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ABSTRACT
This paper presents an approach to simultaneously track
the pose and recognize human actions in a video. This is
achieved by combining Dynamic Bayesian Action Network
(DBAN) with 2D body part models. Existing DBAN imple-
mentation relies on fairly weak observation features which
affects recognition accuracy. In this work, we propose to use
an occlusion sensitive 2D body part model for accurate pose
alignment, which in turn improves both pose estimate and
action recognition accuracy. To compensate for the addi-
tional time required for alignment, we use an action entropy
based scheme to determine the minimum number of states to
be maintained in each frame while avoiding sample impov-
erishment. We demonstrate our approach on a hand gesture
dataset with 500 action sequences, and show that compared
to DBAN, our algorithm achieves 6% improvement in accu-
racy.

Keywords
Human action recognition, Dynamic Bayesian Network, Pic-
torial structure

1. INTRODUCTION
The objective of this work is to recognize single actor hu-

man actions in videos captured from a single camera. Au-
tomatic human action recognition has a wide range of ap-
plications including human-computer interaction (HCI), vi-
sual surveillance and automatic video retrieval and has been
a topic of active research in computer vision. Existing ap-
proaches differ on how the actions are modeled and how they
are matched to the observations. In this work, we represent
the actions as a sequence of simple action primitives rep-
resented in a Dynamic Bayesian Network (DBN), referred
to as a Dynamic Bayesian Action Network (DBAN). Most
likely activity sequences of actions, based on observations are
computed from the DBAN. Observations are derived from
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the shape of the extracted foreground blobs corresponding
to human actors. Our work follows closely the approach de-
scribed in [11] but that work uses only the overall shape of
the blobs as descriptors whereas we incorporate a more elab-
orate part-based analysis and show resulting improvements
in performance.

A popular approach to recognize human actions is to use
histograms of sparse spatio-temporal features [7] and use
a classifier (such as SVM) to determine the action label.
Such approaches are attractive in that because no explicit
action modeling is required but they require a large amount
of training data to capture viewpoint and other variations;
they are also difficult to apply to the task of continuous
action recognition. An alternative approach is to use graph-
ical models to represent the evolution of the actor state in
a video, for e.g. using HMMs [12], DBNs [8, 11] and CRFs
[14, 10, 9]. The actor state is generally represented using a
human model with 3D joint positions [8], 2D part templates
[5] or an implicit representation using latent variable models
[4, 16]. Learning these models requires motion capture data
which can be difficult to collect.

Recently, [11] proposed a method to learn Dynamic Bayesian
Action Network (DBAN) models from a small number of 2-
D videos. This method computes the likelihood of a sam-
pled pose by matching the foreground feature vectors com-
puted over the projected human model with that obtained
from the observed image. Simple pose matching metrics,
such as foreground overlap [17, 14], have been popular in
human action recognition literature due to their efficiency
but are sensitive to foreground noise. Further note that the
matching is not straightforward, since the person scale and
shape variations across different actors must also be taken
into account. While local descriptors such as Shape Context
[8] can be used for robust matching across shape variations,
they are sensitive to small variations in blob shape and com-
puting these descriptors is also computationally expensive.
Another commonly used feature is optical flow [6, 10, 2] but
obtained flows can be extremely noisy.

We propose to use an intermediate 2D body part represen-
tation of the human model to accurately match the human
model and image observations across shape variations and
observation noise. We refer to the extended DBAN model as
DBAN-Parts. Given a person scale and approximate view-
point, the 3D pose is orthographically projected to 2D to
determine the visible parts. A 2D part based model (pic-
torial structure [3]) is then used over the visible parts to
accurately align the 2D pose using belief propagation. The
likelihood of the pose to recognize human actions is then
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Figure 1: Action Model Illustration for Crouch action with 3 keyposes and 2 primitives (figure obtained from
[11])

computed over the aligned parts. This intermediate step al-
lows for efficient and more accurate local search for matching
the 3D model to the image observation, resulting in more ac-
curate action recognition. Furthermore, fewer samples need
to be maintained which partially compensate for the time
required to compute pose alignment. To further speed up
the inference, we automatically determine the minimal num-
ber of hypotheses to be maintained at each step by defining
an action class entropy.

