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ABSTRACT
Recognizing a person’s motion is intuitive for humans but
represents a challenging problem in machine vision. In this
paper, we present a multi-disciplinary framework for rec-
ognizing human actions. We develop a novel descriptor,
the Human Action Image (HAI), a physically-significant,
compact representation for the motion of a person, which we
derive from Hamilton’s Action.1 We prove the additivity of
Hamilton’s Action in order to formulate the HAI and then
embed the HAI as the Motion Energy Pathway of the Neuro-
biological model of motion recognition. The Form Pathway
is modelled using existing low-level feature descriptors based
on shape and appearance. Finally, we propose a Weighted
Integration (WI) methodology to combine the two path-
ways via statistical Hypothesis Testing using the bootstrap
to do the final recognition. Experimental validation of the
theory is provided on the well-known Weizmann and USF
Gait datasets.
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1. INTRODUCTION
Interpreting how people walk is intuitive for humans. From
birth, we observe physical motion in the world around us
and create perceptual models to make sense of it. Neurobio-
logically, we invent a framework within which we understand
and interpret human activities like walking [2]. Analogously,
in this paper, we develop a computational model that seeks
to understand human motion from its neural basis to its
physical essence. Human motion, including gait, the study
of the motion of the walking style of humans, has been ex-
amined via motion methods in computer vision [3, 4, 5, 6].

∗Corresponding author
1Action can refer to both the usual Computer Vision mean-
ing (as primitives of activities humans perform), as well as
its use in the Physics community as Hamilton’s Action [1].
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Figure 1: Feature extraction in V1 and then di-
vision along Motion Energy Pathway (Dorsal) and
Form/Shape Pathway (Ventral)

In this paper, we develop the Human Action Image (HAI),
a physically-significant, compact representation for the mo-
tion of a person, which we derive from first principles in
physics. We embed the HAI within a neurobiologically-
inspired model for the final motion recognition, thus provid-
ing a unifying framework for the analysis of human motion.

2. RELATED WORK & CONTRIBUTIONS
Recent work in Neurobiology [7, 8] suggests the brain ex-

amines both the form aspects of motion (e.g., shape, colour,
orientation, etc.) as well as the motion energy (the kinemat-
ics and dynamics) when it attempts motion recognition. Vi-
sual processing in the brain, as shown in Figure 1, bifurcates
into two streams at V1: a Dorsal Motion Energy Pathway
and a Ventral Form/Shape Pathway [8, 9]. This neural basis
for motion recognition has garnered much attention of late
and [10] used a pseudo-Hamiltonian as the equivalent of the
Motion Pathway and a Multiple Hypothesis Testing model
as the final integration for the two pathways.

However, that Multiple Hypothesis Testing approach is a
preliminary framework that is not able to model the variabil-
ities in the inference process of each pathway; our methodol-
ogy in this paper, on the other hand, incorporates a sampling-
based approach using the bootstrap. In this work, we focus
solely on the problem of analyzing the motion of an individ-
ual and propose a computational model for integration as
well as a physics-based signature which has a strong physical
significance and is a generalization of much previous work in
human motion and gait analysis [3, 4, 5], as discussed below.

In the Appendix, we prove the additivity of Hamilton’s
Action and we use the additivity of the Action to develop
the Human Action Image (HAI), a spatio-temporal gait
representation in which we create an average silhouette im-
age that assigns an intensity value to each point on a per-
son’s contour. In addition, it can be shown that the Action
is invariant to affine transforms; this allows for moderate
view and scale invariance of HAI. HAI thus generalizes the



motion analysis approaches of Motion Energy Image (MEI)
[3], Motion History Image (MHI) [4], and Gait Energy Im-
age (GEI) [5], which are widely used in gait recognition and
represent an integration of image intensities over an image
sequence, to a physics-based, compact representation, the
HAI.

Our HAI can be used to recognize individuals on the basis
of their gait as well as human actions, in general; therefore,
it is a descriptor for human motion as well as gait. HAI
unifies and extends ideas from MEI, MHI, and GEI and
encapsulates the dynamic motion element of gait; thus, we
use our physics-based HAI to represent the Motion Energy
Pathway of the Neurobiological model of motion recognition,
which provides a unifying framework for gait recognition.

