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Abstract. Computer Vision theory is firmly rooted in Projective Ge-
ometry, whereby geometric objects can be effectively modeled by homo-
geneous vectors. We begin from Gauss’s 200 year old theorem of least
squares to derive a generic algorithm for the direct estimation of homoge-
neous vectors. We uncover the common link of previous methods, showing
that direct estimation is not an ill-conditioned problem as is the popular
belief, but has merely been an ill-solved problem. Results show improve-
ments in goodness-of-fit and numerical stability, and demonstrate that
“data normalization” is unnecessary for a well-founded algorithm.

1 Introduction

Geometric objects which can be modeled by homogeneous vectors range from
implicit curves and surfaces, to the fundamental matrix describing epipolar ge-
ometry, and projective transformations such as camera matrices and homogra-
phies. Metric Vision tasks have real-time constraints, so it is critical to have fast
and robust techniques for the estimation of homogeneous vectors. The basis of
this paper is a plethora of seemingly unrelated techniques for the direct (i.e. non-
iterative) estimation of homogeneous vectors. Direct estimation techniques have
several advantages, namely, that the minimization yields the global minimum of
the cost function, and they are computed in a finite number of steps. Three of
the most commonly encountered methods for direct estimation are:

1. Normalization: The algorithm proceeds by normalizing the data, followed
by minimization of the algebraic error subject to a unit norm constraint [IJ.
While the method has the advantage of simplicity, Hartley notes that with-
out normalization, the algorithm is guaranteed to perform extremely poorly,
which indicates the algorithm is poorly founded, not ill-conditioned. The
unit norm constraint is typically justified by the homogeneity of the vector;
however, we show that it is rarely a mathematically justifiable constraint.
Specifically, for linear geometric models, the algorithm returns meaningless
results. An algorithm that cannot handle linear models clearly cannot suffice
for a generic methodology.

2. Invariant Fitting: This entails the least-squares minimization of algebraic
error subject to a geometrically invariant constraint. Invariant fitting was
originally proposed by Bookstein [2] to fit conics independent of the chosen
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coordinate frame, and was later adapted to fundamental matrix estimation
by Torr [3]. Other variations include fitting conics of specific types [4]. At
this point in time, algorithms are limited to these applications, since viable
invariant constraints must be quadratic [5]. This too corresponds to minimiz-
ing an algebraic distance, however, the results differ from the normalization
scheme because a different constraint is imposed.

3. Gradient-Weighted Fitting: Sampson [6] proposed that the so-called al-
gebraic distance weighted by its gradient would provide an improved metric
for fitting conics, although his approach to attempt to minimize said cost
function was iterative. Taubin [7] showed that an approximation to the min-
imum of the cost function can be found directly by generalized eigenvectors,
which is often referred to as Gradient-Weighted Fitting. Here we show that
while it has the potential to provide a better approximation, the algorithm is
fundamentally unstable from a numerical point of view; in fact, it is far too
unstable to yield useful results in Computer Vision applications (i.e. with
pixel coordinates). Introducing data normalization alleviates, but does not
rectify this instability.

In the present work, we derive a generic algorithm for the direct estimation
of homogeneous vectors which (i) has the goodness-of-fit properties of gradient
weighted fitting, however, with immeasurably improved stability, (ii) is largely
invariant to the choice of coordinate frame and (iii) circumvents the need for
data normalization. Simply put, it amalgamates the desirable properties of the
most relied-upon techniques for the direct estimation of homogeneous vectors.

2 Gauss’s Theorem of Least Squares

We hearken back to a two hundred year old theorem, Gauss’s theorem of least-
squares [8], which is central to estimation in the presence of uncertainty. Sadly,
we find that it is largely misused, and the original theorem all but forgotten, save
in a handful of Numerical Analysis literature. Gauss proposed various models
for errors in measurements; the most fruitful was exponential-based, providing a
realistic model that can be treated analytically. A measurement error is modeled
as a random n-vector, §, which behaves according to the probability distribution

PG) = (@m)"IA) " exp— 5TAS, (1)

where A is the n X n covariance matrix [9/T0]. This has come to be known as a
Gaussian distribution.