To distinguish our method from that of [11], we define the
following terminology: method used in [11] will be called
DBAN-FGM (FGM standing for foreground matching) whereas
the method used in this paper will be called DBAN-Parts.
The proposed DBAN-Parts differs from DBAN-FGM of [11]
by addition of two key modules:

1. Using 2D Part Model for accurate alignment by per-
forming local shape and position search for each part

2. Sample selection scheme based on action uncertainty
to automatically determine the appropriate number of
samples require to represent the current state distri-
bution

While DBAN-FGM [11] performs well on datasets with
large pose variations such as Grocery Store and Weizmann
set [2, 11], the recognition accuracy on the gesture dataset
with subtle pose variations is quite low, especially with less
training data; the Gesture dataset [11] has about 500 seg-
mented action sequences with a variety of arm gestures com-
mon in HCI applications. In this work, we show results on
the Gesture dataset and demonstrate that using the 2D part
model to compute the pose likelihood allows for a more ac-
curate action recognition and pose estimation.

In the rest of the paper, we first discuss action model
representation in section 2; we also briefly describe how the
actions are mapped to a Dynamic Bayesian Action Network.
Next, we present a modified inference algorithm for efficient
pose tracking and action recognition over DBAN in section
3, followed by the part model representation and alignment
in section 4, results in section 5 and conclusion in section 6.

2. ACTION REPRESENTATION
Our action representation is based on the concept that

a composite action can be decomposed into a sequence of
simple primitive actions. Each primitive action pe modifies
the state s of the actor to give a new state s′. For example,
we consider walking as a composite action that involves four
primitives - left leg forward → right leg crosses left leg →
right leg forward→ left leg crosses right leg. Each primitive
can be defined as a conjunction of rotation of body parts,
for e.g. during walking, rotation of upper leg about the hip
and rotation of lower leg about the knee. Figure 1 shows an
illustration of action model obtained for crouching action
(figure obtained from [11]).

Such representations can be obtained either from 2D pose
and action boundary annotations [11, 15] or from 3D Mo-
tion Capture sequence of the action [8], if available. To
obtain such a representation for each composite action, we
first manually select the keyposes for each action; each key-
pose marks a discontinuity in the angular representation of
the human pose. We then obtain the 3D model for each key-
pose, either from lifting 3D pose from 2D annotations [11,
15]; alternatively if the MoCAP is available one may obtain
the keyposes by computing pose energy [8].

In this work, we use 2D annotation approach as it doesn’t
rely on the availability of MoCAP data for all the actions
(see [15, 11] for details on lifting 3D human pose from 2D
annotations). At this stage, each composite action is essen-
tially a sequence of 3D keyposes with time intervals. Now
for every consecutive keypose pair, we define the primitive
as the per time step transformation required to go from one
keypose to the next i.e. the primitive transforms one key-
pose to next over a time duration. This duration model
allows us to model the speed variations across multiple ac-
tors. Now since during a primitive, each part has rotated
about a single axis, each primitive can be simply defined as
a conjunction of the rotation of body parts. Note that using
this representation, we can obtain a strong prior on the 3D
pose of a person performing a composite action, after time
t has elapsed from the start of the action.



2.1 Dynamic Bayesian Action Network
Given the action models in the form of parametric func-

tions, f , [11] embeds them into a Dynamic Bayesian Net-
work (DBN) which is refered to as the Dynamic Bayesian
Action Network (DBAN). DBAN used in [11] correspond
to the first 3 layers on the model shown in Figure 2, with
foreground observation nodes (not drawn in the figure for
clarity). The nodes in the topmost layer in the DBAN corre-
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Figure 2: Dynamic Bayesian Action Network with
2D Part Model (DBAN-Parts); DBAN is enclosed
within the dotted box. Observation nodes are not
shown for clarity.

spond to the composite actions like walk, flap, etc. The sec-
ond layer corresponds to the primitives and the third layer
corresponds to the human pose. A duration node is asso-
ciated with each primitive that captures the time elapsed
(in number of frames) since the primitive started. Thus,
the state st of the DBAN at time t is denoted by the tuple
(cet, pet, dt, pt) . In this work, instead of directly evaluating
the projection of 3D pose on the observations as in [11], we
represent the projected pose using a 2D part model, which
is represented as the fourth layer in Figure 2.

The optimal state sequence s∗[1:T ] for an observation se-
quence of length T is computed by maximizing the weighted
sum of potentials similar to [1, 11].

s∗[1:T ] = arg max
∀s[1:T ]

T∑
t=1

∑
f

wfφf (st−1, st, It) (1)

where, φi(st−1, st, It) are observation and transition poten-
tials and wi is the weight vector that models the relative
importance of the potential functions. Note that DBAN is a
multi-variable state representation of the HMM in [1]. Fur-
ther note that the objective function given by equation 1 has
the same form in both DBAN-FGM and DBAN-Parts, how-
ever, the observation potentials are different since DBAN-
Parts uses part models.