We also propose a computational model for Integration,
Weighted Integration (WI), which does statistical Hy-
pothesis Testing using the bootstrap [11]. The bootstrap is
used to ensure reasonable limits and allows WI to make the
final Integration/gait recognition decision. WI also ensures
that the Integration does no worse than either of the two
pathways individually. The bootstrap is used to find the
variance of a statistic on a sample; the statistic, in our case,
is the quantiles. Our WI approach also builds upon recent
work in the neurobiological community, which shows the
dorsal and ventral processes could be integrated through a
process of feature integration [12] or biased competition [13,
14] as originally outlined by [15]. Also, in the Appendix, we
prove the additivity of Hamilton’s Action which allows us to
develop the HAI from the Action and to define distance mea-
sures on the HAI, our representation for the Motion Energy
Pathway.

In addition to motion analysis, the Neurobiological model
of motion recognition requires a Form Pathway. Most mod-
ern approaches in activity recognition also involve some kind
of image analysis of form. In fact, image analysis of the form
(based on shape, colour, orientation, etc.) is a well-known
area in activity recognition [16, 17]. Our methodology pro-
vides flexibility in the Form Pathway since new approaches
in low-level feature extraction can be employed easily within
our framework. Indeed, Form can be represented as not just
shape but any method like Bag of Video Words, Spatio-
temporal Interest Points, etc., since we examine all of human
motion with HAI.

For the present work, we use the methodology from [18]
for the Form Pathway. It presents an approach for compar-
ing two sequences of deforming shapes using both parametric
models and nonparametric methods, where we use the latter.
They apply this algorithm for gait-based human recognition
on a subset of the USF dataset by exploiting the shape defor-
mations of a person’s silhouette as a discriminating feature
and they also provide results for motion recognition. Sig-
nificant effort has been devoted to the study of human gait,
driven by its potential use as a biometric for person iden-
tification, as the comprehensive review on gait recognition
found in [19] shows and any of these pre-existing approaches
can also be used in the Form Pathway.

Our main contributions are thus:

• Development of a novel spatio-temporal human motion
descriptor, HAI

• Development of a general framework to recognize hu-
man actions that utilizes WI integration via the boot-
strap for sensitivity analysis in the integration of mo-

tion and form information

• Proof of Additivity of Hamilton’s Action

3. HUMAN ACTION IMAGE
In this section, we introduce a special extension of the

Hamiltonian framework as applied to the problem of gait
recognition. Compact, image-based representations of gait
have been an active area of research, where MHI, MEI, and
GEI are three popular descriptors [3, 4, 6]. Extending cur-
rent approaches that use MHI, MEI, and GEI, as well as
the analysis of the dense optical flow by [20], we develop a
spatio-temporal gait representation, the Human Action Im-
age (HAI ), which builds upon all three of these but is also
based upon the fundamental Hamilton’s Principle of Least
Action. Hamilton’s Principle of Least Action is built upon
the idea of the Action of a system observed in video and is
usually denoted as:

S ≡
ˆ t2

t1

L(q(t), q̇(t), t)dt (1)

with q, the generalized coordinates 2, and L, in this case,
the Lagrangian which, for a conservative system, is defined
as:

L = T − U (2)

with T (the Kinetic Energy) and U (the Potential Energy)
derived directly from the trajectories, (x, y, t), as described
in Section 4.1. Please see [21] for more on Hamilton’s Ac-
tion as well as the Sethi Metric (S-Metric). We use this
to demonstrate the additivity of Hamilton’s Action (in the
Appendix), which we employ in the development of the HAI
and its distance measure. However, before describing the
HAI, it would be useful to briefly review the basic concepts
behind MEI, MHI, and GEI.

MHI and MEI were proposed by [4] as formulations for hu-
man movement recognition. Both MEI and MHI are vector-
valued images where the vector value at each pixel is a func-
tion of the motion properties at that particular location in
an image sequence. MEI is a binary image which represents
where motion has occurred in an image sequence:

MEIτ (x, y, t) =

τ−1⋃
i=0

D(x, y, t− i) (3)

where D(x, y, t − i) is a binary sequence indicating regions
of motion, τ is the length of time, t is a particular moment
in time, and (x, y) are the values of the 2D image coordi-
nates. In similar fashion, MHI is a grey-level image which
represents how a motion region in the image is moving:

MHIτ (x, y, t) =

{
τ, if D(x, y, t) = 1;

max{0,MHIτ (x,y,t−1)−1},otherwise.

