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ABSTRACT
In this paper, we propose a real-time distributed framework
for composite event recognition in a calibrated pan-tilt cam-
era network. A composite event comprises of events that
occur simultaneously or sequentially at different locations
across time. Distributed composite event recognition re-
quires distributed multi-camera multi-object tracking and
distributed multi-camera event recognition. We apply belief
propagation to reach a consensus on the global identities of
the objects in the pan-tilt camera network and to arrive at
a consensus on the event recognized by multiple cameras
simultaneously observing it. We propose a hidden Markov
model based approach for composite event recognition. We
also propose a novel probabilistic Latent Semantic Analy-
sis based algorithm for pair-wise interaction recognition and
present an application of our distributed composite event
recognition framework, where the events are interactions be-
tween pairs of objects.

1. INTRODUCTION
In this paper, we propose a real-time distributed frame-

work for composite event recognition in a calibrated pan-tilt
camera network. Composite events comprise of events that
occur simultaneously at different locations in space as well
as events that are related in both space and time. There-
fore, to be able to recognize a composite event, we need to
detect and track multiple objects through space and time
and recognize all the events (associated with these objects)
that eventually comprise a composite event. In our frame-
work, we incorporate single camera event analysis in each
camera. We propose the use of multi-layered belief prop-
agation for arriving at a consensus on the global identity
of an object among cameras that simultaneously track the
object as well as among those that track the object across
space and time. For distributed recognition of an event by
multiple cameras simultaneously viewing the event, firstly,
single camera event recognition is carried out in each camera
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and then, we propose the use of belief propagation to reach
a consensus on the recognized event.

Recognizing a composite event is a challenging problem
because of the variability and uncertainty associated with
both the composite event as well as the events that com-
prise it. The variability exists mainly because each instance
of the same event will have a similar but not the same pat-
tern and can occur for different lengths in time. As the time
scale of the events vary, the time scale for the composite
events shall also be variable. Moreover, the same event will,
in general, be a part of more than one composite event, as it
is the sequence of these events that uniquely define a com-
posite event. In such a system, the state of the system is
unknown and dynamic and the system can remain in a state
for a variable duration of time for different instances of the
same event. Therefore, rule-based event recognition systems
are not well-suited for composite event recognition. Finite
state machines can provide the state sequence which defines
the composite event but require the knowledge about the
state of the system. Hidden Markov models (HMMs) [11]
are best suited for recognition of a temporal sequence of
observations when the state of the system is dynamic, un-
known, and variable. Therefore, we propose a HMM based
approach for recognition of composite events in the pan-tilt
camera network, based on the recognition of events, in each
of the sub-networks across space and time, comprising the
composite event.

A pan-tilt camera network is best suited for surveillance of
wide areas. As a small number of pan-tilt cameras can cover
a wide area, such networks reduce the cost and complexity
associated with a static camera network that would require
a large number of cameras to cover the area. Although pan-
tilt camera networks are cost effective, the complexity in
a pan-tilt camera network arises due to the dynamic na-
ture of the cameras. A pan-tilt camera network consists of
many smaller sub-networks, where cameras in a sub-network
observe a common region. As the cameras pan and/or tilt,
these sub-networks change across time leading to the change
in the topology of the complete network.

In such a scenario, distributed processing becomes a ne-
cessity, specially if the information has to be processed in
real-time. This is mainly because, different sub-networks
observe different events simultaneously, making it difficult
for a central server to simultaneously recognize the events
that occur in the various sub-networks. Distributed process-
ing on the other hand, requires processing of information at
each camera in the network, independent of the others. This



may lead to inconsistencies in the estimation, as each cam-
era processes the information it gathers and observes based
on it’s view. We use our distributed calibration algorithm
from [5] because it is also necessary to calibrate the camera
network in a distributed manner. Distributed event recog-
nition also requires a single camera system for object detec-
tion, tracking and event recognition along with a method
to reach consistent and accurate decisions about the events
that occur in the area under observation.

