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ABSTRACT
Extracting foreground objects is an important task in many
video processing/analysis systems. In this paper, we pro-
pose a technique for foreground object extraction, under
static camera condition. In our approach the spatial his-
togram of a single background image is modeled as Mix-
ture of Gaussians and this model is updated after every few
frames. To extract the foreground, input frames are com-
pared with current background frame model and foreground
pixels are classified according to intensity differences. To
mitigate the errors caused due to movement of the back-
ground objects (e.g tree leaves in outdoor scenes), we also
incorporate optical flow in an efficient manner. We demon-
strate performance of our approach on various indoor and
outdoor scenes.

1. INTRODUCTION
Foreground extraction is an important task in many com-

puter vision applications. In this paper, we propose an
method which models the histogram of an initial background
frame by the mixtures of Gaussians. Generally, a natural
background includes large objects such as trees, road, floor,
buildings, walls etc., each of which contains pixels with simi-
lar intensity values, but whose intensities differ considerably
from each other. Hence, the histogram of the background
frame containing multiple objects, is usually multi-modal
and can be approximated by the Mixture of Gaussians [7].
The number of Gaussians is determined by the number of
objects present in the background. We also update the back-
ground histogram model at regular intervals to adapt to il-
lumination variations over time. We use the Expectation
Maximization (EM) algorithm to find maximum likelihood
parameters of every Gaussian component.

To detect the foreground objects, we compare input frame
with the current background histogram model. Pixels show-
ing higher intensity deviations than background pixels, are
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Figure 1: Outdoor scene with less motion in the
background: (a) Background frame and (b) its his-
togram with the GMM fit. (c,e) Input frame.
(d,f)Extracted foreground.

classified as foreground objects. The threshold for fore-
ground classification is computed from the current back-
ground model. We also account for the fact that if a classi-
fied foreground object remains stationary for long time, its
corresponding pixels are re-classified as background. To im-
prove the results under significant background motion, we
also incorporate optical flow efficiently in our framework.
We provide various qualitative and quantitative results on
indoor and outdoor scenes.

An illustration of our approach is shown in Fig. 1. Note
the different intensities of the background objects such as
the road, building etc. These differences show up in the
multi-modal histogram (Fig.1 (b)) where blue line indicates
histogram of background frame and red line indicates Gaus-



sian approximation of the histogram. The foreground ex-
traction results for the scene are shown in Figs.1 (d,f) for
the corresponding frames in Figs.1 (c,e).

1.1 Related Work
Various techniques exist in literature for foreground ob-

ject extraction. In the methods based on direct frame dif-
ferencing [8, 11], a difference between consecutive frames is
computed and pixels in the difference frame above thresh-
old are classified as foreground pixels. In the approximate
median [12], the running estimate of the median is incre-
mented by one if the input pixel is larger than the estimate,
and decreased by one if smaller.

A popular framework of background scene modeling, which
is also closely related to our work, uses GMM modeling for
pixels [4, 9, 10, 14]. In these methods, the background model
is learned over time for each pixel in the frame. The input
frame pixels which are not following the model are termed
as the foreground pixels. Extentions to the GMM meth-
ods also exist, such as the adaptive GMM approach [18],
where the number of Gaussians assigned to each pixel are
updated over time. In all the methods based on GMM for
background modeling, each pixel of the frame is modeled by
generally 3 to 5 Gaussians. In [3], based on color change at
each pixel, reference image model is created. Then depend-
ing on the threshold calculated from the model, foreground
pixels are classified. This method uses color images and re-
qiures training data for background modeling. On the other
hand, in our method, we work with gray scale images and
except the initial background frame, we do not assume any
training data. The GMM model is established in a temporal
sense by considering the intensity variation at a pixel over
time. Unlike these, in our approach, we model the spatial
histogram of background frame by mixture of Gaussians. In-
deed, as stated earlier, authors in [7] show that such spatial
histograms for natural scenes are usually multi modal and
can be modeled as mixture of Gaussians. This spatial GMM
modeling is an important distinction between our approach
and the standard temporal GMM-based approaches. In the
latter, a set of background frames is required for training
to find the means, variances and the weights of the Gaus-
sian components at every pixel. On the other hand, our
approach needs practically no training data as we model the
spatial histogram of a single pure background frame. More-
over, in standard GMM techniques, the typical variances
of the Gaussians, which model the intensity variation for a
pixel, are quite low. Hence the small illumination changes
or noise can be misclassified as foreground points. In our ap-
proach the Gaussian variances are relatively large since our
histogram modeling involves all pixels which span objects
with considerably varying intensities. Hence misclassifica-
tion due to small illumination changes or noise is consider-
ably less. Hence, our approach is more robust to noise and
illumination fluctuations.