(4)
Similarly, GEI [6] is a robust, widely used spatio-temporal

gait descriptor for gait recognition. GEI builds upon the

2Generalized coordinates are the configurational parameters
of a system; the natural, minimal, complete set of parame-
ters by which you can completely specify the configuration
of the system.



Figure 2: Examples of the Human Action Image (HAI) formed by averaging the row of silhouettes, with
darker blues representing higher Action values and lighter blues representing lower Action values for points
on the contour

approach of [4], who proposed MEI and MHI formulations
for general human movement recognition. Both MEI and
MHI assign a value to each pixel as a function of the mo-
tion properties at that location in an image sequence. GEI
also creates an average silhouette image that assigns an in-
tensity value to each pixel; it does so by starting with a
size-normalized and horizontally-aligned binary silhouette,
B(x, y, t), and defines a grey-level GEI, GEI(x, y), as:

GEI(x, y) =
1

N

N∑
t=1

B(x, y, t) (5)

where N is the number of frames in a complete cycle of the
sequence, t is the frame number of the sequence, and (x, y)
are the 2D image coordinates. Although, in general, MEI
and MHI are different motion representations than GEI, a
correspondence between the binary version of GEI and a
modified MEI can be shown [5].

In this work, we use the ideas behind GEI, MEI, and MHI
as motivation to extend our physics-based approach and gen-
eralize them to a physically-significant Human Action Im-
age (HAI). The GEI is an averaged silhouette summed over
the temporal sequence; Hamilton’s Action is a similarly inte-
grated quantity over a specific time interval, as shown in (1).
We combine these ideas by computing a physically-relevant
pseudo-Action for each point on the human silhouette con-
tour or body parts in a given cycle (described in Section 4.1)
as:

HAI(x, y) = HAI(q) =
1

N

ˆ N

t=1

L(q(t), q̇(t), t)dt (6)

where N is again the number of frames in a complete cycle
and q and q̇ are the generalized coordinate and generalized
velocity, respectively (L is again the Lagrangian). Following
the example of [5, 22], we measure the similarity between
the gallery (training) and probe (test) templates of two gait
sequences, HAIg andHAIp respectively, by calculating their
distance as the normalized matching error:

D(HAIg, HAIp) =

∑
x,y |HAIg(x, y)−HAIp(x, y)|√∑
x,yHAIg(x, y)

∑
x,yHAIp(x, y)

=

∑
q |HAIg(q)−HAIp(q)|√∑
qHAIg(q)

∑
qHAIp(q)

(7)

where
∑
x,y |HAIg(x, y)−HAIp(x, y)| is the matching er-

ror between two HAIs (sum of the magnitudes of the dif-
ference between two HAIs) and

∑
x,yHAI(x, y) is the total

energy/action in a HAI.
Because HAI mirrors the GEI, MEI, and MHI formula-

tions and representations so closely, all the extensions and
proposed algorithms for them should be immediately exten-
sible to HAI, as well. In addition, we can use distance or
similarity measures computed using HAI directly in our Inte-
gration framework by combining that similarity distribution
with one of the standard shape/form methodologies, as de-
scribed in Section 4. We show an example of the HAI in
Figure 2 and show experimental results of using the HAI as
the motion pathway and shape sequence for the form path-
way in the Integration in Section 5.

4. PROPOSED FRAMEWORK FOR HUMAN
MOTION ANALYSIS

We cast our physics-driven compact representation of the
gait of a person, the HAI, within the neurobiologically-inspired
infrastructure for gait recognition, as shown in Figure 3, by
integrating the motion signature of the person’s gait (the
HAI) for the Dorsal Pathway and shape features for the
Ventral Pathway via the Integration module. As can be
seen there, the task we have is to take a probe/test query,
containing the motion of a subset of the people from the
gallery/database, and match the motion of each person in
the probe to the gallery/database. We start off by comput-
ing the HAI for the Motion Energy Pathway for each person
in the probe. Simultaneously, we compute the shape infor-
mation for the Form Pathway for each person in the probe.
These are then compared, individually, with each person in
the gallery. These normalized similarity measures are then
sent to the Integration module which does Weighted Inte-
gration using the bootstrap.

4.1 The Motion Pathway: Human Action Im-
age

Our approach is to get the tracks for each point on the
contour of each person, from which we compute T (Kinetic
Energy, KE) and U (Potential Energy, PE), and use that to
get the HAI, as shown in Figure 4. Thus, we use the video to
gain knowledge of the physics and use the physics to capture
the Motion Energy of the person being observed via the HAI.
In order to compute the HAI, we use the tracks from the
video to compute the kinematic quantities that drop out of
the Lagrangian formalism, thus giving a theoretical basis for
their examination from (x, y, t).