Distributed processing is also advantageous as it is robust
against failures and addition or removal of cameras from the
network does not impact the complete system. Distributed
processing makes the system modular as processing is done
at each camera and scalable as the communication between
the cameras takes place among a much smaller set of cameras
compared to the total number of cameras in the network.

We present an application of our framework, where an
event implies interaction between a pair of objects in the
scene. Composite event is therefore, composed of various
different interactions of an object with another static or
moving object in the scene. To this end, we develop a novel
probabilistic Latent Semantic Analysis [7] based pair-wise
interaction recognition algorithm and apply our pLSA based
unusual event detection framework in [4], to be able to rec-
ognize the pair-wise interactions as well as detect unusual
interactions. Our framework is capable of detecting unusual
events as well as unusual composite events.

In the following sections, we discuss the related work and
the details of our framework.

2. RELATED WORK
Research on multi-camera networks is mainly focused on

static camera networks and centralized processing, but multi-
camera tracking in static as well as active camera networks
has also become an important area of research [6], [2]. Re-
cently, in [14], concepts from multi-player learning in games
is used for keeping the complete scene in view as well as
acquiring the targets at a desired resolution and Kalman
consensus filter is used for consensus among neighboring
cameras for multi-target tracking in a self-configuring ac-
tive camera network. Authors in [10] present a hierarchical
framework to manage static as well as pan-tilt-zoom cam-
eras for visual surveillance of a parking lot. They use static
cameras to detect an object and then the active cameras
for tracking the suspicious objects at a higher resolution.
Authors in [12], propose a multi-agent architecture for the
understanding of scene dynamics by merging the informa-
tion streamed from multiple cameras. In [1], the authors
describe an architecture for a multi-camera, multi-resolution
surveillance system. Most of the multi-camera distributed
systems consists of both static and active cameras and fol-
low the master-slave configuration, where the active cameras
are used for zooming in on the target of interest. Authors
in [9], present a cooperative distributed system for real-time
multi-target tracking. In this, a group of active cameras
cooperatively track multiple objects and has a manager as-
signed to each such group for inter-group as well as intra-
group communication to manage the dynamic topology and
intra-group cooperative tracking of multiple objects. In [8],
the authors present a nearly real-time surveillance system
for multi-target tracking by multiple pan-tilt-zoom cameras.
A master-slave relationship between the cameras is decided
on the fly and each camera does multi-target tracking, such

that targets are tracked in the complete scene as often as
possible.

Active camera network systems such as, [14, 9, 8] only
focus on multi-target tracking, Authors in [13] also focus
on consensus based activity recognition in an active camera
network, where they consider that a set of cameras simulta-
neously view an object performing some action and reach a
consensus among these cameras on the recognized activity.
However, they do not address recognition of events or ac-
tivities that occur across sub-networks in a pan-tilt camera
network. Our framework recognizes composite events that
occurs across space and time in the area under observation
of a calibrated pan-tilt camera network. It is flexible and
modular and along with recognizing events that constitute
a composite event it also performs the task of multi-target
tracking.

In the next sections, we give an overview of our framework
and discuss the composite event recognition architecture.

3. OVERVIEW
We assume that the pan-tilt camera network consists of

N ≥ 3 cameras and that the camera network is completely
calibrated. We use our algorithm [5] for distributed calibra-
tion of the pan-tilt camera network. We assume that each
camera has a unique number, i ∈ {1, 2, . . . , N} associated
with it and also has a processing unit attached with it. We
also assume that there exists an underlying communication
network such that each camera can send a message to all
other cameras.

A sub-network in the camera network is composed of all
cameras which view a common region simultaneously. Each
sub-network corresponds to a graph G = (V,E) such that
V = {set of all cameras in the sub-network} and an edge eij
exists between nodes Ci ∈ V and Cj ∈ V if they view a com-
mon region. Therefore, each sub-network forms a complete
graph. In a pan-tilt camera network, at each time instance,
many such graphs exist in the system. Moreover, if a cam-
era pans and/ or tilts, it becomes a part of a new graph and
each camera can belong to only one graph at any point in
time.

