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Abstract. This paper addresses the problem of obtaining an accurate 3D recon-
struction from multiple views. Taking inspiration from the recent successes of
using strong prior knowledge for image segmentation, we propose a framework
for 3D reconstruction which uses such priors to overcome the ambiguity inherent
in this problem. Our framework is based on an object-specific Markov Random
Field (MRF)[10]. It uses a volumetric scene representation and integrates con-
ventional reconstruction measures such as photo-consistency, surface smoothness
and visual hull membership with a strong object-specific prior. Simple parametric
models of objects will be used as strong priors in our framework. We will show
how parameters of these models can be efficiently estimated by performing infer-
ence on the MRF using dynamic graph cuts [7]. This procedure not only gives an
accurate object reconstruction, but also provides us with information regarding
the pose or state of the object being reconstructed. We will show the results of
our method in reconstructing deformable and articulated objects.

1 Introduction

Obtaining 3D reconstructions of objects from multiple images is a fundamental prob-
lem in computer vision. Reflecting the importance of the problem, a number of methods
have been proposed for its solution. These range from methods such as shape from sil-
houettes [14] and space carving [[11] to image based methods [12]]. However, the prob-
lem of obtaining accurate reconstructions from sparse multiple views still remains far
from being solved. The primary problem afflicting reconstruction methods is the inher-
ent ambiguity in the problem (as shown in figure[Ila)) which arises from the many-one
nature of the mapping that relates 3D objects and their images.

Intuitively the ambiguity in the object reconstruction can be overcome by using prior
knowledge. Researchers have long understood this fact and weak priors such as surface
smoothness have been used in a number of methods [8I13(15]. Such priors help in re-
covering from the errors caused by noisy data. Although they improve results, they are
weak and do not carry enough information to guarantee a unique solution. At this point,
the question to be asked is: Can we make use of stronger prior knowledge? A possible
source for a strong prior could be the knowledge of the shape of the object we are trying
to reconstruct. In other words, if we know which object we are trying to reconstruct,
we can use a strong object-specific prior to force the reconstruction to look like that
object.
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Fig. 1. a) Ambiguity in object reconstruction from sparse multiple views. The figure shows how
two completely different objects can have the same visual hull. Further, if both objects have
the same colour, the photo hull and their projections on multiple viewpoints would also be the
same. b) Example of an articulated model. The figure shows a simple stick-model of a human
in different poses and the corresponding priors as its 3D distance transforms used to set up our
energy described in Section 2l

Strong Object-Specific Priors. Kumar et al. [10] proposed a method for using strong
priors for solving image segmentation. They introduced the “Object-Specific Markov
Random Field” model which combined Markov Random Fields (MRFs) with an object-
specific shape prior. This shape-prior was defined by a Layered Pictorial Structures
(LPS) model. The LPS model provided them with a strong prior able to model shape
variations parameterized by a set of latent shape parameters. They obtained good object
localization and segmentation results using their approach. However, their method re-
quired a large library of exemplars for different parts for the LPS model. Bray et al. [4]
suggested using a simple articulated model. This makes the problem easier to solve
computationally while still giving excellent segmentation results.

Parametric Models of Strong Prior Knowledge. In this work we will investigate the
use of parametric models of objects as strong priors on the reconstruction, together
with the weak prior of surface smoothness. The models are parameterized by a set
of latent shape parameters which inherently characterize the state of the object to be
reconstructed. Specifically we illustrate our ideas in terms of two model categories:
articulated and deformable. Models belonging to the first category are used as strong
priors for reconstructing articulated objects such as humans. They are parameterized by
a set of pose parameters which characterize the pose of the object. Figure[T(b) shows an
example of an articulated human model. Models belonging to the second category are
used as strong priors on active-shape or deformable objects. The individual instances of
these objects might be different from each other but they can be described by a common
high-level parametrization. For example, objects like chairs can be parameterized in
terms of parameters like height, width of seat etc. A deformable model for a vase is
shown in figure 3(a).

Framework for Integrating Strong Prior Knowledge. A Bayesian approach to solve the
3D stereo reconstruction problem would typically be to formulate it in terms of a MRF.
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This offers us the advantage of a seamless integration of strong priors (as defined above)
with data, in this case conventional reconstruction measures such as photo-consistency,
surface smoothness and visual hull membership. Inference on the random variables
constituting the MRF can be seen as an energy minimization problem. If this energy
function is regular (explained in Section 3) then its solution can be obtained in polyno-
mial time using efficient graph-cut algorithms [9].