Least Squares as a Maximum Likelihood Criterion. Gauss begins with a
set of observations (i.e. measurements), which should conform to a linear model,
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Each error, e;, is assumed to be an independent random variable that follows the
Gaussian distribution, 1(e;) = hr~2 exp —h%e2, where h is a positive constant;
this assumes that all errors are mean-free and have the same variance. The
function (2 is proposed, £2 = []"_, ¥(e;), the motivation being that for a normal
distribution, the smallest error is the most probable: the function {2 should
therefore be maximized. This function gives rise to the principle of maximum
likelihood. Under the above assumptions, we have,

Q=h"r" 2" exp—h2 (el +e3+...+¢€2). (3)

Hence, to maximize the likelihood, {2, we must minimize,
n
A 2, 2 2 2
€=€1+62—|—...—|—6n=§ €5, (4)
i=1

the sum of squared errors. Gauss later proved that if the variances of the errors
are all scaled to unity, then the least squares solution is such that the estimation
errors have minimal variance. Summarizing the postulates:

1. Errors in measurements behave according to Gaussian distributions.
2. The errors are mean-free and scaled such that they have a unit variance.

The significance of the two postulates is clear. If the errors are not mean-free
and normally distributed with equal variances, the least-squares solution is no
longer a maximizer of the likelihood function f2.

3 Linear Models

Linear models of geometric objects in two, three, and n dimensions, are respec-
tively lines, planes, and hyperplanes. The following theory applies generally to
these models, but for simplicity and visualization, we specifically address lines
in the plane. The homogeneous equation of a line in the plane is given as,

plz=ax+by+c=0, (5)

where . .
p=[zyl] and z=abc] . (6)

In practice, we measure points (&, %), which do not lay on the line, but deviate
by some error which we model as the random variables (d,,d,), such that

(2,9) = (x4 b2,y + 0y)- (7)

For mathematical convenience, we model the random coordinate pair 6 = (J, dy)
as mean-free and correlated according to the Gaussian distribution,
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defined by the covariance matrix, A. Since the ideal point (x,y) fits the model,
we may write,
a(& —6g) +b(y —dy) +c=0. (9)
Rearranging yields,
aZ + by + c = ad, + bdy. (10)
The left hand side is the familiar algebraic residual error associated with a point
and a line, which we denote as, r,, such that

ra(Z, 7, 2) £ ai + b + c. (11)

The right hand side tells us how the error in the algebraic residual behaves
according to the random errors in the point coordinates (d5, dy); we denote the
right hand side as 75, the stochastic form of the residual, such that

75(8,0y,2) £ ad, + bS,,. (12)

Since we have assumed a mathematical model for the error (d,4d,), we may
analytically compute the expected value and variance of the error [9],

= /Oo /OO P(8,,3,)7s (0, 6,,2)d3,dd, = 0, (13)

and
Var (r / / P(02,0,)(rs (6,6, 2) — E[r])*dd,ds, (14)
= 02045 + 2abogy + b0y, (15)

There are a few important points to note:

1. The stochastic form of the residual is independent of the constant term, c,
hence so are the mean and variance. In the case of some linearized models,
such as homographies or camera matrices, there are multiple constant terms.

2. The variance is clearly a quadratic form in the statistically dependent coef-
ficients, which will always be the case since variance is quadratic.

In light of these facts, we first partition the vector of unknowns into its statisti-
cally dependent and independent terms as

z = {ZA} where for the line, z4 = {a] and zp =c. (16)
Zp b

As will be seen, this partitioning is critical, although it is largely ignored in the

literature. We may therefore write the variance of the error, r, as the quadratic

form, Var (r) = z4Az. Now, if we are to properly implement a least-squares

solution, each error should be weighted such that it has unit variance. We hence

write the i*? error as,

T
o T b,z

€; = = (17)

\/Var (r:) \/ZE/\iZA7



Direct Estimation of Homogeneous Vectors 923

where the notation €, is to stress the fact that é # e, but is however an error with
unit variancdl. We may now use the least-squares criterion; the cost function is

R

The function € is now in appropriate form such that minimizing e corresponds
to maximizing {2.

(18)
i A

On the Unit Norm Constraint. For argument’s sake, if we assume each error
has the identity matrix as covariance matrix, i.e., A = I, then the variance of
each residual is Var (r) = a? + b2. The variance is clearly a function of the line
direction; to ensure that the variance of the errors is independent of the line
direction, we impose the constraint, a4+ b? = a? = constant. The resulting vari-
ances of the residuals are constant with respect to the direction of the line. This
uncovers the first fault in imposing a unit norm constraint on a homogeneous
vector. For the line, this would mean a? + b2 + ¢ = 1. The resulting variance of
each residual would be, Var (r) = 1 — ¢?; since c is the scaled distance of the line
to the origin, this means that the variance of the error is functionally dependent
on the position of the point in the plane, which is preposterous.