2.1.1 Transition Potential
In this work, we use transition models used in [11]. The

primitive transitions are modeled by using the primitive
event durations in the log of signum function, such that the
probability of staying the same primitive pet decreases near
the mean duration µ(pet) and the probability of transition
to a new primitive increases.

The pose transition potential is modeled using normal dis-
tribution with the mean and variance N (θmean, θvar) of dis-
placement of body joints learnt during the training.

2.1.2 Observation Potential
The observation potentials of a state φobs(st, ot) using fea-

tures we extract from the video. DBAN-FGM projects the
3D pose and computes the likelihood of the projected pose
using multiple features, such as foreground overlap and dif-
ference image match. In this work, however, we project 3D
pose to obtain a 2D part model and which allows an efficient
local search and more accurate fit to the observation. For
completeness, below we describe te features used in [11] that
are relevant to our experiments.

Foreground Overlap: The foreground overlap score of the
pose p is computed by accumulating the foreground pixels
overlapping with orthographic projection of pose p.

Difference Image Matching: This measures the similar-
ity between the instantaneous motion observed in the video,
and the pose change. An estimate of instantaneous changes
in the observed pose is obtained as the difference between
the frames It and It−1 within the person detection window.
The observation potential of state s for change in pose is
then modeled as the overlap between the difference image
and projection of moving body parts on the image.

2.1.3 Relative Weight Vector
In DBAN, feature weight estimation is formulated as the

minimization of the log likelihood error function over the
entire training set T . Due to the log linear formulation
of the likelihood error function, Voted Perceptron algorithm
[1] can be used to efficiently solve the minimization prob-
lem. However to avoid pose annotations in all frames, [11]
introduced Latent State Voted Perceptron algorithm that
deals with missing data. The training algorithm takes M
passes over the training set. For each training sequence, the
most likely state sequence with the current weight vector is
computed. If the estimated composite event is not correct,
ground truth state sequence is estimated from the labeled
event sequence without the action prediction step (since the
action is known). The feature errors between the observed
and the ground truth sequence are collected over the entire
training set and is used to update the weight vector. For
details, please refer to [11].

3. SIMULTANEOUS POSE TRACKING AND
ACTION RECOGNITION

Here, we describe the algorithm to simultaneously track
human pose and recognize the action in a video using DBAN-
Parts. DBAN-FGM [11] infers the action label by matching
all action models with observation sequence and finding the
best match. Matching is done by sampling poses from action
models and fitting the model to the observed image. For ef-



ficiency, instead of matching each action model separately
and then selecting the best match, all models are matching
simultaneously in one-pass by maintaining multiple state se-
quences. Since the number of possible sequences is combina-
torial, all possible sequences can not be considered. DBAN-
FGM [11] uses a greedy strategy and maintains top N state
sequences that have the highest score. This greedy selection
step is too aggressive. If the number of samples N is small
it often results in impoverishment of state samples from all
actions thereby leaving samples only from one action after
just a few frames; once all the samples from an action are
pruned out, that action class is never reconsidered. If how-
ever the number of samples is too high, it drastically slows
down the inference; furthermore, if after a few frames all
state samples belong to the same action class, maintaining
large number of samples as no benefit on accuracy and only
hurts due to high computational cost.

In this work, we estimate the appropriate number of sam-
ples that needs to be maintained at each frame such that
state samples from all likely actions are well represented;
this is done by defining a measure of uncertainty over the
currently active action labels. Below, we present the step-
by-step description of the proposed inference algorithm us-
ing DBAN-Parts. The key difference between the DBAN-
FGM [11] and DBAN-Parts is the use of 2D Part Models and
uncertainty based sample set selection, which are described
in subsections 3.3 and 3.4 respectively. The pseudo-code for
the proposed algorithm is shown in Algorithm 1.

3.1 Initialization
For initializing the state distribution, we sample poses

from all the composite actions in the action set. For view-
point invariance, all likely viewpoints are considered for each
pose sample from every composite action model.

3.2 Prediction: Sample Next State
For each state st, we increment the duration of the state by

unit time step. Given the current action (cet, pet) and new
duration, we then sample the next action state (cet+1, pet+1).
Note that if primitive transition occurs, then the duration
is set to 0 to mark the start of a new primitive. Next, we
sample from the pose transition potential φp(pt, pet+1, pt+1)
to choose the next pose pt+1. Here, the pose transition po-
tential represents a distribution over the parameters α in the
function fpet+1(p, p

′, α) corresponding to primitive pet+1.