The works in [5, 6, 1, 15, 16], primarily use optical flow
for foreground extraction. However, such optical flow based
methods are less accurate and sensitive to noise [17]. More-
over, as these methods use the flow computation on com-
plete images, they are computationally quite complex. Our
approach incorporates computing optical flow only for the
pixels which are classified as foreground by the primary his-
togram modeling approach. This considerably reduces com-
putation required for estimating optical flow vectors.

2. THE PROPOSED METHOD
We begin with selecting a pure background frame (with no

foreground objects) from the video. In case it is not available
it can be obtained by an temporal averaging/median opera-
tion on the first few consecutive frames (generally 20-30) of
the video.

As mentioned earlier, generally the background scene in-
volves large objects such as trees, road, floor, buildings, walls
etc. Each of these scene elements have nearly uniform or
smoothly varying intensities, yielding similar intensity val-
ues. We observe that normalized histograms of every such
background object can be approximated by a Gaussian dis-
tribution. Hence, the histogram of the background frame
can be modeled as mixture of Gaussians, each of which cor-
responds to a particular background object.

An example of an outdoor background image and its his-
togram is shown in Fig.2(a) and 2(b), respectively. Note
that the histogram is multi modal and can be approximated
by mixture of Gaussians.(Fig.2(d)). Also, observe that the
mixture of Gaussians fits quite well to the underlying his-
togram.

The number of Gaussians to be fitted depends on number
of major background objects. These can be found by find-
ing number of prominent peaks in the smoothed histogram
(shown in Fig. 2(c)). Finding the prominent peaks is carried
out in the following manner. We convolve the background
histogram with a large smoothing kernel (typically with a
window size of 15) to suppress large scale variations. To
further reduce the local variations, we then convolve the pre-
vious result with a smaller smoothing kernel (typically with
a window size of 5). We take the first and second difference
of resultant histogram. The points where first difference is
nearly zero and second difference is negative is defined as
a prominent peak. We can notice six prominent peaks in
the smoothed histogram in Fig. 2(c). Hence histogram is
modeled by six Gaussians as shown in Fig. 2(d).

2.1 Computing mixture of Gaussians for the
background histogram

To estimate the mixture of Gaussian fit to the histogram,
we use the expectation maximization (EM) algorithm. EM
finds the maximum likelihood parameters of every Gaussian
component given the number of Gaussians to be fitted and
an initial estimate of the Gaussian parameters. For faster
convergence of the EM algorithm, we use prominent peak
positions of the histogram as the initial estimates for the
means.

Let Y be the background image and Φ be the set of the
parameters of K Gaussians. The probability density func-
tion (p.d.f.) for intensity of pixel i can be expressed as a
weighted mixture of these K Gaussian components as

p(Yi = y|Φ) =

KX
i=1

G(y, µk, σk)ck (1)

where

G(y, µk, σk) =
1√

2πσk

exp
(y − µk)2

2σ2
k

(2)

where µk, σk and ck indicate the mean, standard devia-
tion and weight of the kth Gaussian component, respectively.
Here we have

PK
i=1 ck = 1.

The expectation-maximization algorithm (EM) [2] is a
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Figure 2: (a) Background frame and (b) its histogram. (c) Smoothed histogram to find the number of
dominant peaks. (d) Fitting mixture of Gaussians to the histogram in (b).Blue plot indicates the actual
histogram,Red plot indicates its GMM approximation.

general technique for finding maximum likelihood parameter
estimates in problems with hidden data. Hidden data in this
case is class assignment of each pixel of background frame.
We will denote hidden data by Z. The EM tries to find
maximum likelihood parameter estimates by first estimat-
ing class assignment based on current parameter estimates.
The estimated complete data (observed and hidden data)
are then used to estimate the parameters through maximiz-
ing the likelihood of the complete data. EM involves two
steps in its operation.

• Expectation step or E-step: Calculate the estimate
p(m+1), also known as soft class assignment Z, from the
observed data Y and current parameter estimate Φ(m).
For the Gaussian case, equation of soft assignment for
mth iteration becomes

p
(m+1)
ij =

G(yi, µ
(m)
j , σ

(m)
j )c

(m)
jPK

k=1 G(yi, µ
(m)
k , σ

(m)
k )c

(m)
k

(3)

where pij denotes the probability of ith pixel getting
assigned to jth Gaussian component.

• Maximization step or M-step: Calculate the max-
imum likelihood parameters Φ(m+1) for the current es-
timate of the complete data (y, p(m+1)).

µ
(m+1)
j =

Pn
i=1 yip

(m+1)
ijPn

i=1 p
(m+1)
ij

(4)

(σ
(m+1)
j )2 =

Pn
i=1(yi − µ

(m+1)
j )2p

(m+1)
ijPn

i=1 p
(m+1)
ij

(5)

c
(m+1)
j =

Pn
i=1 p

(m+1)
ij

n
(6)

where n denotes the total number of pixels in the image.
EM algorithm iterates between E-step and M-step and

converges to maximum likelihood parameter estimate Φ for
observed data Y. It generally takes about 10 iterations to
find the maximum likelihood parameters.