Since the camera network is completely calibrated, each
camera has a priori information of all the other cameras
with which it can have an overlap in some pan-tilt position
of both the cameras. Two cameras are therefore, said to be
neighbors if they can have sufficient overlap in some pan-tilt
position. Therefore, whenever a camera pans and/or tilts, it
sends a message to all its neighbors about it’s new pan-tilt
position. Each neighbor of that camera then evaluates the
set of cameras with which it currently has sufficient overlap.
In this manner, each camera finds the nodes of the graphs
to which it belongs.

We also assume that the cameras sweep in discrete pan-tilt
steps at a fixed zoom while they are not tracking any object.
As soon as a camera detects an object, it becomes static and
begins to track the object. The camera also sends a message
to its neighbors about the 3D position and the global iden-
tity of the object. All it’s neighbors that are not observing
or tracking any object at that point in time, pan and/or
tilt to bring this object in their view and form a graph as
described above. While the cameras track objects in their
view, they also collect information required for recognizing
the interaction (or event) associated with the objects.

When an object is about to get out of the view of a cam-



era, the camera on the basis of direction of motion as well
as the predicted position of the object, pans and/or tilts to
the next discrete pan-tilt position, if possible. It also sends a
message about its new pan-tilt position, the 3D position and
global identity of the object and another graph is formed.
However, before the camera(s) in a graph pan-tilt, they ex-
change information and use belief propagation to reach a
consensus on the global identities of these object(s). More-
over, each camera implements the event recognition module
using the data it has collected till that point in time and
uses belief propagation to reach a consensus on the recog-
nized event.

If the cameras remain static for a time period greater than
a fixed time period, say T1, then at the end of T1, the cam-
eras implement event recognition and belief propagation for
reaching the consensus on the global identities of the objects
in their view as well as belief propagation for consensus on
events recognized during that time period. This is carried
out at the end of every T1 time step, starting from the time
the new graph is formed. The time periods are concatenated
if there is no change in information in the consecutive time
periods. At the end of each time period T1, after a consen-
sus has been reached in each graph, from each camera in
the network, a token collects the information regarding the
number of graphs in the network, which camera belongs to
which graph, the objects observed in each graph on the basis
of their global identities and the events recognized in each
graph. The token then imparts this information collected
from each camera to every other camera in the network.
When an object exits from the area under observation of
the pan-tilt camera network, each camera implements the
HMM based composite event recognition module for recog-
nizing the composite event associated with that object.

Composite event recognition therefore, involves (a) dis-
tributed multi-object tracking in a multi-camera network;
(b) distributed multi-camera event recognition and (c) com-
posite event recognition using HMMs. In the following sec-
tions, we discuss our composite event recognition architec-
ture and then each of the above mentioned parts of our
framework.

4. COMPOSITE EVENT RECOGNITION
ARCHITECTURE

We propose a three layered architecture as shown in the
Figure 1. The first layer shown in Figure 1(a) consists of the
processing carried out in each camera of the pan-tilt camera
network. It consists of modules for object detection, assign-
ment of the global identity when an object is first detected in
the scene, object tracking and event recognition. The next
level, shown in Figure 1(b), is at the level of a graph and
consists of two modules, one for belief propagation to arrive
at a consensus on the global identity of the objects observed
during a time period and the other, for consensus on the
event recognized by all the cameras in the graph during the
same time period. Each camera in a graph implements these
modules after exchanging information on the global identity
it assigns to the objects in it’s view and the event it has rec-
ognized during that time period. This time period is either
equal to T1 or is less than T1 during which the graph was
static. Figure 1(c), depicts the top-most layer of the archi-
tecture, which consists of the HMM-based module for com-
posite event recognition, based on the information collected

Figure 1: The three-layered architecture for dis-
tributed composite event recognition in a pan-tilt
camera network.

in each graph across space and time. The token that collects
the information at the end of a fixed time period, imparts
this information to each camera in the network. Each cam-
era then uses this information with respect to an object or a
pair of objects and implements the HMM-based module for
recognizing composite events associated with the object(s).

