedure to select an
initial subset of useful features for each category. The gain-ratio method returns
a ranking of all features for their discriminative capacity for the dataset under
consideration. The SVM classifiers are tuned using a greedy selection [19] for
these feature subsets . A binary SVM classifier is learned using the dominant
features for each category. The final classifier package consists of 6 SVMs, one
for each category.

For our experiments, we annotated 1700 image tiles of size 128 x 128 with
positive/negative labels for each of the 6 categories. Full feature vectors and
the corresponding labels were input to the feature selection process. The final
feature dimensions selected for each concept are given in Table 1.

We observed that the inaccuracies in classification were mainly caused due to
the variations in appearances of categories. The accuracy for clouds category is

Table 1. Table of concept-wise dominant features-set and classification accuracy

Concept Dominant feature dimensions Accuracy

bushes(forest) TH,AY,ACb,ACr,DY 96.18
clouds TH,DY,AY,ACr,DCb 87.19
plains TH,ACr,ACb,DCr,DCb 90.11
snow TH,DY 98.47
urban TH,ACb,EH0,EH90,ACr 92.81
water TH,ACb,ACr,AY,DY,DCr 93.23
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relatively low, owing to the occasional sparse cloud nature where cloud detection
is difficult and the occasional dense nature where it is confused with snow.

4 System Architecture

Fig. 6 shows the overall block diagram of the proposed retrieval system. The
system can be explained in terms of three main modules: a) Learning module,
b) Semantic profiles generation module and c) Query retrieval module.

Semantic

Creation
Profile

SVM
Category
Labeler

Query

Module
Processing

Semantic
Database

Extraction
Feature

Module

Query

Results

Image
Database

Fig. 6. Block diagram of the proposed system

Learning Module: The job of the learning module (not explicitly shown in
Fig. 6) is to build the texton dictionary and the SVM category classifiers through
learning. Both these tasks are done offline. The quality of texton dictionary and
SVM classifier play a decisive role in assuring high quality results for the task
of image classification and retrieval.

Semantic Profiles Generation: An image is divided in tiles of size 128 x
128 pixels. Features are computed for each tile and input to the SVM classifier
package containing classifiers for the selected semantic categories. The output
(i.e., label ‘1’ if semantic concept is detected, ‘0’ otherwise) of all the six classifiers
is put together to construct a 6-element semantic profile for the tile. The semantic
profile of the entire image is a 6-element vector where each element corresponds
to the fraction of tiles voting positive for a concept. For example, if 3 out of 10
tiles vote for water and 8 out of 10 tiles contribute to land, then the semantic
profile of image is {0.3 water, 0.8 land}. A tile may vote for any number of
categories under consideration. A similar approach is described in [20] where
an image is divided in 10 x 10 regions, each voting for a single category. Our
framework differs in this aspect from [20], as for large sized images, a region is
bound to contain more than one category. Hence it makes more sense to detect
all of them and not restrict a region to a single label.

Query Retrieval Module: The semantic profiles for all the database images
are stored in a semantic profile database. Given a user query, its semantic profile
is constructed. The results are ordered based on the Euclidean distance between
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the semantic profiles of the query and the candidate database image. Our ap-
proach also enables us to develop a framework for fuzzy queries, e.g., ‘retrieve
images containing largely water’ or ‘do not retrieve images containing any cloud
cover’.

5 Experimental Setup and Results

To test the proposed technique, we developed a heterogeneous image database
consisting of images from different on-line resources. Images showing none, one
or more of the selected concepts were downloaded from the freely available image
galleries of commercial satellite companies like Orbimage and Spaceimaging, and
government organizations NRSA (India) and US-based NASA’s ‘Earth Obser-
vatory. The image database consists of 400 natural color satellite images, which
are stored in JPEG format with sizes varying from 500 x 500 up to 25000 x
25000. The image resolutions vary from a few inches per pixel to a few meters
per pixel. The images have been taken from across the globe, at different times
of the day and across seasons making the illumination properties different. We
have kept no metadata information about resolution, scale or orientation.

We evaluated the performance of the proposed system in two ways. First we
computed the system performance statistically giving precision values. We also
compared the retrieved results with the results of ‘SIMPLIicity’ system using the
same underlying image database. Like in most region-based retrieval systems, in
SIMPLIicity, an image is represented by a set of regions, roughly corresponding
to objects, which are characterized by color, texture, shape, and location. This
system classifies images into semantic categories such as textured-nontextured,
city-landscape, and so on. It uses a wavelet-based approach for feature extraction
and an integrated region matching technique to match the image regions.

5.1 Performance of Query Retrieval

To provide numerical results, we asked 5 human annotators to manually check
the relevance of results for 18 randomly chosen sample query images. For the
same images, relevance of results given by SIMPLIcity is also evaluated by the
same annotators. The top ten results are considered for evaluation and the pre-
cision is computed as the fraction of images retrieved correctly as per human
judgment. For each of the eighteen query images, the average precision of results
given by both systems are plotted in Fig. 7. We find that on an average, the
precision of the proposed system is greater than that of SIMPLIcity by 0.342.

5.2 Query Comparison

Fig. 8 shows the comparison of results between the proposed system and the
SIMPLIcity for a query image in which water appears green. The top row shows
our experimental results and the bottom row shows retrieval results of SIMPLIc-
ity. The leftmost image in each row is the query image. Due to the limitation of
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Fig. 7. Comparison of average precision values (best seen in color)

space, we have shown only top 10 matches for each query comparison. Our sys-
tem has successfully identified that the query contains water and corresponding
images involving water are returned irrespective of the intra-class variations in
appearances.

More (favorable) results of the comparison do not appear in this version due
to space limitations but are available at our website.

Fig. 8. Using semantic retrieval to overcome intra-class differences in appearances of
a concept. The top row shows the first ten results of our system and the bottom row
shows the results obtained using SIMPLIcity technique.

6 Concluding Remarks

Texton histogram is a robust feature capable of capturing the weak textured
nature of remote sensing images in a scale, orientation and illumination inde-
pendent manner. This feature along with other features can effectively learn the
high level concepts present in remote sensing domain. Using such a semantic ap-
proach effectively counters the intra-class image variations and inter-class image
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similarities. Hence, the proposed framework is able to characterize remote sens-
ing images in a generic manner. However it should be noted that our framework
does not handle spatial adjacency constraints.
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