Inference of Model Shape Parameters. To guarantee an object-like reconstruction, our
prior should have latent variables that model the shape variability of our object of inter-
est. Then we optimize the energy of the object-specific MRF with respect to all these
latent variables. Thus obtaining at the same time an accurate reconstruction as well as
an estimate of the latent parameters. As explained in section 3, such an optimization
procedure is extremely computationally expensive since it requires a graph cut to be
computed multiple number of times. While performing this inference procedure, we
make the observation that as we optimize over the model parameters, the energy func-
tion of the MRF we were trying to minimize changes minimally. This motivates us to
use the recently proposed dynamic graph cut algorithm [7]], which enables fast mini-
mization of regular energy functions which change minimally from one instance to the
next.

Organization of the Paper. The outline of the paper is as follows. We start by describing
the object-specific MRF which forms the basis of this work. We explain how recently
proposed methods for reconstruction can be explained in terms of this framework. The
details of the efficient algorithm for performing inference over this MRF is given in
section 3. In section 4, we will illustrate the use of this framework in reconstructing
deformable and articulated objects, and provide results of experiments performed on
real data. The conclusions and directions for future research are given in section 5.

2 Bayesian Framework

Within this section we provide a Bayesian formulation of the object reconstruction
problem. This framework allows for the integration of strong object-specific priors with
widely used data based terms such as photo-consistency and visual hull membership.
We will also show how existing methods for object reconstruction such as [8/1315] can
be explained in this framework.

Object-Specific Markov Random Field for Reconstruction. A MRF comprises of a set
of discrete random variables { X7, X, ..., X,;} defined on the index set V), such that
each variable X, takes a value x, from the label set X = {X;, Xs,..., A} of all
possible labels. We represent the set of all variables x,,, Vv € V by the vector x. Unless
noted otherwise, we use symbols 4 and j to denote values in V. Further, we use N, to
denote the set consisting of indices of all variables which are neighbours of the random
variable z,, in the graphical model.

For the reconstruction problem, the set ) corresponds to the set of all voxels in
the volume of interest, A is a neighbourhood defined on this seﬂ, the binary variable

! In this paper, we have used the standard 6-neighbourhood i.e. each voxel is connected to the 6
voxels surrounding it.
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x, denotes the labeling of the voxel v € V), and the set X comprises of two labels
(‘obj’,‘empty’) representing whether the voxel belongs to the empty space or not. We
will use H to denote the set of all voxels present in the visual hull obtained from object
silhouettes. Every configuration x of such an MRF defines a 3D object reconstruction.
Given a set of images I and (or) a visual hull H (obtained using silhouettes), col-
lectively constituting the data D, D could be images, measurements and it could also
include the result of some other algorithm e.g. a visual hull, we wish to reconstruct a
known object. This can be done by labelling each voxel v in the volume of interest )V
as belonging to the object reconstruction, or belonging to the scene. Taking a Bayesian
perspective, the optimal labels for the voxels are those which maximize the posterior
probability p(x|D), which can be written in terms of a Gibbs distribution as:

p(DX)p(x) _ 1

exp(—¥(x)), (1
where ¥(x) is the energy of the configuration x of the MRF. The most probable or
maximum a posteriori (MAP) reconstruction solution can be found by computing the
least energy configuration x* = arg miny ¥(x). The energy ¥(x) corresponding to the
configuration x consists of likelihood and prior terms. These can be written in terms of
individual and pairwise interaction functions as:

¥(x) = ZW(%) + ¢(Dlx;) + Z (xi,zj) + ¢(Dlx;, xj))) + const.  (2)

%

Specifying the Likelihood Terms. Given the data D, the unary likelihood term ¢(D|z;)
specifies the penalty (or cost) for assigning the label z; to the voxel v;. Assuming D =
H, we can define ¢(D|x;) in terms of the visual hull as:

a ifie™H,
0 otherwise,

oDl = obi?) = { ®
where « and 3 are arbitrary constants and satisfy the property o < 3. Snow et al. [13]
used raw images along with their binary segmentations to develop a generalized version
of these terms. Their likelihood function incorporated the absolute difference in the in-
tensities of the pixels which intersected at a voxel. Their approach can be viewed as
using a visual hull where each voxel has an associated confidence value. In contrast to
the above approach, Kolmogorov et al. [8]] only used image information and assumed
the segmentation to be unknown. They took (D = I) and used an image based photo-
consistency measure to define ¢(D|x;) as: ¢(D|z; = ‘obj’) = min{0, (I, — I,)* — K}
where p and g are pixels in the images, which lie near the projection of the voxel ¢, and
I, and I, are their intensities.