3.1 Minimizing the Least-Squares Cost Function

For convenience of manipulation, the cost function e in Equation (I§]) can be
written in matrix form, namely, as the squared 2-norm of a residual vector, i.e.,

€(za,2zB) = |WaDazs + WADBZBHg ; (19)

where ) 1
Wy = diag ((zzAle)72 7...,(zi/\7le)7f"), (20)

and the subscript indicates the functional dependence W4 = W4(z4). For the
case of the line, we have

Da=|: : and Dp=|:|. (21)
T Un 1
The residual vector is linear in zp, hence, € is minimal when,

ZB:—(WADB)+WADAZA, (22)

where (W4Dp)" is the Moore-Penrose pseudo-inverse [IT]. Substituting Equa-
tion (22)) into the cost function, it takes the general form,

! This variance weighted error is also known as the Mahalanobis distance from the
point to the line, plane, or hyperplane.
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E(ZA) = HWADAZA_WADB (WADB)JFWADAZAH (23)

2
2
Note the functional dependence of the cost function; this reduction corresponds
to an oblique form of the Eckart-Young projection onto the constrained portion
of the residual vector [12]. The reduced cost function corresponds to the Variable
Projection (or VARPRO) method, whereby proof that z% attaining the global
minimum of €(z4) with zp given as in Equation (22)) is equivalent to finding the
global minimum of the function ¢(z4,zp) can be found in [I3]. Minimizing the
cost function depends on the nature of the covariance matrices; we enumerate
the three special cases as follows:

Identical Covariance Matrices. If all covariance matrices are identical, then

1
the weighting matrix W4 can be written as Wy = (Z’};/\ZA) ? I. The cost func-
tion simplifies to,

IDazs —DpDfDazal; _ 25D (1 - DpDF) Daza

24
ZE/\ZA ZE/\ZA ’ (24)

€ =

If we define the matrix S £ D} (I — DpD}) D4, then the cost function takes the
form .

. Z ¥Sz A ’ (25)

z,\z 4

which is known as the Rayleigh quotient [I1]. Indeed, we are interested in the
extrema of this quotient, which in turn will yield the global minimum of the
cost function. The extrema are, in fact, the eigenvalues and eigenvectors of the
corresponding generalized eigenvalue problem,

(S —eN)za = 0. (26)

The global minimum is attained with the generalized eigenvector, z%, corre-
sponding to the minimum eigenvalue, €. Previously, to solve this problem it was
recommended to apply an affine transformation to the data such that the covari-
ance matrices were identity matrices, then perform a geometric minimization [9].
Clearly, this solution is algorithmically simpler and more direct.

Approximately Equal Covariance Matrices. In the ideal case, the variance
of each residual is unity, which poses difficulty when each covariance matrix is
unique. We may, however, impose the constraint that on average, this is the
case. This amounts to the assumption that A; =~ E[A] for i = 1,...,n. Given the
variance of the i*" residual, we compute the mean variance to be

1 & IS
E[Var (r)] = N Zzﬁ/\iz,q =z} <n Z/\i> ZA, (27)
i=1 i=1

by which we define, Ay, £ E[A] = ! " | A;. Solving the eigenvalue problem
in Equation (28) with A = A, will, on average, weight each error correctly.
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This minimization can be justified as an approximate solution to the global
minimum by the fact that it yields the exact global minimum when all covariance
matrices are the same. The bias of this solution can be calculated along with the
solution, since each covariance matrix deviates from the mean by oA = Ay, — A,
and therefore the bias, 3;, of an estimate z4 is,

5i=Z£(Am_Ai)ZA 1

zE/\mzA ZEAmZA.

T/\‘
Zalhiza (28)

If A; = Ay, then clearly §; ~ 0.

Unique Covariance Matrices. It may be that each covariance matrix varies
dramatically and the bias will be large. This case requires a non-linear algorithm
to find the true global minimum of the cost function €(z 4 ). The formulation of the
cost function in Equation (23]) enables the use of Gauss-Newton minimization.

