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ABSTRACT
Human eye fixation points occurring during the early stages
of visual processing often correspond to the loci of salient
image regions. These salient regions provide us with assis-
tance in determining the interesting parts of an image and
they also lend support to our ability to discriminate between
different objects in a scene. They attract our immediate at-
tention without requiring an exhaustive scan of a scene and
they possess some quality that enables them to stand out
in relation to their neighbors. In this paper, we present a
bottom-up measure of saliency based on the relationships
exhibited among image features. We adopt the standpoint
whereby the relationships among features determines more
of the perceived structure in an image rather than the indi-
vidual feature attributes and we seek those structures which
‘pop-out.’ We capture the organization within an image
by employing relational distributions derived from distance
and gradient direction relationships exhibited between im-
age pixels. We demonstrate how our results coincide with
human fixations. We also evaluate the performance of our
measure in relation to a dominant saliency model and ob-
tain comparable results. In an effort to derive meaningful
information from an image, we investigate the significance
of scale relative to our saliency measure.
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1. INTRODUCTION
Certain structures or regions in a scene often attract our

immediate attention without requiring an exhaustive scan
of the scene itself. The way these regions are captured by
the Human Visual System (HVS) without the need for fo-
cused attention is often described as pre-attentive processing
which was suggested by Neisser in [22] as the first of the two
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stages of human visual processing. This stage consists of
parallel processes that operate concurrently on large regions
of the visual field, forming structures to which attention can
be directed. Anything perceived within the pre-attentive
time frame (which is typically 200 milliseconds) incorpo-
rates only the information available from a single cursory
glimpse [13]. An immediate visual arousal occurs in the
early stages of human visual processing [17] as a result of
the pre-attentively distinctive parts of a scene, and it is this
idea that is commonly referred to as saliency. With regards
to computer vision, saliency can be defined as the quality of
an image feature that allows it to stand out in relation to
its neighboring features. These features are almost unique,
thereby making it possible to discriminate between objects
in a scene. It must be noted however, that salient regions in
an image may not necessarily belong to an object of interest.

Saliency can often provide the foundation for a visual
attention mechanism whereby the need for computational
resources is significantly reduced [12]. The selection of a
commensurate set of salient features forms the first step in
many computer vision algorithms. Salient features, points,
or regions, facilitate object recognition, perceptual organi-
zation, segmentation, and figure-ground separation because
they permit immediate concentration on objects of interest
in an image.

Consequently, most saliency mechanisms are commonly
approached in two ways: bottom-up saliency and top-down
saliency. Bottom-up approaches are analogous to rapid, im-
age or stimulus-driven mechanisms in pre-attentive vision
and are to a great extent independent of the knowledge of
the content in an image. In [25], Sha’ashua and Ullman
presented a saliency measure based on curvature and cur-
vature variation. The structures their measure emphasized
were also salient in human perception, often corresponding
to objects of interest in the image. The authors proposed a
bottom-up mechanism for detecting salient locations using
a locally connected network.

Similarly, Kadir and Brady introduced a multi-scale algo-
rithm for salient region selection [17]. Their technique deter-
mined salient regions as those exhibiting unpredictable char-
acteristics simultaneously in some feature-space and over
scale. They used the local intensity as the descriptor for
saliency. In this paper, we also investigate the implications
of scale and saliency and adopt the argument presented in
[17] that scale “is intimately related to the issue of deter-
mining saliency and extracting relevant descriptions.” We
explore this in our measure to determine the scale at which
a pixel remains salient.



Motivated by the work done in [25], Berengolts and Lin-
denbaum [2] presented a saliency measure based on proba-
bilistic cues, estimated length distributions and the expected
length of curves. They demonstrated this using a process
based on gray-level similarity. Additionally, Hou and Zhang
presented a saliency detection mechanism based on the log
spectra representation of images [14]. More recently, Avra-
ham and Lindenbaum proposed a novel stochastic model to
estimate saliency in [4]. Their “esaliency” mechanism deter-
mines if an image part is of interest with the goal of finding
small image regions where salient objects are present. In
this paper, we present a purely bottom-up, task indepen-
dent measure for saliency detection.