We compute the Lagrangian and then the pseudo-Action
as in [10] by using T = 1

2
mv2o and U = mg(yb− ya), derived

directly from the trajectories, (x, y, t). Note that the La-
grangian can be computed in either the image plane, yielding
the Image Lagrangian (which composes the pseudo-Action),



Figure 3: Proposed Framework for motion recognition by searching a database for a query: final recognition
decision is made in the Integration module

or in the 3D world, giving the Physical Lagrangian (which
composes the actual Action), depending on the application
domain and the nature of the tracks extracted. We thus use
the motion trajectories to calculate this physically-relevant
pseudo-Action and the more information we have about the
objects in the video, the more physically significant this
pseudo-Action becomes. Regardless, though, this pseudo-
Action allows us to extract an abstract representation of
the motion of the underlying physical systems we consider in
video and allows us to build a physics-driven pseudo-Action
to represent a video sequence.

The HAI does require tracking of contour points; however,
adjacent points approximate the same trend and we are try-
ing to capture the uniqueness in the trend in the pseudo-
Actions we compute. This is exactly the same as for MHI,
MEI, and GEI as our work generalizes that methodology
using the Hamiltonian formulation; thus, the same assump-
tions and extensions applicable to MHI, MEI, and GEI ap-
ply to HAI, as well. On the other extreme, if more detailed
information is available, we can compute more complex in-
teractions between the points on a person’s contour/body
joints or the kinematics of the different body parts when
we calculate the pseudo-Action, which can approximate the
actual Action in the case of full knowledge. While the HAI
will, in general, not be sufficient for complete activity recog-
nition, it formalizes a first level of discrimination using only
the motion information and provides a framework for theo-
retical extensions.

4.2 The Form Pathway: Shape-based Features

Since the Form Pathway is posited to have orientation
detectors and also recognizes body shapes and colour [23], we
use well-established methods in machine vision to calculate
exactly these features in order to develop its computational
representation. For the present work, we use shape features
with Dynamic Time Warping (DTW). Also, since we are

analyzing video, we consider the shape over a sequence of
frames.

For modelling the sequence of shapes for an activity, we
use shape features with DTW; in particular, we use the ap-
proach in [18], which presents a method for comparing two
sequences of deforming shapes using both parametric models
and nonparametric methods. In their approach, Kendall’s
definition of shape is used for feature extraction. Since the
shape feature rests on a non-Euclidean manifold, they pro-
pose parametric models like the autoregressive model and
autoregressive moving average model on the tangent space.
The nonparametric model is based on DTW but they employ
a modification of the DTW algorithm to include the nature
of the non-Euclidean space in which the shape deformations
take place. They apply this algorithm for gait-based human
recognition on a subset of the USF dataset by exploiting the
shape deformations of a person’s silhouette as a discriminat-
ing feature and then providing recognition results using the
nonparametric model for gait-based person authentication.

4.3 Integration
Given a set of distance scores of a probe sequence against

all elements of the gallery, Hypothesis Testing lets us choose
between the motion and form features or come up with a
combination of them, with the bootstrap being used to find
the variance of the quantiles on the sample. Building upon
recent work in the neurobiological community, which shows
the dorsal and ventral processes could be integrated through
a process of feature integration or biased competition, we
propose a computational model for the Integration of the
two pathways by implementing this Integration in a statisti-
cal Hypothesis Testing framework, creating a Weighted Inte-
gration (WI) model (Ventral values are weighted by Dorsal
values and does no worse than Ventral values), using the
bootstrap, which is a better method than simple hypothesis
testing since it allows resampling and is thus able to model
the distributions. Although the exact mechanism of the In-



Figure 4: Tracks to Hamiltonian to HAI

tegration of these pathways is an open question in Neurobi-
ology [7], we are motivated by the neurobiological models in
the development of the WI, which provides a natural frame-
work for the integration of image and motion components
(however, in this paper, we do not claim that our method
provides a model for the neurobiogical integration mecha-
nism).