4 Linearized Models

We investigate the estimation of homogeneous vectors of linearized models using
the example of a circle, since it is equivalently a plane fitting problem in three
dimensions. Geometrically speaking, fitting a linearized model is in general a
hyperplane fitting problem. The homogeneous equation of a circle is given as

a(m2+y2)—|—bx+cy+d:0. (29)
Substituting the model coordinates (x,y) = (& — d5,§ — dy) and rearranging,
a (% +9%) +bi + cf + d = —ab} — ab;, + aidy + aféy + b, + cby,.  (30)

That is, the functional dependence of the algebraic residual on the random vari-
ables ¢, and 6, is described as,

75 (0, 6y, 2,9, 2) 2 —ad2 — aéi + azdy + aydy + béy + cby. (31)
For simplicity, we assume that the errors in the point coordinates behave with
covariance matrices, A = oI, although general covariance matrices may also be
used. The mean value and variance of the residual error are,

E[r] = —2a0? (32)
and
40* 4 02 (AQ + g)z) 2022 202§ [a
Var (r) = z4Cza = [a b (] 2027 o2 0 b (33)
202 0 o2 c

The following are artifacts of linearizing non-linear problems, all of which un-
dermine Gauss’s least-squares theorem:
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1. The variance of the residual is dependent on the measured point (Z, 3). That
is to say, the variance of the residual depends not only on the error in the
measured quantity, but also on measured quantity itself.

2. The random variables ¢, and J, follow Gaussian distributions, but the terms
62 and 63 in Equation (31]) do not. Specifically they behave according to the
Bessel function of the second kind, Ky [10].

3. The residuals are not mean-free; this is an artifact of the non-Gaussian terms
62 and 65.

It is these effects which link the common direct estimation techniques to Gaus-
sian Least Squares:

Relation to “Normalization”. Hartley’s argument for normalization was that
it improves the conditioning of the design matrix [I], which is indeed true; how-
ever, this is not the true problem at hand. From a statistical point of view,
normalization improves the error structure of the statistically dependent por-
tion of the design matrix, D 4. In consequence, the problem which normalization
aims to correct (unbeknownst to its propenents) is the dependence of the vari-
ances of the residuals on the measured point. For argument’s sake, say we apply
normalization to the circle fitting problem. We transform the data such that the
centroid is the origin, and } Y7 | (&% + §?) = V2. If we solve the minimiza-
tion with the unit norm constraint, z'z = 1, then the average variance of the
residuals behaves according to the quadratic form, E[Var (r)] = zTC'z, with

C' = diag (404 +4v202, 02, 02, 0) (34)

The average variance of the residuals is consequently bounded by the eigenvalues
of the matrix C’, which are \(C') = 0,02, 02,402 (0 + +/2). The bound on the
average variance is therefore

0 < E[Var ()] < 40%(0* + V2). (35)

Normalization, hence bounds the average variance of the residuals to values
close to the actual noise level of the data. By this argument, circle fitting would
be better implemented with data normalization followed by partitioning the
statistically dependent and independent portions, which would correspond to the
method of Nievergelt [14]. This would make the error behaviour of the residuals
closer to an isotropic distribution; however, Equation (B8] reveals the problem
that the result quality would be dependent on the choice of the scaling factor.

Relation to “Invariant Fitting”. The methods of Bookstein [2], Torr and
Fitzgibbon [3], and Harker et al. [4] effectively partition quadratic terms from the
linear and constant terms. That is, they effectively partition the non-Gaussian
errors from the Gaussian and error free portions of the residual vectors. However,
what is not treated is the fact that each residual depends on the measured point
itself. This means that the residuals are each weighted irregularly (i.e. by some
weighting not related to its variance), which is why the methods often lead to
inappropriate fits. Effectively, the algorithm circumvents the normalization step,
but is still minimizing an algebraic error.
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Relation to “Gradient Weighted Fitting”. To weight each algebraic error
by the local gradient is equivalent to weighting each error by the first order
Taylor approximation to its variance under the assumption of isotropic errors in
the coordinates. Hence, the Gradient-Weighting scheme minimizes the algebraic
error subject to the constraint that the average first order approximation to the
variance is equal to unity. There is, however, an important caveat: the gradient
constraint is degenerate because the derivative of the constant term is zero. This
leads to gross numerical instability in the generalized eigenvectors [I1], making
the results heavily dependent on the conditioning and configuration of the data.
This instability produces unusable results even in cases when the data exactly
fits the model. Taubin himself noted that the method would yield useless results
in some cases, but obviously did not correctly identify the cause as poor problem
formulation [I5].