In their recent work on multi-view stereo, Vogiatzis et al. [13] took D = {I and H}
i.e. they used both the visual hull H and object images I as the data D. They used a
photo-consistency term that was obtained from the images. Further, instead of using the
entire volume of interest, they only performed inference on the labels of voxels between
two specific surfaces Spqse and S;;,. They defined Spqse as the surface of the visual hull,
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and defined S;;, as the locus of voxels which are located at a specific distance d;,, inside
Shase- This is equivalent to using the unary likelihood term:

—00 if 1€ HT,
d(Dl|z; = ‘obj’) = ¢ o0 if i¢H, %)
0 otherwise,

where H ™ is the volume enclose by S, and is in effect a contraction of the actual
visual hull H. Although the use of various measures for the unary likelihood have been
investigated, the pairwise likelihood ¢(D|xz;,x;) has remained relatively ignored by
researchers. This term reflects the compatibility of two neighbouring latent variables
in the MRF, and has been shown to be extremely useful in the context for the image
segmentation problem, where it is called the contrast term [3/10]. We define this term
as:
—9%(i,j 1

¢(Dlzi, ;) = Aexp( 920(,2”) dist(i, ) 5)
where g% (i, j) measures the difference in the estimated intensity values of the voxels
i and j and dist(i, j) gives the spatial distance between 7 and j. Such as estimate can
be obtained either by using voxel colouring methods or directly from the object images
in a manner analogous to the photo-consistency term. The effect of this term will be to
favour discontinuities aligning with the object surface.

2.1 Incorporating Priors

We now describe how weak and strong prior information can be incorporated in our
MRF framework.

Surface Smoothness as a Weak Prior. The pairwise interaction term ¢ (z;, ;) has been

used in a number of methods as a weak prior to encourage smoothness in the recon-

struction surface [8/13]. This is done by penalizing dissimilar label assignments in

neighbouring voxels. The pairwise prior term takes the form of a Generalized Potts

model:

Kij if ZT; 7’5 Zj,
0 if T, = Tj.

(i z5) = { ©)

Parametric Models as Strong Priors. Suppose we know the object we are trying to
reconstruct. Such information could be used to constrain the reconstruction result to
look like the object and intuitively improve the reconstruction. However, we face two
key problems at this juncture: (1) It is difficult to know what should be an appropri-
ate representation for such knowledge. (2) How could we integrated such information
in our Bayesian framework for the reconstruction problem? Our solution to the first
problem is the use of generative parametric models to represent knowledge about the
object. These models are parameterized by a set of parameters 6, which define the state
of the object. The MRF formulation is shown in the graphical model shown in figure 2l
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Fig. 2. The Bayesian framework for Object Reconstruction

In this framework the parameters of the object model are considered as latent (or hid-
den) variables. The energy function of the MRF is:

U(x.0) = Y ((@il0) + ¢(Dlai) + Y (b(wi, x)) + ¢(Dlaiyz5)). (D)
icy J

For a particular value of 0, the model could be used to generate a coarse reconstruction

of the object. This reconstruction is used to define the unary prior term (z;|0). The

function ¢ (z;|6) is chosen such that given an estimate of the location and shape of the

object, voxels near to that shape are more likely to be included in the reconstruction,

the term used by us is: ¥ (z;|0) = — log p(x;|0) where p(x;|0) is defined as:

1
1+ exp(,u * (d(’L, 0) - dsur))

where d(i, 0) is the distance of a voxel ¢ from the surface generated by the parametric
model and d,, is the average distance from the model surface to the surface voxels in
the true object reconstruction. The distance for all the voxels in the volume of interest
is efficiently computed by performing a 3D distance transform [3]. An example of a 3D
distance transform is shown in figure[I(b). The parameter y determines the ratio of the
magnitude of the penalty that points outside the shape prior have compared with points
inside the shape.

p(zi = ‘obj’|f) = ®)

3 MAP-MRF Inference Using Dynamic Graph Cuts

We next describe how to find the optimal configuration of the object specific MRF. As
stated earlier this problem can be solved by minimizing the energy function defined by
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the MRF. Energies like the one defined in (Z) can be solved using graph cuts if they
are regular [9)]. In our case, this is indeed the case and thus for a particular value of 6,
we can find the optimal configuration x* = min, ¥(x, 6) using a single graph cut. The
labels of the latent variable in this configuration give the optimal reconstruction.