Conversely, top-down approaches are goal-oriented and
utilize prior knowledge about the scene or the context to
identify salient regions [11]. They are task-dependent thereby
demanding a more thorough understanding of the context of
the image. For example, Gao, Han, and Vasconcelos couple
saliency to the object recognition goal in [8]. They argued
that the saliency judgments become significantly more adap-
tive, only highlighting image areas which were relevant to
recognition. The authors equated saliency to discrimination
and they referred to the optimal salient features as those
that were maximally informative of the presence or absence
of the target class in a field of view [8]. Gao and Vasconcelos
proceeded to define discriminant saliency in [9] as the notion
whereby the features whose response best distinguishes an
object to be recognized from the set of all others that may
be of possible interest. Additionally, Gopalakrishnan, Hu,
and Rajan presented a salient region detection framework
based on the color and orientation distribution in images
[11]. This framework consisted of a color saliency frame-
work and an orientation framework. Rather than analyzing
localized features, they considered the global distribution of
color and different orientations.

Bottom-up and top-down approaches together are analo-
gous to pre-attentive and attentive vision respectively. In-
tegration of these two approaches has been deemed crucial
for robot navigation, visual surveillance, and realistic visual
searches [21]. Saliency mechanisms utilizing this approach
fall into another category known as integrated approaches.
Itti and Navalpakkam united bottom-up and top-down ap-
proaches of saliency for a novel approach in [21]. Their
method decomposed the visual input into a set of topo-
graphic feature maps. The bottom-up component was re-
sponsible for computing the saliency of locations in different
feature maps whereas the top-down component used statis-
tical knowledge of the target object to tune the bottom-up
maps. Similarly, Goferman et al. utilized local, global, and
high-level factors for their context-aware saliency detection
mechanism in [10] in an effort to detect the important parts
of a scene. Salient regions detected by their approach con-
tained the prominent objects as well as parts of the back-
ground that conveyed the context.

Section 2, we present our relational entropy-based mea-
sure of saliency first by describing relational distributions,
then we move into a brief description of Rényi entropy. In
Section 3, we present our results on various images, includ-
ing saliency maps and analyses. We compare our findings to
those produced by iLab’s [20, 28] saliency model. In Section
4 we elaborate on our findings and discuss the implications
of our work on saliency research.

2. THEORY
Our saliency measure is formulated on the entropy of ge-

ometric relational distributions. These topics are described
in detail in the subsequent sections.

2.1 Relational Distributions
We adopt the notion specified in [27] that “the struc-

ture perceived in an image is determined more by the re-
lationships among image features rather than by the indi-
vidual feature attributes.” We utilize a mechanism to cap-
ture this structure. Image structures can be represented
by probability functions referred to as relational distribu-
tions. We capture these distributions using relational his-
tograms. The concept of relational histograms is not a novel
one and they have been used particularly for database in-
dexing [15], motion-based recognition of humans [27], shape
analysis [23], and object recognition [3]. We formally define
relational distributions in definitions 1 and 2 following [27].

Definition 1. Let:

• F = {f1, ..., fN} represent the set of N features in an
image.

• Fk represent a random k-tuple of features, and

• The relationship among these k-tuple features be de-
noted by Rk .

Therefore, pairwise or binary relationships between fea-
tures are represented by R2 . Low-order spatial dependen-
cies are captured by small values of k whereas higher-order
dependencies are captured by larger values of k.

Definition 2. Let the relationships Rk be characterized by
a set of M attributes Ak = {Ak1, ..., AkM}. Hence, image
structures can be represented by joint probability functions:
P (Ak = ak), also denoted by P (ak1, ..., akM ) or P (ak),
where aki is the value taken by the relational attribute Aki.

These distributions can be interpreted as: Given an image,
if you pick k-tuples of features, what is the probability that
it will exhibit the relational attributes ak or P (Ak = ak)?