3.3 Fit the Sampled State to the Observation
We first apply a pedestrian detector [18] to find the per-

son in the video, thus our algorithm initializes only when a
standing pose is observed. We then apply a combined shape
and foreground blob tracker to track and localize the person
in each frame, even through changing poses. The position
and scale information available from the person tracker is
then used to adjust the 3D pose sampled from the action
model in the previous step. Given the adjusted 3D pose,
we then orthographically project the pose to construct a
2D part model which is then used for accurate localization.
Note that during the projection step, we automatically de-
termine the non-observable/occluded parts and do not use
those parts for localization. Figure 4 show some sample
3D poses and corresponding 2D part models. Using the 2D
part model, we then perform a local search to accurately
fit the pose to the observation. This local search allows us

Algorithm 1 Inference Algorithm

. Obtain initial states by sampling poses from all compos-

ite action models S1={〈s(i)0 ,α
(i)
0 〉|i = 1...Nmax}

for t = 0 to T do
. Obtain observation feature maps Ot+1

for all s
(i)
t do

. dt+1 = dt + 1

. Obtain 〈ce(i)t+1,pe
(i)
t+1〉 ← allow(cet, pet, dt+1)

for all 〈ce(i)t+1,pe
(i)
t+1〉 do

. Sample pose from the action model

p
(i)
t+1 ∼ φp(pt, pet+1, pt+1)

. Compute the state potential α,

α
(i)
t+1 = α

(i)
t +

∑
f

wfφf (s
(i)
t , st+1, ot+1)

. Push 〈st+1, α〉 to St+1

end for
end for
. Obtain action class likelihood vector, v

v = {vce}, where vce = max
s
(i)
t+1=〈ce,...〉

α
(i)
t+1

. Set target sample set size,

Nt ∝

(∑
ce

vcelog(vce)

)
×Nmax

. Prune St+1 such that |St+1| ← max(Nt, Nmin)
end for
. actionlabel = arg max

s
(i)
T

α
(i)
T

to handle noise better than in DBAN-FGM. The details on
obtaining the 2D part model from 3D pose and the local
search is described in detail in Section 4.

The likelihood of the pose/state is then computed by match-
ing the localized 2D pose with low-level image features. This
includes computing the observation potential φobs(st+1, ot+1)
using foreground match, difference image and part templates
(described later in Section 4.2).

3.4 Selecting the State Samples
Since maintaining all possible state sequences is not pos-

sible, only a small number of states are retained in each
frame. As discussed earlier, a greedy sample selection step
can lead to sample impoverishment and may significantly af-
fect both accuracy and efficiency of the algorithm. To avoid
action sample impoverishment, we set the minimum num-
ber samples Nmin to be maintained in each frame; we also
set Na

max as the maximum number of samples allowed for
any action class. Note that this may address the sample im-
poverishment from different action classes but still has poor
efficiency.

We define a measure of action label uncertainty in the cur-
rent frame by computing the entropy over the distribution
of currently active actions/states; an action is considered ac-
tive, if there is a state sample corresponding to that action.
To compute the entropy of the currently active actions, we
compute the action class likelihood vector v = {vce}, where
vce is the highest likelihood score over all states in the cur-
rent frame that belong to the action class ce. Given the
action class likelihood vector v, we then define the target
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Figure 3: Illustration of estimating 2D Body part models from the 3D Pose; Note that the node corresponding
to right upper arm is non-observable (due to occlusion) and is marked with dotted boundary in (d)

sample set size Nt in the current frame t as,

Nt ∝

(∑
ce

vcelog(vce)

)
×Nmax

Note that when the uncertainty is high, large number of
samples are maintained thereby allowing presence of samples
from multiple action classes and avoiding impoverishment.
When uncertainty is low, the samples are likely to the belong
to the same/few action class, and thus only a few samples are
enough for accurate inference; note that maintaining fewer
samples also speeds up the inference.