5 Stable Direct Statistical Fitting

We previously showed that with “data normalization,” the average variance of
the residuals is bounded, but not constrained. In a manner analogous to fit-
ting lines to heteroscedastic data (Section ), we may perform the minimization
subject to the constraint that the average variance is unity. This assumes that
each individual covariance matrix is well approximated by the average covariance
matrix. This corresponds to solving the minimization with

224+93 31 0 1
Dy = : Do and Dp=|:| £1, (36)
22 4+ 92 2 U 1
with the constraint matrix
n [4o* + 402 (332 + 3}2) 20%%; 20%9;
]_ o5 ) ) 5
C= > 202 o 0 |. (37)

i3 2029, 0 o?
The related eigenvalue problenE is
D} (I—=117) Daza = eCza. (38)

This approach is numerically stable in comparison to the standard Gradient
Weighting scheme by the following reasoning: For the case of a circle, some ma-
nipulation shows that, det C = 40° (¢ 4 Var () 4+ Var (7)). This shows that
the constraint is, analytically speaking, not degenerate unless the data itself is
ill-conditioned (i.e. very “point-like”). With the Gradient Weighting scheme, in
contrast, the constraint is always degenerate making the eigenvectors always un-
stable. Worse yet, is if the data fits the model then both matrices are degenerate.
This means that the algorithm is most unstable for best-case data sets, which is
hardly desirable.

2 This should be solved using the GSVD, but space limitations preclude just discussion.
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Summary of the Algorithm. The algorithm can be summarized as follows,
whereby steps 1 and 2 are undertaken once, offline, whereas steps 3 and 4 are
the online portion of the fitting algorithm.

1. Formulate the linearized model of the geometric object, dTz = 0.

2. Partition the coefficient vector into its statistically dependent and inde-
pendent portions, d4z4 + dLzp = 0, such that the analytic expression
for the variance of the i*? residual can be written as the quadratic form,
Var (r;) = z5C;z4.

3. Compute the average covariance matrix, Cy,, and solve the generalized eigen-

value problem,
D} (1= DpD}) Daza = eCrnza. (39)

4. Backsubstitute the minimizing eigenvector to find zg = —DJ]g,DAzA.

6 Numerical Testing

To test the new algorithm, we have applied it to the Metric Vision task of
material tracking and measurement. Metric calibration of the planar scene is
accomplished with circular targets to determine the homography. Figure [Il shows
the scene, and the results of circle fitting. The gradient-weighted circle fit is
useless due to the aforementioned numerical instability.

The position, orientation and dimensions of the steel plate can be determined
by fitting a fourth order curve, or quartic. In Figure 2] the left hand images
show the results of each algorithm to the edge data obtained with a contouring
algorithm. The right hand images show the quartic fits after perturbing the
data with a small amount of Gaussian noise (¢ = 1pixel). This test shows
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Fig. 1. (LEFT) The Metric Vision task of material tracking and measurement in a steel
mill. (RIGHT) Circle fitting to a calibration target. The Gradient-Weighted solution
(——) is nonsense due to numerical instability. All other algorithms (—), including a
non-linear geometric fit, return the same circle.
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Fig. 2. Fitting quartic curves to determine the position, orientation, and dimensions
of steel plates. Row-wise are the solutions obtained with “Gradient-Weighting”, “Nor-
malization”, and the New Method. In the left column the curves are fitted to the edge
data obtained by contouring. In the right column, a small amount of Gaussian noise
(o = 1pixel) is added to demonstrate the sensitivity of each solution.

that the gradient-weighting and normalization solutions are very sensitive to
perturbations in the data, which indicates instability of the solution vector. The
new algorithm is not only insensitive to the large values and offsets of the image
coordinates, but it is also relatively insensitive to Gaussian noise perturbing the
coordinates.

7 Conclusion

We have proposed a generalized approach to the direct estimation of homo-
geneous vectors which has improved goodness-of-fit properties and numerical
stability, whilst circumventing data normalization. The normal vector of the
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hyperplane fit is constrained to a hyperellipsoid, which is aimed at statistically
regularizing the error metric in the space of linearized models.
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