The bootstrap is used to find the variance of a statistic on
a sample; the statistic, in our case, is the quantiles. After
a sample is collected from an experiment, we can calculate
a statistic on it (like the mean or quantiles, for example),
and then use the bootstrap to figure out the variance in that
statistic, e.g., via a Confidence Interval (CI). A CI is a range
of values that tries to quantify the uncertainty in the sample
and can be two-sided or one-sided, as shown in Figure 5;
e.g., the 95% 2-sided confidence interval shows the bounds
within which you find 95% of the population (similarly for
the 1-sided upper and lower confidence bounds). Confidence
intervals are also equivalent to encapsulating the results of
many hypothesis tests [24].

The bootstrap itself works by re-sampling with replace-
ment, as described in Figure 6. One way to estimate confi-
dence intervals from bootstrap samples is to take the α and
1−α quantiles of the estimated values, called bootstrap per-
centile intervals, where α is the standard significance level.
For example, for the upper quantile, this confidence interval
would then be given as CI = (qulower, q

u
upper), with lower =

bNα/2c and upper = N − lower + 1, where N is the num-
ber of bootstrap samples and (qulower, q

u
upper) are the lower

and upper critical values of the bootstrap confidence interval
bounds.

Weighted Integration uses a two-sided upper bound CI,
where the Form values are weighted based on the Motion
values; if the observed distance value of the Form and the
Motion is lower than the lower distance quantile obtained
from the bootstrap quantile analysis for both, then the value
is set to 0; if either is higher than the upper quantile analysis,
it is set to the max value; all other values are set to the
unaltered Form value. In this way, WI ensures that it always
does no worse than the Form. This can be inverted trivially
to ensure that the Integration does no worse than either
pathway individually.

5. EXPERIMENTAL RESULTS
In the experiments that follow, we show that the Inte-

gration mechanism helps reduce the search space (using the
Weizmann dataset) and also helps with overall recognition
when either the motion or the form (or both) pathways fail
or under-perform. We show how, in the USF Gait dataset,
although the form model performs well, when we integrate
that with the motion energy computational model, it im-
proves the overall performance; although both do reasonably
well on their own, the integrated version does better than
either alone.

We conduct experiments on the Weizmann dataset to demon-

Figure 5: 2-sided and 1-sided Confidence Intervals
(CI): the first diagram shows a 2-sided CI showing
the confidence interval in the middle and the critical
regions to the left and right; the second diagram
shows a 1-sided lower bound with the critical region
to the left; the final diagram shows a 1-sided upper
bound with the critical region to the right; the E
just indicates the mean expectation value.

strate how the integration afforded by WI helps reduce the
search space, as well as the hierarchical scheme for recogni-
tion, as shown in Figure 7. Also, the flexibility of the WI
approach allows our framework to accomodate any method
to compute the Form features. Please note, in these experi-
ments, we have just used the basic form methodology since
specialized feature sets is not the focus of this work. We can
utilize any form methodology that allows us to generate sim-
ilarity scores between a probe query and a video database
of clips.

Also, these results should not be compared to absolute
recognition scores but rather as the gain over the image-
based approach and the pruning of the search space in our
hierarchical approach. Since gait recognition and activity
search in video is becoming a very important problem, we
expect this work to be an important contribution in this
direction.

The entire code for the project will be made available to
the research community once the paper is accepted.

5.1 Experimental Background

Figure 6: Overview of Bootstrap: the original sam-
ple is re-sampled (with replacement), say, 1000
times. In each re-sampling, a Confidence Interval is
computed based on that sample. Eventually, the fi-
nal Confidence Interval is estimated from either the
Bootstrap Confidence Interval (on the CI computed
on each re-sample) or the means (again, of the CI
computed on each re-sample)



Figure 7: Data Clustering via Motion Pathway, then Form Pathway, and finally Integration. As seen here, the
Motion correctly isolates pjump and jump; Form further clarifies bend, jack, side, and run; finally, Integration
discerns wave1 and wave2, with skip and walk remaining grouped. Please also refer to Figure 9

For all of these experiments, tracking and basic object-
detection was already available [25] and we utilized these
(x,y,t) tracks to compute the Kinetic (T) and Potential (U)
energies of each point on the contour of each person as de-
tailed in Section 4.1 (mass can be idealized to unity or com-
puted from shape and, when we assume gait is characterized
only by the horizontal motion of the body, U is set to zero).
The distance and velocity vectors derived from the tracks
are thereby used to compute the HAI, which is then used as
the Dorsal Pathway component of the framework.