4. 3D POSE OBSERVATION USING 2D BODY
PART MODEL

In this section, we describe the localization of a 3D pose
projected from a given viewpoint. This is achieved using
a graphical model of the 2D body parts. The body part
model used in the work is similar to the Pictorial Struc-
tures [3] which is widely used for estimating human pose
in an image. The model has 10 nodes, each correspond-
ing to a body part - head, torso, upper arms (l, r), lower
arms (l, r), upper legs (l, r) and lower legs (l, r). These
nodes are connected with edges that capture the kinematic
relationship between the parts. Figures 4 and 3 show the
part model. For localization using Pictorial structure, the
individual parts are searched by applying part detectors at
all locations and orientations followed by belief propagation
to enforce kinematic constraints. Note however that in this
work, our objective is to accurately localize a 3D pose pro-
jected from a given viewpoint. This imposes a very strong
constraint on the orientation of the body parts and their
kinematic relationship. Furthermore, approximate position
and scale information is also available from the person de-
tection step. Hence, localization in our case does not require
a dense part search. However, during localization, we need
to tackle the problem that some of the body parts may not
be observable, either due to inter-part occlusion (see Figure
3) or 3D-2D projection (see Figure 4(b)).

Now we first describe the process to generate the 2D part
model appropriate for localization, and then we briefly de-
scribe the localization using local search.

4.1 Building 2D Part Models
We project the 3D pose from the given viewpoint to es-

timate the 2D position of the body joints. From the body

Figure 4: Sample 3D poses and their corresponding
2D part models used for alignment; non-observable
nodes in (b) are marked with dotted boundary.

joints, we build a rectangular cardboard model by fitting a
rectangle between every pair of joints connected by a body
part (shown in Figure 3(c)). During projection, we also es-
timate the relative depth order of the 2D parts. Next, we
determine which parts are visible based on the depth order
and pairwise overlap between the part rectangles. In our
experiments, we considered parts with percentage visibility
below 50% to be occluded. Furthermore, when projecting
3D pose to 2D, some of the body parts are too small to be
observed (see Figure 4(b)) and thus are not useful for lo-
calization. Figure 3 shows the flowchart of building the 2D
part model for a 3D pose from a given viewpoint.

4.2 Part Detectors
We use template based matching for detecting body parts

in the image. We model the head with an ellipse template,
torso with an oriented rectangle and each arm with a fore-
shortened pair of lines. We define the likelihood score φ(x) of
a part hypothesis x using both the strength and orientation



of the gradient at each point in the model.

φedge(x) =
∑
xi∈x

dmag(I(xi))× dori(xi, I(xi))

where, dmag(I(p)) is the approximate Euclidean distance to
the nearest edge pixel from the image point p, weighted by
the edge strength. This can be calculated very efficiently us-
ing generalized distance transform over the edge likelihood
map [3]; dori(p, I(p)) is the orientation likelihood, which is
the dot product between the normals at the model point p
and corresponding point in the image I(p). Since the orien-
tation information is often very noisy, we approximate the
normals by quantizing into 8 bin orientations.

4.3 Localization using 2D Part Models
Given the scale adjusted 3D pose X and position infor-

mation, we apply an edge template for each part xi over
the expected configuration of the part and a small neigh-
borhood around it; configuration of a part is given by its
position, scale and 2D orientation. We then enforce kine-
matic constraints between the obtained part distributions
using message passing (similar to Pictorial Structure [3]).
The posterior likelihood of the full pose X given the image
observation O is given by,

F(Xp, Y ) =
∑
i∈V

φi(yi|xi) +
∑
ij∈E

ψij(xi, xj) (2)

where V is the set of all body parts, E is the set of part pairs
that are kinematically connected, and yi ∈ Y is the likeli-
hood map of part i. The best aligned 2D pose is obtained
by maximizing the posterior likelihood F(Xp, Y ). Note that
occlusion sensitive pose localization proposed here is differ-
ent from that used proposed in [13]. Compared to [13] which
consider pixel level occlusion constraints for each part, we
only consider parts which are almost completely visible (with
visibility more than 80%). This allows our inference to be
much more efficient and as we show in our results, the lo-
calization is accurate enough for reliable action recognition.

5. EXPERIMENTS
We tested our approach on the Gesture Dataset [11]; the

dataset includes about 500 instances of hand gestures used
in HCI applications.

[Dataset Description]
The gesture dataset has 12 actions performed by 8 differ-
ent actors, captured from a static camera in an indoor lab
setting. The action set include - Column Left (bend left
arm from side to overhead), Column Right, Open Up (move
both arms from overhead to side), Close Up (move both arms
upward from side), Turn Right (extend arm to right side),
Turn Left, Line (extend arms parallel to ground), Close Dis-
tance (clap), Stop Right (raise right arm upward to the full
extent of arm), Stop Left, Action Left (extend both arms,
then raise left arm overhead), Action Right. Figure 5 shows
sample frames from the dataset.