In Section 5, we discuss distributed multi-camera multi-
object tracking which constitutes the single camera object
tracking module and the module for multi-layered belief
propagation within and across graphs for reaching a con-
sensus on the global identities of the objects in the network.
In Section 6, we detail distributed multi-camera pair-wise
interaction recognition which includes the modules on pair-
wise interaction (event) recognition in a single camera and
the module for belief propagation based consensus on event
recognition within a graph. We discuss our HMM-based
composite event recognition module in Section 7.

5. DISTRIBUTED MULTI-CAMERA
MULTI-OBJECT TRACKING

We use our single camera component-based clustering fra-
mework from [3] for tracking objects in each camera. We
cluster in the components defining object properties such as
3D position of objects, size of objects, color correlogram of
objects, etc., using our incremental clustering algorithm [3]
in each of the components to be able to track the object in
real-time. The tracks of each object is found by composition
of clusters from each of the component spaces. Since the 3D
position is unique to an object, that is only one object can be
at a particular 3D position at any point in time, we use 3D
position as one of the components for tracking the object.
As the camera network is calibrated, we calculate the 3D



position of an object from its 2D position assuming that the
object moves on a ground plane.

Assume that the camera matrix is given by P and the 3D
position on the ground plane by X̂ and its 2D position in
the image by x̂. Then, P =

[
p1 p2 p3 p4

]
,

X̂ =
[
X 0 Z 1

]′
and x̂ =

[
x y 1

]′
and,

x̂ = PX̂ (1)

=
[
p1 p2 p3 p4

] [
X 0 Z 1

]′
(2)

=
[
p1 p3 p4

] [
X Z 1

]′
Therefore, if P̃ =

[
p1 p3 p4

]
, we get the 3D position of

the object on the ground plane as

X̃ = P̃−1x̃ (3)

where, X̃ =
[
X Z 1

]′
and x̃ =

[
x y 1

]′
We use the 3D position to reach a consensus on the global

identity of the object within and across graphs as discussed
in the next section.

5.1 Consensus on global identity of objects
Let Nh be the total number of objects in the pan-tilt cam-

era network, and NG be the total number of cameras in a
graph G.

Let Y = {y1, y2, . . . , yNG} be the set of observations of all
the cameras in graph, G.

Assume that each camera Ci in G receives a message from
it’s neighbors containing 3D position Xi and the global iden-
tity Oi of n objects, 1 ≤ i ≤ n. When an object O enters
a cameras view, it first checks whether it has received any
message from its neighbors or not. Moreover, it computes
the 3D position, X of object O. Then, if Ci has received a
message from its neighbor, it calculates,

dj = e−d(X,Xj)/σ ∀ 1 ≤ j ≤ n (4)

where, d(X,Xj) is the Euclidean distance between X and
Xj , 1 ≤ j ≤ n, and σ is the normalizing constant.

Let hOk be the hypothesis that the object’s global identity
is Ok. Then, the belief of the ith camera is,

P (y(i)|hOk ) = max1≤j≤ndj (5)

In case, the camera does not receive any message from
any of it’s neighbors, we set P (y(i)|hOk ) = 1

2
because there

is still a possibility that the object was previously present in
the network. The prior probability for the jth hypothesis is
then defined on the basis of the belief of the camera. That
is,

P (hOk ) =

{
P (hOk |Yprevious graph) ifP (y(i)|hOk ) > 1

2
1

Nh+1
otherwise

(6)
Within a graph, the most probable hypothesis is theMAP

estimate of the belief of the graph about the object’s identity.

P (hOi |Ycurrent graph) = arg max
k

P (hOk )

NG∏
m=1

P (y(m)|hOk )

(7)
Thus, the identity of the object is set to be the one for which
the probability P (hOk |Ycurrent graph) is maximum. There-
fore, if the object was already in the system, the belief will

be stronger and it shall get its correct identity while if it is
a new object, it shall get recognized as a new object.

