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Abstract. Recent research into recognizing object classes (such as hu-
mans, cows and hands) has made use of edge features to hypothesize
and localize class instances. However, for the most part, these edge-based
methods operate solely on the geometric shape of edges, treating them
equally and ignoring the fact that for certain object classes, the appear-
ance of the object on the “inside” of the edge may provide valuable
recognition cues.

We show how, for such object classes, small regions around edges can
be used to classify the edge into object or non-object. This classifier
may then be used to prune edges which are not relevant to the object
class, and thereby improve the performance of subsequent processing. We
demonstrate learning class specific edges for a number of object classes —
oranges, bananas and bottles — under challenging scale and illumination
variation.

Because class-specific edge classification provides a low-level analysis
of the image it may be integrated into any edge-based recognition strat-
egy without significant change in the high-level algorithms. We illustrate
its application to two algorithms: (i) chamfer matching for object detec-
tion, and (ii) modulating contrast terms in MRF based object-specific
segmentation. We show that performance of both algorithms (matching
and segmentation) is considerably improved by the class-specific edge
labelling.

1 Introduction

There is a long tradition of using edge features in object recognition: dating back
to the 1980s edges were used for recognizing specific objects [7,11,15]; and more
recently edges have been used for recognizing object classes such as humans (e.g.
in Gavrila’s combination of chamfer matching and a template tree [6] or by shape
context [1,17]), hands [21,23], and animals such as cows and horses [9,14,19].

In algorithms such as [6], recognition is performed while treating image edges
equally regardless of their context. However, all edges are not equal. The edges
on the boundary of an object from a specific class have the characteristic local
colour or texture of that object class on one side (and can have anything else
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on the other side). Similarly, class specific edges may also have a characteristic
shape. The key idea of this paper is to learn a classifier for the object class of
interest which can label an edge with the probability of it belonging to that
object class or not.

Our objective is learn a classifier based on all the available local informa-
tion around an edge – appearance, texture and shape. While conventional cue
integration tends to occur later in the processing pathway, this “early vision”
integration means that it is easy to modify existing applications to use our class-
specific edges, offering the potential for improved performance across a range of
applications.

Previous research has considered classifying edges: Carmichael et al. [3] learnt
edge shape (but not appearance) for mugs; McHenry et al. [12,13] built a clas-
sifier by hand for recognizing glass by combining a number of cues (e.g. specu-
larities and the similarity between the image regions on either side of the edge);
and Sidenbladh and Black [20] learn edge likelihoods for limbs for human detec-
tion in video sequences. The methods most closely related to ours are those of
Shahrokni et al . [18] and Dollar et al . [4]. Both these approaches consider each
pixel of the image independently and obtain its probability of being an (object
class specific) edge. Due to the variation in negative examples, which include
regions with no edges, they are forced to employ a large set of features. In con-
trast, our method classifies only the edges (i.e. not all pixels) which are provided
by a standard detector (e.g. canny). This significantly reduces the variability in
negative examples. For instance, homogeneous background regions are pruned
away by canny. Class-specific edge detection is then obtained using simple lo-
cal features together with a standard classifier such as the SVM [16,8] which
guarantees a global minimum.

The organization of this paper is as follows. In §2, we describe our method
for edge classification. We then give two illustrative examples of its use. First
for object detection based on chamfer matching in §3, and then for object seg-
mentation in §4 using the ObjCut algorithm of [10].

2 Classifying Edges for an Object Class

In this section we describe how local information can be learnt to classify detected
edges into those arising from the boundaries of an object class or not. Our
objective is to separate class-specific boundary edges from other image edges —
those arising from internal discontinuities, specularities, and background clutter.
We illustrate our method on two classes here, oranges and bottles.