2.2 Extracting foreground objects
After fitting the mixture of Gaussians to the background

histogram, we form the mean image M where M(x, y) de-
notes the mean value of the Gaussian component to which
that particular pixel is assigned depending on its intensity
value. Thus, the background frame is segmented, in which
number of segmented regions is equal to the number of Gaus-
sians fitted to histograms.

For the next incoming frame we compute, at every pixel,
the difference in its intensity value with the corresponding
pixel in the mean image. This difference is then compared
with a threshold depending on which the pixel is classified
as foreground.

An important aspect in foreground classification is the
choice of threshold. Intuitively, since we are using the in-
tensity difference from the mean image as a decisive factor
in the classification, one may infer that the threshold should
be related to the standard deviations (σks) of the Gaussians
of the model. However, since the background regions cor-
respond to Gaussians with different σks, the thresholds for
pixels belonging to different background regions will differ.
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Figure 3: (a)Input frame. (b)Result without optical
flow.

To simplify matters, we use a single threshold value as 3σa,
where σa is the average of the standard deviations of all the
Gaussian components in the model. This threshold value
was found out empirically, which gives the best result in all
the cases.

If the difference value is more than the 3σa, the pixel is
classified as foreground. Given the input frame I and the
mean image M , the foreground image F is the extracted as

F (x, y) = 255 if|I(x, y)−M(x, y)| ≥ 3σa

F (x, y) = 0 otherwise (7)

To handle illumination variations over time, a new back-
ground frame is obtained after every 10 minutes in video. We
initialize the EM iterations for this new background frame
with the present values of the Gaussian parameters. If a
particular pixel is classified as foreground for consecutive
300 frames, it is labeled as background and made zero. This
addresses the scenario where an moving object becomes and
remains stationary for a long time and hence needs to be
classified as background.

3. INCORPORATING OPTICAL FLOW
If the background pixels undergo motion resulting in large

intensity variations at their locations, they may be falsely
classified as foreground. Such a scenario may occur in pres-
ence of tree leaves, computer displays etc. Fig. 3 shows
the example of such a case where some background pixels
corresponding to tree leaves are classified as foreground. To
improve the result, we incorporate optical flow in our frame-
work [13]. As motion of the background pixels is much lesser
than that of the foreground pixels, flow velocity magnitude
of pixels can be used to mitigate the false detections.

Estimating optical flow on complete images is often com-
putationally expensive. However, since we are interested
to reduce false classification of background pixels as fore-
ground, we compute the flow velocities only at previously
classified foreground pixels, which are much less than the
total number of image pixels. Thus our approach is much
more efficient than computing the flow over the complete
image. Moreover, to speed up the flow velocity computation
we use the method of cumulants [13].

The optical flow applies to data which is smoothly contin-
uous and hence differentiable. Problems arise when images
are not continuous but contain distinct foreground objects
with crisp edges. Frequently, pixel displacements between
successive images may be quite large. Hence, the algorithms,
which assume small pixel motion, result in large errors in
flow computation. To overcome this problem, we smoothen
the input images using Gaussian blurring. As a result, the

edges becomes more differentiable and it extends the effec-
tive scope of the objects. We blur the images with Gaussian
kernel. In our experiments we observed that kernel of size
15x15 with variance 1 gives better results.

Given the flow vectors of the foreground pixels, points
having velocity less than a velocity threshold are classified as
background points and set to zero. The velocity threshold is
kept sufficiently small to avoid mis-classification of the true
foreground points.

4. RESULTS
To validate our approach, we carried out real experiments

on images of various indoor and outdoor scenes. We used the
videos from PETS 2001 and PETS 2006 data sets, respec-
tively. In addition, we also experimented on some indoor
and outdoor videos acquired in our campus. Quantitative
analysis of the results is also given. We find out the ac-
tual number of foreground pixels present by selecting the
foreground objects from the image manually. We then give
number of pixels found by our approach. If number of pixels
found are greater than actual number of pixels, it indicates
the false detection. If number of pixels found are less than
actual number of pixels, it indicates the true rejection. It
can be noted that our results matches closely with the true
values.

4.1 Results for indoor scenes

Table 1: Indoor scene results(Fig.4)
Frame Actual Detected

Fig.4 (a) 27720 27945
Fig.4 (c) 4230 4195
Fig.4 (e) 21619 21706
Fig.4 (g) 27580 27643

Indoor scenes have relatively low illumination variation,
noise and background motion as compared with outdoor
scenes. Due to negligible movement in the background, we
achieve satisfactory results for foreground extraction using
only the method described in section 2. Figs.4 (b,d,f,h) show
the result of this approach on indoor scenes. It can be ob-
served that the method is able to extract the foreground
object with good accuracy and extracted objects have sharp
boundaries. Results are equally good with single and mul-
tiple objects. Table 1 shows the quantitative analysis of the
outputs.