2.1.1 Pixel-based features
The concept of relational distributions is illustrated by

considering the pixel properties as features. Each pixel, fi,
is associated with the gradient direction, θi, estimated using
a Canny Edge detector. To capture some structure between
two pixels, we use the difference between gradient angles
(θi − θj) and the euclidean distance (di − dj) between them
as the attributes, {A21, A22}, of R2. These attributes are
ideal because they are invariant with respect to image plane
rotation and translation. Figure 1 depicts the computed
attributes. In addition to these attributes, we also utilize
the gradient magnitude differences between pixels as weights
wi for histogram bin voting.

2.2 Saliency Measure
Let P = (p1, p2, ..., pn) be a discrete probability distribu-

tion. The amount of uncertainty or disorder of the distribu-
tion P is referred to as the entropy of P and it is measured
by the quantity H [P] = H (p1, p2, ..., pn) [24]. In our case,
the distribution is P(d, θ). Entropy designates the extent to



(a)
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Figure 1: Pixel-based binary relational distribution.
(a) Original Image, (b) The two attributes that char-
acterize the relationship between two pixels - dis-
tance and gradient angle. (c) 3D illustration of the
relational distribution P (d, θ) formed from the image
in (a).

which the features characterized by the relational distribu-
tion are uniformly distributed [5]. Entropy is defined by the
common form as:

H (P) = −
n∑
i=1

p(xi) log
2
p(xi), (1)

which is universally known as Shannon’s Entropy. We utilize
the Rényi entropy which is a generalization of the Shannon
entropy given in Equation 1. It is defined as follows:

Hα(P) =
1

1− α log
2

(

n∑
i=1

p(xi)
α ) (2)

Equation 2 is known as Rényi’s Entropy of order α where
α ≥ 0. Increasing values of α produce a Rényi entropy that
is devised by favoring the higher probability events. The
probability events are considered more equally for lower val-
ues of α. When α = 1, we get the Shannon entropy. In
this work, an α value of 2 was utilized: This is referred to
as the Collision entropy. Furthermore, we utilize an extra

term (l − 1)
log2 (e)

2N
shown by Abe in [1] to be the “the ex-

pected divergence between a finite probability distribution
Q on {1, 2, ..., l} and its empirical one obtained from the
sample of size N drawn from Q”. This term is added to the
entropy value H[P ] in an effort to compute the expected di-
vergence between the estimated probabilities and the actual
underlying probability as shown in Equation 3.

H2 (P) = − log
2

(

n∑
i=1

p(xi)
2 ) + (l − 1)

log
2
(e)

2N
(3)

We believe that finding the entropy of the relational distri-
bution P(d, θ) is a good indicator of the“pop-out”structures
in an image.

Furthermore, we define saliency as the quality of an image
feature that enables it to stand out (or precisely “pop-out”)

relative to its neighbors. We quantify this quality by cal-
culating the Rényi entropy of the relational distributions of
local pixel neighborhoods. Thus, the saliency function Φ(·)
is defined as:

Φ = 1−H2 [P(d, θ)] (4)

Φ is a measure of pixel saliency with regards to M , where
M is a (2k + 1)(2k + 1) neighborhood of a pixel with k >
1. Higher values of Φ indicate greater saliency and vice
versa. We consider the pairwise comparisons of pixels in the
neighborhood Mi of a central pixel fi, where i is the index
of the pixel. Examples of neighborhoods used are shown in
Figure 2.

Figure 2: Illustration of some of the local pixel
neighborhoods that are used to measure the saliency
of a central pixel (depicted as a yellow dot).

2.3 Scale Variation
Objects in the world appear in different ways depending

on the scale of observation and this fact has important im-
plications if they are to be accurately described. Multi-scale
representations are necessary to completely represent and
process images [26]. A characteristic property of structures
in images is that they may only be meaningful over definite
ranges of scale. For instance, a map of the United States
would contain the largest cities, towns, and some interstate
highways, whereas a city map changes the level of abstrac-
tion substantially to include streets and buildings etc.