We follow the standard machine learning procedure and assemble a set of im-
ages which are used to train and evaluate the classifier. We assemble a database
for each class of about 100 images. Each dataset is split into half for training
and testing. The images cover a wide range of scale, pose and illumination condi-
tions, and include multiple object instances, partial occlusions, and background
clutter. Examples are shown in figures 1–3. Edges are obtained using the Canny
edge detector with hysteresis. To simplify ground truth annotation, edges are
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(a) A simple image (b) Canny edges (c) Validated edges

Fig. 1. Overview. The background and internal gradients in (b) throw off chamfer
matching. (c) The class-specific validated edges help in removal of edges from clut-
ter and internal gradients. Template matching works better on this edgemap. Note
that most of the non-class edges have been suppressed, greatly simplifying subsequent
processing such as object detection or class specific segmentation.

linked into chains automatically according to their spatial proximity as shown
in figure 1(b), and all edge chains are manually annotated so they are posi-
tive if they lie on the boundary of an object instance; all other edge chains are
negative.

There is then the question of how to represent the appearance (e.g. colour
distribution), texture and shape of the edges. At the simplest level we could
simply extract a patch around each edge point and use a feature vector consisting
of the ordered colour pixels – this would implicitly capture the shape (since the
edge boundary runs through the patch). It would also capture the texture since
Varma and Zisserman [25] have shown that a simple patch feature is sufficient to
classify texture in monochrome images. On the other hand, with such a simple
representation we are not explicitly recording that the distributions on each side
of the edge may be different. To deal with this point, we do use a simple patch
centred on the edge, but rotate the patch so that its x-axis is aligned with the
edge tangent (derived from the Canny operator and edge chains). In detail, we
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choose a m×n patch around the edge as our feature. This is rotated so that the
edge chain runs horizontally through its centre, giving a rotationally invariant
image descriptor. We also record the colour values of each pixel to represent the
appearance ([25] only used grey values).

Classification. A Support Vector Machine (SVM) [16] is used to learn an edge
classifier for the patch features. The parameters we need to learn are: the size
of the patch; and for the SVM: the kernel type (we compare linear, RBF and
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(a) Orange (b) Bottle (c) Banana

(e) Image (f)Lower false positive rate (g)Higher false positive
rate

Class Accuracy Precision Recall
Orange 98.48% 99.39% 97.57%
Bottle 82.01% 90.03% 72.00%
Banana 90.37% 92.79% 87.53%

Fig. 2. Edge Classification Results. The ROC curve plots the True Positive Rate
against the False Positive Rate as the threshold is varied for classification between the
minimum and maximum values of the SVM output. (f),(g) show edge classification with
a variation in the operating point for the bottle image of (e). In (b) the operating point
towards the left results in lower false positives as seen in (f) and a change to the green
operating point on the right results in a higher false positive rate (g). The red points
on (a),(b) and (c) show the operating point used for the datasets. The classification
results at these operating points are given in the table.
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polynomial kernels of degree 1, 2 and 3) and the slack variables. Optimizing
over the test data we find that the best performance for the orange and banana
datasets is achieved with a polynomial kernel of degree 2, and with patches of
size m = 11 (in the y direction) and n = 11 (in the x direction). For the bottle
dataset, the RBF kernel shows superior performance, the size of the patches
being the same.

Flip ambiguity. Our patches extracted from the images are rotationally invariant
up to a flip factor. The object region can lie either on the top or bottom half of
the patch. In the presence of dominant characteristics such as colour and texture,
the patches can be flipped to remove this ambiguity. For the orange and banana
classes, effective gaussian mixture models of colour characteristics are built from
training data for this purpose.

For bottles the colour and texture is much more variable and hence gaussian
mixture models for colour will not be helpful in disambiguation. For such cate-
gories the classifier will have to handle the ambiguity by choosing the appropriate
support vectors and slack variables.

Alternatively, we can try to handle this ambiguity at the kernel level. We
experimented with modifying the RBF kernels to internally flip the patches and
choose the one which best optimizes the cost. For example, using the kernel

k(x, x′) = max
(
exp

(−γ‖x − x′‖2
)
, exp

(−γ‖x− flipud(x′)‖2
))

where flipud(x) flips the patch vertically, with the intuition that the correct
alignment of the patches (flipped or not) will have lower cost due to more con-
sistency of the object region. However, upon experimentation, we find that this
kernel (and similar modifications of linear kernels) have slightly inferior perfor-
mance compared to the standard polynomial and RBF kernels. This difference
is heightened if the category has a strong colour model.