6. DISTRIBUTED PAIR-WISE INTER-
ACTION RECOGNITION IN A MULTI-
CAMERA NETWORK

Each camera in a graph recognizes the interactions inde-
pendently using our interaction recognition algorithm de-
scribed in Section 6.1. Because of the uncertainty in mea-
surements there is a need to reach a consensus on the inter-
action that takes place while the objects are in a graph. We
use belief propagation to arrive at this consensus and use
the probabilities calculated in the pLSA based recognition
algorithm as the likelihood of the interaction hypothesis as
explained in detail in Section 6.2.

6.1 Pair-wise interaction recognition using
pLSA

We use pLSA [7] for recognizing the interactions among a
pair of objects. As the objects are tracked in real-time, the
feature vector for interaction recognition is formed. The fea-
tures that we use for interaction recognition are the changes
in relative speed, relative direction, relative distance and rel-
ative angle among a pair of objects in the scene. Other fea-
tures can also be used depending on the type of interactions
that are to be recognized. Each component of the feature
vector is treated as a word and in the learning phase, the
word-document matrix is a concatenation of these feature
vectors. The words are the number of times that the change
in the component of the feature vector occurred. That is, if
the word in the pLSA recognition system is relative distance
increasing or relative distance decreasing or relative distance
constant and so on for each of these relative features, then,
these quantities are increased by 1 if they are true for the
current frame. Finally, they are normalized so that they are
independent of the size of the document. A document is the
clip captured by the camera during which the feature vector
is formed. A large amount of data is used to learn the dis-
tributions in pLSA for the usual interactions. Each hidden
class represents a single interaction type. We use the pLSA
based framework in [4] for unusual interaction recognition.
In this case also, during the test phase, we add a new class,
called the unusual class to the set of hidden classes. In case
labeled data is available, we still carry out the learning con-
sidering it as unlabeled data. At the end of the learning
process, we label the hidden topic with the label associated
with the data clustered into that topic.

Let w denote the words, which are the components of
the interaction feature vector, d denote the document and
ha denote the hidden class which represents an interaction
(usual and unusual class). During the test phase, the term-
document matrix comprises of the test feature vector and
the Expectation-Maximization algorithm is used to compute
the probability P (ha|d) of the test document belonging to
the hidden class ha. Therefore, the document is classified
to either the unusual class or to one of the usual classes.
We label a document as unusual if it belongs to the unusual
class or if its log-likelihood of belonging to the usual class
to which it is classified is below a predefined threshold.

Interaction recognition in our system is carried out by
each camera of a graph to which an object belongs at the
end of each fixed time interval. Since each camera in the



graph computes the pLSA probabilities, it is not necessary
that each camera gets the same result. This is also because
the feature vector formed is dependent on features computed
from the individual camera’s view and have a certain amount
of uncertainty associated with them. Therefore, to be able
to say which interaction took place within a certain time
interval, a consensus among the cameras of the graph has
to be reached. We again use belief propagation to come to
a consensus. We also believe that the interactions in each
time period are independent of interactions in the next or
previous time periods. We now discuss how consensus on in-
teraction recognition using belief propagation is reached.The
hypothesis considered for belief propagation are all the valid
interactions as well as the unusual one.

6.2 Consensus on recognized pair-wise inter-
actions

Let z(i) be the observation of the ith camera Ci in graph
Gk,
ha be the ath interaction hypothesis,
Nk be the total number of hypothesis, and
NG be the total number of cameras in G.