The images in Figure 3 bolster our approach. They depict
the relational distributions of varying local pixel neighbor-
hood sizes ranging from (17 x 17) to (129 x 129) pixels for
a central pixel located in the sail of the sailboat (the re-
spective neighborhoods are outlined in the image in Figure
3(a)). The horizontal and vertical axes for each graph rep-
resent the pairwise pixel distances and gradient angle differ-
ences respectively. From the image in Figure 3 (a), we see
that the sailboats are the most conspicuous objects, there-
fore they can be considered the most salient image regions.
We can see that as the scale increases, the amount of in-
formation available in the distribution increases and the re-
lationships between the pixels change leading to changes in
entropy (Figure 3(f)). However, after the (33 x 33) scale,
the changes are relatively negligible.

In computer vision, the primary focus is on deriving sig-
nificant and meaningful information from images. In accor-
dance with this notion, we explore the significance of scale
relative to our saliency measure and attempt to elicit the
optimal scales for their analysis [18]. The optimal scale in
our case is the scale up to which the high saliency of an



(a) Test image

(b) 17 x 17 (c) 33 x 33

(d) 65 x 65 (e) 129 x 129

(f) Entropy Plot

Figure 3: Relational Distributions of different pixel
neighborhood scales (this figure is best viewed in
color).

image point persists or stabilizes. We do not attempt to
select the optimal scales automatically. Representations of
scale-variation would enable us to analyze an image point
of interest at different scales, however they do not indicate
at which scale subsequent processing should be performed.
This is the subject of future work. Our saliency map empha-
sizes salient locations in an image at a specified scale. We
process an image at different local pixel neighborhood scales
for square neighborhood sizes satisfying 2k + 1 dimensions,
where k = 1, ..., 5.

3. RESULTS AND ANALYSES
We present analyses and evaluations of our saliency mea-

sure in this section. We investigated its performance for
a wide variety of images and compared our results with a
dominant saliency model. As previously noted, our measure
is a pure bottom-up, task-independent approach to saliency
detection. There is no knowledge about the context of the
scene that is used to determine saliency. Salient regions are
simply those regions which stand out relative to their neigh-
borhood. Since we utilize gradient information, namely gra-
dient direction and magnitude, boundaries of salient regions
are emphasized rather than their interior. This is due to
the fact that within the salient region (if composed of many
salient pixels), there may be nothing that stands out locally,
hence uniformity. This can be observed in the subsequent
sections.

3.1 Comparison with human saliency maps
We analyze the performance of our measure in relation

to that obtained by the human visual attention mechanism.
We executed this by comparing our saliency maps with em-
pirical human fixation maps (or fixation density maps) from
work done in [6]. These human saliency maps were captured
by recording human eye fixations over an image which was
displayed to test subjects for a limited amount of time. Each
fixation point in these images were then convolved with a
Gaussian filter. We subjectively compare our results in Fig-
ure 4 to provide an approximate evaluation of the correlation
between the human fixation map and the REM saliency map
visually.

3.2 Comparison with a dominant saliency model
To compare our results objectively, we utilize the corre-

lation coefficient between the human fixation map and our
REM saliency map. The correlation coefficient λ is calcu-
lated as follows:

λ =

∑
x[(Mh(x)− µh) · (Ms(x)− µs)]

2
√∑

x(Mh(x)− µh)2 ·
∑
x(Ms(x)− µs)2

(5)

where Mh(x) is the human fixation map, Ms(x) is the REM
saliency map, µh is the mean intensity of the human fixa-
tion map (Mc(x)), and µs is the mean intensity of our map
(Ms(x)). Figure 4(e) shows the correlation coefficients be-
tween the human fixation maps and the REM saliency maps
for the respective images.

We compared the results of our algorithm to that of the
results produced by iLab’s [19, 28] (available in [20]) saliency
mechanism in relation to the respective human saliency maps.
iLab’s saliency mechanism is considered to be the dominant
saliency model in the state of the art. The REM saliency
maps were produced by evaluating a local pixel neighbor-
hood size of 11x11. We used 120 human fixation maps from
the Bruce and Tsotsos data set (some examples are shown
in Figure 4). The overall performance for these 120 images
is displayed in Figure 5. In 63.3% of the images, the correla-
tion coefficients between the R.E.M. saliency maps and the
human fixation maps were higher than iLab’s, hence showing
that our method produces results which are more consistent
with the HVS.