For our three classes, the performance of the classifier is summarized in the
table of figure 2. The accuracy, recall and precision are defined as

Accuracy=
(

tp+tn
tp+fp+fn+tn

)

Precision=
(

tp
tp+fp

)

Recall =
(

tp
tp+fn

)

∣
∣
∣
∣
∣∣
∣

tp = True Positive
tn = True Negative
fp = False positive
fn = False negative

(1)

The models are fairly well learnt as can be seen from the receiver operator
characteristic curves in the top row of figure 2. In the case of bottles, the lack of
one distinctive colour or texture reduces our accuracy. For such object classes,
(lacking distinctive colour or texture) other representations may be necessary.
For example, texton distributions or separate local colour histograms for each
side of the boundary. Other classifiers, such as Adaboost, may also be employed.

The veracity of classification on several example images is shown in figure 3.
In subsequent sections we will use both the classification and also the distance
from the decision boundary as a confidence measure. The occurrence of false
positives and the degree of suppression of true negatives, can be controlled by
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Edge labels: black: detected +ves, gray: detected −ves

Fig. 3. Edge classification. Example images and the class based edge classifications.
A large number of edges from clutter, specularity and internal gradients that confuse
template matching are discarded by this classification.

varying the operating point along the ROC curve. Figure 2 shows the varying
result of suppression of false edges with the variation of the operating point.

3 Chamfer Matching

In this section we illustrate how edge specific classification can be used to improve
the performance of an object detection algorithm based on chamfer matching. In
chamfer matching a set of learnt object templates are matched to the detected
edges in the image using a distance transform. The position at which the convo-
lution of the template with the distance transform of the feature image (capped
at a certain threshold for stability) is minimal, determines the match. Chamfer
can be made more robust by taking orientation at edges into account.

In practice, an artificial template database is created by geometrical transfor-
mations of exemplar templates, and a hierarchical tree is built to enhance the
search speed [6]. Given a test image, hierarchical chamfer matching is then used
to fit the object model over the test image. With the occasional modification,
this is a standard algorithm for object detection. However, this algorithm ap-
plied to the simple orange object class gives numerous and classic mismatches
(figure 4 (a)).

3.1 Class Based Chamfer Matching

We use our edge classifier to determine the relevant edges for the current object of
interest (see figure 3). Performing chamfer matching on only the positive edges
from the classifier output results in a tremendous improvement (figure 4(b))
compared to the original truncated oriented chamfer matching (figure 4(a)) .
This can be used to improve any algorithm that uses template matching, such
as ObjCut.
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(a) Basic Chamfer (b) Chamfer with
class-specific edges

(c) Improved
ObjCut

Fig. 4. Improving Chamfer for object localization. (a) Chamfer Matching using
all image edges. The matches latch on to irrelevant edges corresponding to internal
gradients and specularities (first row), and clutter (circular lid, second and third row).
(b) Matching on class edges and texture. This leads to better matching – compare
with the confusions arising from the problems in (a). (c) Modified ObjCut results are
much more accurate.
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4 Class Based Segmentation — ObjCut

In this section we illustrate how edge specific classification can be used to improve
the performance of an object segmentation algorithm. In particular we modify
the ObjCut algorithm of Kumar et al. [10]. ObjCut is a Bayesian method for
class based binary segmentation using Object Category Specific Markov Random
Field (MRF) and Pictorial Structures. In practice it is implemented in two stages:

1. Initialization–the edges and texture features in the image are used to deter-
mine the object’s position in the image (as in §3)

2. Segmentation–the match found is used to initialize the image segmentation.
Graph cuts are used to optimize the energy over an Object Category Specific
MRF.

We change this method to affect two terms in the ObjCut energy function
using class-based edge classification: (i) As in §3 we modify the initialization
by chamfer matching to only use class specific edges; and, (ii) We modify the
boundary term in the MRF to encourage segmentation along high contrast re-
gions, but only if they are relevant to the object class. This is described in more
detail below.