4.2 Results for outdoor scenes

Table 2: Outoor scene results (Fig.1)
Frame Actual Detected

Fig.1 (a) 14329 14060
Fig.1 (c) 13418 12988

Fig.1 shows example of outdoor scene which have less
background motion. Hence first approach based on the back-
ground histogram modeling provides satisfactory results. Fig.1
(a,c) shows the frames and Fig. 1 (b,d) shows its correspond-
ing output. However, for outdoor scenes with moving back-
ground objects, using only this approach yields some false
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Figure 4: Indoor scene: (a,c,e,g) Input frame. (b,d,f,h) Extracted foreground.

classification of the foreground objects. Fig. 5 shows such an
example. In this scenario, the false detection using only the
first approach is shown in Fig.5 (b,e) for the frames in the
Fig.5 (a,d) respectively. As mentioned earlier, to improve
the results in such cases, the optical flow based method is
incorporated. As a result, the false classification largely mit-
igated as can be seen in Fig. 5(c,f). Note that our complete
method extracts foreground objects with good localization
and yields considerably low misclassification. Table 3 in-
dicates the corresponding quantitative analysis. It can be
observed that applying optical flow makes the results more
accurate. In Table 3, column ’Before’ indicates the number
of foreground points detected before application of optical
flow and column ’After’ indicates the number of foreground
points detected after application of optical flow.

Table 3: Effect of Optical flow(Fig.5)
Frame Actual Before After

Fig.5 (a) 7164 9854 7285
Fig.5 (d) 1782 5551 1674

We also compared our approach with standard approaches
such as frame differencing [8, 11], approximate median [12]
and GMM [14, 4]. The results of the comparison for an
outdoor scene (Fig. 6 (a)) are shown in (Figs. 6(b-f)). It can
be observed that in our output (Fig. 6(f)) the foreground
is extracted with fairly low misclassification as compared
to other approaches (Figs. 6(b-e)). The approaches which
achieve low misclassification perform poorly in localization
(e.g. Fig. 6(b,e)), and those with good localization also
suffer from high false detection (e.g. Figs. 6(c,d)). Our
approach fares well in this trade-off as compared to others.
Table 4 shows the quantitative analysis.

We show some more comparisons with the GMM approach
(Fig. 7), which is arguably the most widely used approach
for background modeling. Two frames from the outdoor
scene video are shown in Figs. 7(a,d). Unlike the frame,
for which the results are shown in Fig. 6, these frames
also have sharp illumination variations and hence provide
an interesting case for comparison. The corresponding out-

Table 4: Comparisons with different methods(Fig.6)
Frame Method No. of foreground points

Fig.6 (a) Actual 11582
Fig.6 (b) Optical flow 16456
Fig.6 (c) Frame difference 15116
Fig.6 (d) Approximate median 15228
Fig.6 (e) GMM 601
Fig.6 (f) Our Method 11748

puts for GMM and our approach are shown in Figs.7(b,e)
and Figs. 7(c,f) respectively. Note that the GMM approach
shows many misclassification. Some of these are possibly due
to the sharp illumination variation. Our approach, on the
other hand shows more robustness to illumination changes
and our results show much lower misclassification as com-
pared to the GMM approach. Quantitative results in Table
5 shows that our approach is more robust to illumination
changes than the GMM approach.

Table 5: Handeling of sharp illumination
changes(Fig.7)

Frame Actual GMM Our method
Fig.7 (a) 14150 28693 12582
Fig.7 (d) 8056 15987 7547

5. CONCLUSION
In this paper we proposed a novel histogram based ap-

proach for foreground object extraction for indoor and out-
door scenes. In our approach we modeled the histogram of
the background frame by the Mixture of Gaussian and derive
a mean background image using this model. The foreground
objects were classified according to the intensity deviation
with this mean background image. To adapt to the illumi-
nation variations with time, we update the histogram model
at regular intervals. To avoid false detection due to the mo-
tion of background pixels, we incorporate optical flow in our
framework in an efficient manner. Our results show that this
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Figure 5: Outdoor scene with significant background movement: (a)Input frame. (b)Result without optical
flow. (c)Result with optical flow.

(a) (b) (c)
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Figure 6: Comparison with standard approaches: (a) Input frame. (b)Optical flow [13]. (c)Frame difference.
[8] (d)Approximate median.[12] (e) GMM. [4](f) Our method.

approach is able to extract foreground with good fidelity in
indoor as well as outdoor scenes.
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