3.3 Scale Variation results
In this section, we evaluate the changes that occur to a

saliency map over a narrow range of scales. The scale range



λ = 0.581

λ = 0.607

λ = 0.490

λ = 0.484

λ = 0.397

λ = 0.535

λ = 0.367

λ = 0.188

(a) (b) (c) (d) (e)

Figure 4: Comparing saliency results and human saliency maps for images taken from the Bruce and Tsotsos
dataset [6]. (a) Original image. (b) Human Saliency map. (c) REM saliency map. (d) Comparison map -
a different color channel is assigned to each map - blue for our saliency map, green for the human fixation
map, and red 0. (e) Correlation coefficients λ between human saliency maps and REM saliency maps.

(σ) is as follows: (2k + 1) x (2k + 1), where k = {1, ..., 5};
σ = n would always refer to (n x n). The saliency maps
were intensity-normalized and smoothed with a Gaussian
smoothing filter.

From the images in Figure 6, we can subjectively conclude
that the border of the ceiling lights and the helmet reflec-
tions are the most salient over these narrow range of scales.
All other image regions fade to the ‘background’ as the scale

increases. For the images in Figure 7, we can conclude that
the borders of the chairs are the most salient over these nar-
row range of scales. The heads of the band members persist
up to the σ = 17 scale, but they are not so apparent at
σ = 33. Correspondingly, in Figure 8, the borders of the in-
dividual’s t-shirt persist up to the σ = 17 scale thereby sug-
gesting that they are more salient that other image regions.
Moreover, at the largest scale, most image structures are



Figure 5: R.E.M. vs. iLab - graph of the correlation coefficients for 120 images from the Bruce and Tsotsos
data set. In 63.3% of the images, the correlation coefficients between the R.E.M. saliency maps and the
human fixation maps were higher than iLab’s.

(a) Test Image (b) σ = 3

(c) σ = 5 (d) σ = 9

(e) σ = 17 (f) σ = 33

Figure 6: Scale variation of the helmets image. (Im-
age taken from the PASCAL dataset [7].)

(a) Test Image (b) σ = 3

(c) σ = 5 (d) σ = 9

(e) σ = 17 (f) σ = 33

Figure 7: Scale variation of the band image. (Image
taken from the PASCAL dataset [7].)



blurry, suggesting that they do not possess strong saliency
at this scale. We can see from these images that the most

(a) Test Image (b) σ = 3

(c) σ = 5 (d) σ = 9

(e) σ = 17 (f) σ = 33

Figure 8: Scale variation of the beer bottles image.
(Image taken from the PASCAL dataset [7].)

salient image regions persist through to the largest scale.
Less salient regions fade as the scale increases. For future
work, we aim to automatically select the appropriate scale
of observation for each image point following work done in
[17].

4. CONCLUSION AND FUTURE WORK
The main goal of this paper was to develop a pure bottom-

up saliency mechanism based on relationships exhibited be-
tween image features. We highlighted those image regions
which stood out relative to some local pixel neighborhood.
We adopted a bottom-up saliency approach due to its generic
nature and flexibility. Our measure is not tied to specific vi-
sual features. We demonstrated how our results coincided
with human fixations and also presented results that were
comparable to a dominant saliency model. These results are
encouraging. Consequently, we believe that with refinement
our measure may be used as the foundation of a focus of
attention mechanism.

For future work, we aim to use richer representations
(higher-order relationships) to capture more of the low-level
structure in an image. We also seek to incorporate more
probabilistic principles in our measure to make it more ro-
bust. We also aim to explore our measure with regards to
video sequences and depth estimation. In an effort to re-
duce the dimensionality and memory usage inherent with
relational histograms, we aim to incorporate kernel density

estimation to estimate the Rényi entropy of local pixel neigh-
borhoods [16]. Another future goal is to implement an inte-
grated saliency approach, incorporating both top-down and
bottom-up saliency approaches to aid in visual attention and
object recognition.
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