3.1 Optimizing over the Parametric Model Parameters

Since our strong object-specific model prior is defined in terms of latent variables, we
would like to make sure that it reflects the correct pose of the object. To do this we solve
the problem: 6,,; = arg ming miny ¥(x, ¢). In our experiments we observed that the
energy function projection ¥(x*, 6) is locally uni-modal and can be optimized using
standard techniques like gradient descent. The plots of this projection can be seen in
figure B(i). Our algorithm starts with an initial guess of the latent variables pose and
optimizes it using standard minimization methods. Once an estimate of 6,,; has been
found we can find the optimal reconstruction X,,; = arg min, ¥(x, f,,¢) using a single
graph cut.

Minimizing Energies using Dynamic Graph Cuts. The minimization procedure for es-
timating 6,,; involves computing the value of miny ¥ (x, ¢) for different values of 6.
Each such computation requires a graph cut to be computed and if the time taken for
computing this cut is high, it would make our optimization algorithm quite slow. Here
we make the following observation: Between different iterations of the optimization
algorithm, the change in the value of f is small. This is reflected in the change in the en-
ergy function we are required to minimize, which is small as well. For such a sequence
of energies, the graph cut computation can be made significantly faster by using the
dynamic graph cut algorithm recently proposed in [7]. This algorithm works by using
the solution of the previous graph cut computation for solving the new instance of the
problem. In our experiments, we found that the dynamic algorithm was 15-25 times
faster than the algorithm proposed in [2], which recomputes the st-mincut from scratch
and has been shown to be the fastest algorithm for graphs commonly used in computer
vision problems.

4 Applications

Within this section, we will show some results obtained by using the Bayesian frame-
work defined in section 2. We apply our approach on two object categories to show
how strong object-specific priors can help in obtaining accurate reconstructions from
ambiguous and noisy data.

4.1 Deformable Models

Deformable models as the name suggests can alter their shape and in the process gener-
ate different instances of the object. These can be used while reconstructing objects with
high intra class variability. The latent variables 6 characterizing these models dictate the
exact shape that the model takes. We illustrate their use in obtaining 3D reconstructions
of a vase, from a few images shown in figure Blb).
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Fig. 3. a) The Parametric Deformable Vase Model. b) Object Reconstruction using Deformable
Models. The images used for reconstruction are shown in row 1. The second row shows two
views of the visual hull obtained using noisy silhouettes of the vase. In the third row, we show the
results obtained by our method before/after optimizing the parameters of the deformable model.
It should be noted here that the reconstruction results obtained by our method are smoother and
do not suffer from discontinuities such as the cut seen in the visual hull.

The Parametric Vase Model. We use a rotationally symmetric model (shown in figure
[B(a)) for the vase. The model is described in terms of circles in the horizontal plane as:
2?2 + y? = || f(2)| where f(z) is a n-degree polynomial. In our experiments, we bound
the degree of f(z) to four, making it take the form:

f(2) = Cuz* + C32% + Co2* + C12 + Cp. )

The coefficients {Cy, ..., C4} of the function constitute the set of latent parameters 0
characterizing the shape of the model. We optimize over the values of these coefficients
(as explained in section 3) to obtain a shape that acts as a coarse reconstruction of
the actual object. The model can be strengthened by making it more object-specific. It
can be observed that the vase surface has two inflection points. This constraint can be
incorporated in our model by making sure that the second derivative of f(z), which is
defined as f” (2) = 120422 4+ 6C32 + 2C5 has two unequal real roots. This gives us
the constraint: 36C5% — 96C,Cs > 0.

Experiments. We use the images and silhouettes of the vase as data. These are obtained
from four cameras which are uniformly distributed around the object as shown in figure
Blb). We quantize the volume of interest into 3 x 10° voxels. The object-specific MRF
formulated for the reconstruction problem has 1.5 x 10° binary latent variables. The
energy ¥ (x*, 0) of this MRF is constructed as described in section2l We then minimize
it with respect to the shape model parameters ¢ to obtain an estimate of ,,;. The results
from the experiment are shown in figure B(b).
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Fig. 4. i) Camera Positions and Reconstruction. The figure show the position and orientations of
the four cameras which were used to obtain the images which constituted the data-set for our
first experiment. We also see the reconstruction result generated by our method. ii) 3D Object
Reconstruction using Strong Object-Specific priors. The first and second rows show the images
and silhouettes used as the data. Two views of the visual hull generated using the data are shown
in the first two columns of the bottom row ((a) and (b)). The visual hull is noisy and contain
artifacts like the spurious third arm caused by the ambiguity in the problem. We are able to
overcome such problems by using strong prior knowledge. The reconstructions obtained by our
method are shown in column 3 and 4 ((¢) and (d)).