We use the probabilities P (ha|d) calculated in each cam-
era during pLSA test phase as the likelihood for the ath

interaction hypothesis ha.
Let ZG = {z(1), z(2), . . . , z(NG)}, be the set of all obser-

vations among the cameras of G.
Each camera sends the probabilities P (ha|d) ∀ i =
{1, 2, . . . , Nk} to all other cameras inG. Then, the likelihood
of the ath hypothesis is,

P (z(i)Gk |ha) = P (ha|d) ∀ ha (8)

We assume that each interaction is equally likely. There-
fore, the prior probability for the ath hypothesis is

P (ha) = 1/Nk (9)

Then, for each interaction hypothesis ha, the a posteriori
probability is,

P (ha|ZG) = αGP (ha)

NG∏
i=1

P (z(i)|ha) (10)

The above equation assumes independence among the ob-
servations P (z(i)|ha), which is true as each camera indepen-
dently observes and applies pLSA to recognize the interac-
tion. Here, αV G is the normalizing constant. The hypothesis
with the MAP estimate is taken to be the consensus on the
interaction that took place during that time period.

P (hMAP |ZG) = arg max
i
P (hi|ZG) (11)

Therefore, the interaction among a pair of objects is recog-
nized as hypothesis hMAP .

7. HMM BASED COMPOSITE EVENT
RECOGNITION

The information collected by a token from each camera is
imparted to every other camera, therefore, HMM based com-
posite event recognition is carried out at each camera in the
network. Since we are interested in pair-wise object recog-
nition, we define two types of states in each HMM formed
for modeling a particular composite event. Moreover, in this

case, a composite event is recognized with respect to a par-
ticular pair of objects. Therefore, from the data collected,
we use the information regarding each pair of objects. Thus,
one of the two types of states of the HMM denotes that there
are two mutually exclusive graphs, each observing one ob-
ject of interest in a pair. The other type of state represents
that both the objects are in the same graph and such a state
exists based on the total number of interactions that are con-
sidered for pLSA based recognition. The steps followed for
HMM based composite event recognition are:

1. Define E = e1, e2, . . . , eN to be the set of N composite
event classes for modeling.

2. Collect a large labeled set of training data for each of
the composite event classes.

3. Solve the estimation problem, based on the training
data for each class, to obtain a model λi for each class
ei, 1 ≤ i ≤ N that best represents the composite event.

4. During the recognition phase, for the unknown com-
posite event e, evaluate P (e|λi) 1 ≤ i ≤ N . Then,
the composite event belongs to the class ej , if

P (e|λj) = max1≤i≤NP (e|λi) (12)

and,

P (e|λj) > threshold (13)

5. If P (e|λj) < threshold, label the composite event as
an unusual composite event.

In case, the composite event is recognized as a usual event,
we use the Viterbi algorithm to get the state sequence that
best explains the composite event. Moreover, we also label
a composite event as an unusual composite event, if any of
the events comprising it are labeled as unusual by the pLSA
based event recognition module.

8. RESULTS
We use 3 SONY EVI-D70 cameras for our experiment in

the outdoor scene. In this case, the interactions between
the objects are defined as (a) single; (b) pick up object; (c)
drop object; and (d) independent. Independent implies that
there is no interaction between the two objects, while single
object implies that there is only one object in the scene.
Pick-up and drop define picking up an object and leaving
an object respectively. There are two HMMs that are built
a priori.

In the first HMM, objects move around the camera net-
work and the pair-wise interactions are either single or in-
dependent. The other HMM represents that it is common
for people to drop bags and move around the area under
observation of the network, but nobody else interacts with
the bag once it is dropped.

Figure 2 shows a usual composite event occurring in the
area observed by the three cameras. Two cameras, C1 and
C2, view a common region forming the sub-network S1,
while the third camera C3 views another region and is the
only camera in the sub-network S2. In the views of C1 and
C2 an object O1 is tracked and the cameras pan to keep
the object in its view. The interaction drop object is rec-
ognized in the panned view of both the cameras using the
pLSA algorithm for interaction recognition in each camera



independently. Therefore, a new sub-network S3 is formed
and a new object O3 (the bag) is detected and tracked in
this sub-network. Consensus on the interaction is reached
among these two cameras. During the same time period, in
camera C3, an object O2 is detected and tracked and the in-
teraction is recognized as single. Objects move across these
two sub-networks and their global identity is maintained,
as is depicted by the color of their trajectories. O2 is then
tracked in S3 till it leaves the network, while O1 is tracked
in S2. In S3, there is no interaction between O2 and O3

and therefore, the pair-wise interaction is recognized as in-
dependent. This composite event is recognized by one of the
HMMs built a priori and is therefore, recognized as a usual
composite event. Moreover, each of the events comprising
this composite event is also usual.