We utilized shape (as defined in [18]) for the Form compo-
nent. We then utilized Weighted Integration to bias the Ven-
tral Pathway component with the Dorsal Pathway compo-
nent and used the bootstrap to set the threshold for peaks in
the distributions that might compete for selection/matching.
We biased these peaks by doing pointwise multiplication
with the Dorsal Pathway values computed earlier to make
our final selections/matches. The results are then plotted as
both heatmaps of the distance matrices as well as Cumula-
tive Match Score (CMS) graphs, which plot probability vs.
rank.

5.2 HAI for Activity Recognition
We now show the applicability of HAI and WI for human

action analysis. We will show that it reduces the search
space leading to a hierarchical search mechanism, which is
a huge benefit when searching through a large database.
In this case, we demonstrate on the Weizmann dataset, as
in [18]. The Weizmann dataset (http://www.wisdom.weizmann.
ac.il/~vision/SpaceTimeActions.html) consists of a database of
90 low-resolution (180 x 144, deinterlaced 50 fps) video se-
quences showing nine different people, each performing 10
natural actions. We analyze these using both shape meth-
ods [18] (as discussed in Section 4.2), as well as via the HAI.
Using both procedures, we see the resulting similarity ma-
trices in Figure 8 (a) and (b), respectively. Finally, in Figure
8 (c), we see the result of integrating via WI. In each of the
distance matrices, both axes consist of the people grouped
by the activity: bend, jack, jump, pjump, run, side, skip,

walk, wave1, wave2. So the first nine rows are each person
bending, the next nine rows are each person doing a jumping
jack, etc. This clustering by the different methods is shown
explicitly in Figure 7, where we see the Motion pathway
correctly isolates pjump and jump; the Form pathway fur-
ther clarifies bend, jack, side, and run; finally, Integration
discerns wave1 and wave2, with skip and walk remaining
grouped.

In addition, one of our main contributions is in combining
shape and motion with a sensitivity analysis, which we show
results in improvements over previous results as in Figures 8,
9, and 10. The experiments are meant to demonstrate that
the hierarchical search our novel model affords prunes search
results (c.f. Figure 7). This kind of analysis requires larger
databases to fully show its efficacy and such a database is not
available for the complex activities we consider. Thus, the
improvement will be significantly better on a larger database
as opposed to a small database like Weizmann. Also, our ap-
proach is not fine-tuned for any specific database and can be
widely and generically applied. Finally, we can also increase
the “burn-in” period for larger datasets, which should yield
better results.

As can be seen in the matrices in Figure 8 and the di-
agrams in Figure 7, HAI alone, in Figure 8 (a), groups
together bending and jumping jacks; partially groups the
jumping sideways; fully groups jumping in place; confuses
running, galloping sideways, skipping, and walking; and con-
fuses waving 1 and waving 2. Form alone, in Figure 8 (b),
groups bending and jumping jacks correctly; partially groups
the jumping sideways; fully groups jumping in place; par-
tially groups running; partially groups galloping sideways;
confuses skipping and walking; and partially confuses wav-
ing 1 and waving 2.

The Integration, however, in Figure 8 (c), does better than
both in most cases and no worse than the better method,
form, in all cases. As can be seen, it groups bending and
jumping jacks correctly; partially groups the jumping side-
ways; fully groups jumping in place; partially groups run-
ning; fully groups galloping sideways; confuses skipping and



a) b)

c)

Figure 8: Similarity matrices on the Weizmann
dataset for a) HAI only, b) Shape Methods only, and
c) Integration using WI. Both axes consist of the
people grouped by the activity: bend, jack, jump,
pjump, run, side, skip, walk, wave1, wave2. So the
first nine rows are each person bending, the next
nine rows are each person doing a jumping jack, etc.
In (c), we see the result of integrating via WI. As
seen in the matrices, WI combines both pathways in
such a way as to do no worse than either pathway
by itself

walking; and fully groups waving 1 and waving 2. We thus
show that the integrated combination works better than us-
ing only one source of information.

5.3 HAI for Gait Recognition
We utilize the same subset of the USF Gait dataset used in

[18] in order to compare our results to previously published
results; we then show how, although the form model per-
forms well, when we integrate that with the motion energy
computational model, it improves the overall performance.
We experimented with videos from this subset of the stan-
dard USF gait dataset consisting of 67 people walking on dif-
ferent surfaces (grass and concrete) with different shoe types
and different camera views. The Gallery contains video of
four cycles of walking by all 67 people under standard condi-
tions. There are also videos of different combinations of the
67 people (between 40 and 67) in the seven different probes,
labelled Probe A to Probe G. The goal is then to compare
the gait of each person in a probe with the gait of all the
people in the Gallery to determine which one(s) it matches
most closely. This is done for each of the probes in turn.