4.1 The Boundary Term

Following [2] the MRF used in ObjCut has a contrast dependent prior. This
means that a segmentation which introduces a change of state between pixels (i.e.
a change from foreground to background in this case) adds a cost to the energy,
but this cost is diminished if there is a strong gradient between the pixels (as
measured in the image/data). The inclusion of data-dependent pairwise terms
for pixels in a clique gives a substantial improvement in segmentation quality,
and the resulting MRF can still be minimized using graph cuts as described
in [2].

We are given an image D containing an instance of the object. The label
at each pixel x is denoted by mx. We want the algorithm to consider only
those edges that are relevant to the object class. Therefore, only those edges
of the MRF which coincide with object boundaries are weakened. Our edge
classification (§2) gives us a likelihood edge(x), for every pixel x (+ve for valid

Table 1. Average number of misclassified pixels per image

Object class ObjCut
ObjCut

+ modified MRF

ObjCut
+ modified MRF

+ chamfer
matching

Orange 2947 2457 256
Bottle 8121 8064 4077
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Fig. 5. More results. The performance of our method on some examples is shown on
the banana, orange and bottle datasets. This dataset, has a wide range of challenges
from pose, scale, clutter and lighting. In the presence of multiple instances, we use the
best Chamfer match as shown in Row 1. The segmentation using the initialization from
Row 1, 3 and 5, by the improved ObjCut is shown on Row 2, 4 and 6.

boundary, −ve otherwise). A new boundary term is defined, which adds to the
category specificity of the MRF:

ζ(D|mx, my) =
{

λ ∗ exp(−edge(x)) if edge exists
constant for no edge at x

(2)

λ is the parameter controlling the influence of this boundary term.
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4.2 Implementation

For ObjCut with the modified category specific MRF and shape model, the
optimal parameters must be found. A large number of parameters (around 20)
are identified for the model to be learnt. 5−6 control the relative weights between
the colour likelihoods, shape likelihoods, prior and the boundary terms, and
are most crucial for performance and strongly interrelated. A simple, gradient
descent is performed to optimize performance on the ground truth labelling over
this subset of important parameters. Subsequently, the other parameters can be
individually optimized in a similar manner. We start with large step sizes for
gradient descent and reduce them as we refine our estimates.

4.3 Results

The performance is measured by the number of misclassified pixels in the test
data with respect to the manually segmented ground truth. Table 1 summarizes
the results for two object classes.

We choose 23 images with single oranges for optimization with respect to
ground truth. The basic ObjCut (optimized for performance) yields segmen-
tation over 22 out of the 23 images with an average misclassification of 2947.2
pixels per image. (Note: Each image has an average of 90, 000 pixels). ObjCut
with a modified MRF (with the boundary term using only relevant edges) yields
segmentation over 22 images with an average misclassification of 2457.3 pixels
per image. The final ObjCut with modifications at both the Chamfer match-
ing (top) and MRF (low) levels yields segmentations over all of the 23 images
over which we are optimizing. The per image error reduces drastically to 255.5
pixels per image. Note: Each image has 90, 000 pixels on an average. For the
orange class, we get visually correct segmentations for 47 out of 50 images. For
the bottle class, we get 57 correct segmentations out of 90 images. The banana
dataset is our most challenging dataset, owing to the wide shape variations and
image clutter. We get good segmentations of around 37 out of 60 images. While
both our edge based modifications improve ObjCut, the use of relevant edges in
chamfer matching makes the more significant difference (see figures 4,(c) and 5).

5 Conclusion

We have demonstrated the advantages in using class specific edges both for
Chamfer matching and segmentation. However, the implications of such class
specific edge labelling are many fold — since any algorithm for object classes
using edges can now be improved. Examples include tracking, segmentation [22]
and recognition [5,14,19]. Of course, the performance of the classifier can be
improved and we are currently investigating other feature vectors and classifiers
such as boosted trees [24]. We are also interested in finding efficient methods for
parameter optimization. This is important for optimal results with algorithms
like ObjCut and for experimentation with new kernels.
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