In Figure 8, an unusual event is observed by the three
cameras. The composite event is similar to the one described
above, but in this case, after O1 drops the bag, it enters S2

where object O2 is already present. The interaction between
these two objects is recognized as independent. Moreover,
when O2 enters S3, it interacts with O3 as it picks up the bag
and moves away with it. This interaction is recognized as
pick object and the cameras pan to continue to track O2 by
panning and forming the sub-network S1. The global iden-
tities of the objects are consistent across all sub-networks as
can be seen by the color of the trajectories. The composite
event of one person dropping the bag and another picking
it up and moving away with it is not recognized by any of
the pre-built HMMs. Therefore, it is detected as an unusual
composite event.

9. CONCLUSION
In this paper, we have proposed a real-time, distributed

algorithm for composite event recognition in a pan-tilt cam-
era network. We have shown that multi-layered belief prop-
agation can be applied to reach a consensus on the global
identities of the objects, as they move within the area under
observation of the pan-tilt camera network. We have also
shown that belief propagation can also be used to reach a
consensus on the event recognized by each of the cameras
that simultaneously view the event. We have also proposed
an HMM based approach for composite event recognition in
a pan-tilt camera network. We have proposed a pLSA based
pair-wise interaction recognition algorithm and presented an
application of our framework, where the events are the pair-
wise interactions and the composite event comprises of these
pair-wise interactions that occur across space and time, in
the area under observation of the pan-tilt camera network.
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Figure 2: Two consecutive rows represents view from a single pan-tilt camera. The first two rows (camera
C1 and the last two rows (camera C2) form a sub-network. Initially, they are part of the sub-network S1

and then, when they pan-tilt to continue tracking the object in their view, they form the sub-network S3.
The middle two rows (camera C3) forms another sub-network S2. In this case, object O1, represented by
the red trajectory, is tracked initially in S1 and then in S3 and the interactions are recognized as single in S1

and drop object in S3, as the person drops the bag and moves away from it. This also leads to the detection
of a new object O3 (the bag). While O1 moves around in S1 and S3, object O2 represented by the green
trajectory, moves around in S2. O1 and O2 then move across the sub-networks and it is seen that the global
identity is maintained. While in S2, the interactions between O2 and O3 are recognized as independent, while
the interaction in S3 is recognized as single. Therefore, in this case, one person drops a bag and another
person walks in the scene, ignoring the bag. This composite event is explained by one of the HMMs built a
priori, and is therefore, detected as a usual composite event.



Figure 3: Two consecutive rows represents view from a single pan-tilt camera. The first two rows (camera
C1) and the last two rows (camera C2) form a sub-network. Initially, they are part of the sub-network S1 and
then, when they pan-tilt to continue tracking the object in their view, they form the sub-network S3. The
middle two rows (camera C3) forms another sub-network S2. In this case, object O1, represented by the red
trajectory, is tracked initially in S1 and then in S3 and the interactions are recognized as single in S1 and drop
object in S3, as the person drops the bag and moves away from it. This also leads to the detection of a new
object O3 (the bag). While O1 moves around in S1 and S3, object O2 represented by the green trajectory,
moves around in S2. O1 then moves into S2 while O2 is still present and the interactions between them are
recognized as independent. O2 then moves across the sub-networks and enters S3 and it is seen that the global
identity is maintained as objects move across sub-networks. While in S3, the interactions between O2 and
O3 are recognized as pick object, and then O2 is tracked by C1 and C2 by panning and forming S1, while the
interaction in S2 is recognized as single. Therefore, in this case, one person drops a bag but another person
picks it up and moves on. This composite event is not explained by any of the HMMs built a priori, and is
therefore, detected as an unusual composite event.