The Motion Pathway is represented by the HAI for each
person, as shown in Figure 2. The form component was
calculated using the shape of the silhouettes and comput-
ing similarity using DTW in the shape space. We utilized
WI to bias the Form component with the Motion component
and then used the bootstrap to set the threshold for peaks in
the distributions that might compete for selection/matching.
The results are plotted as both distance matrices as well as
Cumulative Match Score (CMS) graphs, which plot proba-
bility vs. rank; results are in Figures 9 and Figure 10. We
also see the Integration approach consistently outperforms
the Form Pathway approach alone, as seen in Figure 10.
The singular exception is Probe B in rank 1; this is because

(a) (b)

(c)

Figure 9: Similarity Matrices for USF Gait dataset
examined using (a) Form Pathway, (b) Motion Path-
way, and (c) the WI Integrated Framework on Probe
A for all seven probes in the USF Gait. Although
the form model performs well, when we integrate
that with the motion energy computational model,
it improves the overall performance as seen by the
matching in (c). The overall CMS matching is shown
in (d) and explained in Figure 7

Figure 10: CMS Curves for the USF Gait dataset

WI favours the Form method more heavily than the Mo-
tion Energy Pathway method and, in this case, the Form
method misses the real match and guesses matches that are
far removed from the real match, as seen in the similarity
matrix in Figure 9. Please note that although these results
are specific to our Form approach, it is expected that similar
improvements would be realized using other approaches.

6. CONCLUSION
We propose a novel spatio-temporal human motion de-

scriptor, the Human Action Image (HAI), which is a natural
extension of existing MEI, MHI, and GEI approaches. The
HAI is derived from Hamilton’s Principle of Least Action
in classical physics and, in a way, rationalizes these prior
approaches. The HAI is combined with shaped based fea-
tures for human motion analysis. We then cast this HAI
within the neurobiological model of motion recognition and



propose a novel Integration mechanism in order to create a
framework for gait recognition which we apply to real world
datasets. This principled and coherent framework approach
is evaluated on gesture (human activity within the Weiz-
mann dataset) and gait databases (on a subset of the USF
Gait dataset). The infrastructure we present in this work
provides a structured approach to gait analysis using mo-
tion analysis neurobiological models within a single, unify-
ing framework which mimics the processing in the dorsal
and ventral pathways of the human brain. Our new frame-
work is a general approach which uses Weighted Integration
to give sensitivity analysis concurrent with extraction of a
description of motion. We further prove the additivity of
Hamilton’s Action.

We see much room for future research, especially devel-
oping a more complex physical model for the HAI, deriving
new distance measures for the HAI, and exploring alterna-
tive Integration strategies. We also intend to address ro-
bustness of our high-level approach to low-level errors in the
tracks; techniques for addressing this include potentially cre-
ating a Stochastic HAI. Finally, we are considering other in-
tegration mechanisms, including using MCMC/DDMCMC
approaches adapted for the Hamiltonian dynamics model.
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APPENDIX
A. ADDITIVITY OF ACTIONS

To prove the additivity of Actions, we start off by com-
puting the Sethi Metric (S-Metric) [21] for two objects by
first constructing the combined Action for the two objects,
S12. Again under the assumption of U = 0, we start off by
using the S for one object, as shown in (1). From this, we
compute the Action for both objects by first constructing
their Lagrangian:

L12 =
1

2
m1v

2
1 +

1

2
m2v

2
2 (8)

This leads to a combined Action for the two objects:

S12 =
´ tb
ta
L(q, q̇, t)dt

=
´ tb
ta

1
2
m1

(
x1,b−x1,a
tb−ta

)2
+ 1

2
m2

(
x2,b−x2,a
tb−ta

)2
dt

= 1
2
m1

(x1,b−x1,a)2

tb−ta
+ 1

2
m2

(x2,b−x2,a)2

tb−ta
= S1 + S2

(9)

Thus showing the combined Action is just the sum of the
individual Actions:

S12 = S1 + S2 (10)

where S12 is used as the S-Metric for composite systems.