4.2 Articulated Models

Articulated models not only help in reconstructing the object, but also provide infor-
mation about its pose. In this section, we will use an articulated stick-man model to
solve the challenging problem of reconstructing and estimating the shape (and pose) of
humans. The problem is especially hard because humans have many joint angles and
thus the parametric model needed to describe them will have a high number of latent
variables.

The Stick-man model. We use a simple articulated stick-man model (shown in figure
[[(b)) in our experiments to generate a rough pose-specific prior on the reconstruction of
the human. The model is parameterized by a 26 dimensional pose vector 6 that describes
absolute position and orientation of the torso, and various other joint angle values. There
are no constraints or joint-limits incorporated in our model.

Experiments. We use real and synthetic video sequences of humans as data. The data-
set for our first experiment consists of videos sequences of four views of a human
subject walking in a circle. This data-set is used in [1]]. It comes with silhouettes of the
human subject obtained using pixel-wise background intensity modeling. The cameras
position and orientations with respect to the object are shown in the figure F{1).
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Fig.5. i) The plots shows how the value of minyk ¥(x,0) is affected by changes in the pose
parameters of the stick model used to generate the reconstruction prior. The first plot shows the
values obtained by varying the global translation and rotation parameters of the stick-man model
in the x-axis. The second plot shows the values while varying the joint angles of the left shoulder
in x and z axes. Observe that the effect of changing the joint angles of the left shoulder is less than
the effect caused by changes in the global translation and rotation parameters. ii) Pose Inference
and 3D Object Reconstruction results. The data-set is the same as used in [1]] and consists of 4
views of a human subject walking in a circular path. Middle row: Reconstruction result. Bottom
row: Pose estimate. Observe that we are able to get excellent reconstruction and pose estimation
results even when the visual hull contains large errors (as seen in frame 60 and 74).

The first step in our method is the computation of the visual hull. The procedure
starts with the quantization of the volume of interest as a grid of cubical voxels of equal
size. Once this is done, each voxel center is projected into the input images. If any of the
projections falls outside the silhouette, then the voxel is discarded. All remaining voxels
constitute the visual hull. Some visual hull results are illustrated in figure [ii). It can
be observed that because of the skewed distribution of cameras, the visual hull is quite
different from the true object reconstruction. Further, as object segmentations are not
accurate, it has large errors. The prominent defects in the visual hull results include: (7)
The presence of holes because of segmentation errors in the object silhouettes (bottom
row (b)), (i¢) the presence of auxiliary parts caused by shadows, (iii) the third-arm
effect resulting from self-occlusion and ambiguity in the reconstruction due to small
number of views (bottom row (a)). It can be seen that our reconstruction results do not
suffer from these errors (bottom row (c) and (d)).
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Analysis of the Inference Algorithm. Once the visual hull has been computed, we for-
mulate the object-specific MRF as described in section 2. Only visual hull based terms
are included in the MRF energy construction, and no image based term is used. We
estimate the optimal parameters 6, for the stick-man model by minimizing the MRF
energy given in equation (7). Figure[3(i) shows how miny ¥(x, §) changes with differ-
ent parameters of the stick-man model. It can be clearly seen that the energy surface
is locally uni-modal. We use the Powell minimization [6] algorithm for optimization.
The graph constructed for the energy minimization procedure has a million nodes con-
nected in a 6 neighbourhood. The time taken by the algorithm of [2] to compute the
st-mincut in this graph is 0.3 seconds. In contrast, the dynamic graph cut algorithm
only takes 0.01 seconds. For each frame of the video sequence, the Powell minimizer
needs roughly 500 function evaluations of miny ¥ (x, ¢) to obtain the solution for fgpt.
Further, as each function evaluation takes roughly 0.15 seconds, we are able to get the
pose and reconstruction results in a minute.

Results. Our method is able to obtain accurate object reconstruction results. Addition-
ally, we also obtain an accurate estimate of the pose parameters of the subject. The
reconstruction and pose estimation results for a few frames are shown in figure B(ii).

5 Conclusions

This paper sets out a Bayesian framework for 3D object reconstruction which allows
for the integration of ‘strong’ object-specific and ‘weak’ smoothness priors with a data
based likelihood term. We showed how simple deformable and articulated models can
be used as strong priors to overcome the ambiguity plaguing the reconstruction prob-
lem. The results of our experiments show that this formulation is not only able to obtain
good reconstruction results from noisy data, but also provides us with an accurate esti-
mate of the state of the object, which is quite useful in applications such as human pose
inference.
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