Each action sequence in the dataset has exactly one per-
son performing the action, facing the camera. Each actor
performs every action about 5 times, thus the dataset con-
tains a total of about 500 action sequences. The videos are
852×480 resolution, and the height of person varies between
200-250 pixels across different actors. This set is similar to

that used in [12] but has a bigger variety. As the background
is not highly cluttered, extracted foreground is quite accu-
rate but the large number of actions with subtle differences
makes recognition still a challenging task.

[Experiment Settings]
To compare our inference algorithm with that in [11], we
use the same experiment settings wherever possible. The
models for each action were obtained by video annotation.
For learning the feature weights for each action model, the
same training data on which the action model is trained.
The feature weights were randomly initialized and the one
that achieves the highest accuracy on the training set was
used during testing.

During inference, we set the minimum samples for each
action Nmin to 3 and maximum number of samples in any
frame Nmax to 15. In our experiments, the actual number
of samples in a frame varied between 3 and 15 due to the
entropy based sample set selection, and on an average about
7 samples were maintained in each frame.

[Quantitative Evaluation]
To evaluate the performance of our approach, we computed
both the action classification accuracy and the error in pose
estimates. We split the action sequences into train and test
sets based on the actors i.e. the action models trained on
a subset of actors and test on the rest. Since each video
sequence contains only one action; it is said to be recognized
correctly if its label is the same as in the ground truth. Since
the primary contribution of DBAN-FGM [11] is on learning
action models with low training requirements, we ran our
experiments with train:test ratio of 1:7. Second column of
the Table 1 provides the recognition results, averaged over
2 training sets. The accuracy numbers for 1:7 train:test for
DBAN-FGM were obtained from the Figure 6(b) in [11].

To evaluate the effect of our 2D Part model, we evaluate
the errors in the pose estimate obtained using our inference
with DBAN-FGM (that does not use 2D part model). To
measure the error in pose estimates, we manually annotated
48 2D poses with 4 randomly selected frames from an in-
stance of each action class, and compute the accuracy of
the estimated 2D parts. A 2D part estimate is considered
correct if it lies within the length of the ground truth seg-
ment. Since our experiments are on hand gestures, a more
meaningful evaluation is to compute the pose accuracy only
over the arms, since arms are the only parts involved in the
action. Third column of the Table 1 provides the pose accu-
racy computed over the arms (192 annotations); the num-
ber within parentheses show the accuracy over all the body
parts (480 annotations). Even though the improvement in
pose accuracy averaged over all parts is not quite significant
(only 2.5%), notice that the accuracy over the parts relevant
to the action (arms) is about 6%.

Approach
Train:Test Recognition 2D Tracking

ratio (% accuracy) (% accuracy)

DBAN-FGM [11] 1 : 7 78.6 75.67(89.94)
DBAN-Parts 1 : 7 84.52 81.76(92.66)

Table 1: Performance on Gesture Store dataset

We also report the confusion matrix for the recognizing
actions using DBAN-Parts over the entire dataset. Fig-
ure 6 shows the confusion matrix for train:test ratio of 1 :
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Figure 5: Results on the Gesture Dataset: The bounding box shows the person position and the estimated
pose is overlaid on top of the image, illustrated by limb axes and joints.

7. Notice that the recognition accuracy is around 85 −
90% for each action, except for Line and OpenUp actions
which got misclassified as TurnRight and ColumnRight re-
spectively. Observe that in both cases, action model of one
arm is same and hence the confusion is expected due to
similarity in poses. We believe more accurate part detec-
tors would be able to localize better and deal with such
ambiguities. Further note that the actions (CloseDistance,
StopRight and StopLeft) that contain poses where arms are
non-observable/occluded, get correctly recognized; Figure
5(e) shows an example of such a pose in StopRight action,
where right arm is occluded.
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Figure 6: Confusion matrix for the Gesture Dataset

6. CONCLUSION
In this work, we have presented a general framework for

simultaneous tracking and action recognition using 2D part
models with Dynamic Bayesian Action Network [11]. The
2D part model allows more accurate pose alignment with
the observations, thereby improving the recognition accu-
racy. To compensate for the additional time required for
2D part alignment, we proposed an action entropy based

scheme to determine the minimum number of samples to be
maintained in each frame while avoiding sample impover-
ishment. In future, we plan to apply this algorithm in more
complex domains with cluttered environments by employing
more accurate part detectors and extend this framework to
recognize actions that include multiple actors.
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