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ABSTRACT

Actions by humans in real-world settings involve large changes
in the person’s pose and the relative orientation with respect
to the camera. Person tracking algorithms often fail under
such conditions, since they work by detecting and tracking
people in a few known poses (typically standing). Further,
due to occlusions and similarity of clothing with background,
foreground silhouettes are typically very noisy. We present
an approach which address these problems by first accu-
rately tracking a person through changing pose and broken
foreground blobs. During the tracking process we also es-
timate the relative orientation and scale of the person. We
represent the pose of the person in each track window us-
ing a grid-of-centroids model, and recognize the action by
matching with a set of keyposes, in each frame. We tested
our approach in a dataset collected in a real grocery store,
and report better than ~=82.5% accuracy for frame-by-frame
recognition of actions.

1. INTRODUCTION

Systems for automatic analysis and recognition of actions
from videos have several compelling applications including
human-computer interaction, visual surveillance, search and
retrieval among others. While the general problem of action
recognition in unconstrained videos is extremely difficult,
simple methods that work in well-constrained environments
can have a significant practical impact. With this in mind,
we focus on the problem of tracking and recognizing single
person actions, in largely static background, indoor environ-
ments. Such conditions are common in libraries and small
grocery stores where most aisles are sparsely populated.

Extensive research has been conducted in action recog-
nition, due to the range of potential applications. How-
ever, the applicability of current methods remain limited,
since low-level tracking and pose estimation remains ex-
tremely hard. While significant progress has been made
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in pedestrian detection[5][28] and tracking [15], such detect-
and-associate methods can handle only a few known poses
(typically upright). This is because the detectors need a
large set of training images for each pose of interest, and
hence are not scalable for actions involving extensive pose
articulation. This makes it necessary to develop suitable
techniques to predict and interpolate between two detec-
tions of known poses, which must also be robust to false
alarms and missed detections.

Further, many action recognition approaches rely on ex-
tracting 2D features like spatio-temporal interest points[13]
and learning suitable classifiers. The learned models are
typically not generalizable across datasets, viewpoints and
scale. This would either require collecting a prohibitively
large training set, or retraining the models for each new
dataset. To address viewpoint variations, [17][11][20] use
3D Motion Capture (Mocap) data of actions rendered from
multiple viewpoints, which are then matched to 2D features.
However, such Mocap data is time consuming to collect and
requires expensive equipment. Also rendering the 3D mod-
els from multiple viewpoints takes a long time (3-4 days),
and requires proprietary software like Poser.

We address these limitations by first presenting an algo-
rithm to track a single person through large changes in ori-
entation, scale and pose articulation. During tracking we
also estimate the approximate orientation and height of the
person with respect to the camera. We represent the pose in
each track window of each frame, using a grid-of-centroids
feature vector that is robust to large errors in background
subtraction. We next recognize actions by matching the fea-
ture vector with the action models, which is represented us-
ing a sequence of keyposes and motion models. The keyposes
are represented using stick figures, whose articulations can
be specified manually. Further, we learn our motion mod-
els for multi-view action recognition from a few video sam-
ples, without requiring camera calibration. Our approach
presents an effective and easy-to-use framework for frame-
by-frame action recognition in common indoor settings. We
demonstrate our method on a dataset collected in a real gro-
cery store with 8 different actors and 3 actions, under vary-
ing clothing, lighting and viewpoints. Our system achieves
~82.5% accuracy and runs at 5fps on a standard desktop
computer.

In the rest of the paper, we will discuss related work in
section 2, overview of our approach in section 3, tracking
algorithm in section 4, methods for learning keyposes and
motion models in section 5, matching and recognition in sec-
tion 6 and results in section 7.



2. RELATED WORK

While a wide range of approaches to action recognition
have been considered, they can be divided into two broad
classes - Template based approaches, which focus on extract-
ing low-level features and model-based approaches which fo-
cus on modeling high-level structure and constraints.

Template based approaches focus on extracting low-level
image features which are then either used to train suit-
able classifiers, or are compared to a set of event templates
for recognition. Motion energy images (MFEI) were used in
[2] for correlating view-based action templates with fore-
ground images. This was extended to motion energy volumes
(MEYV) in [27] for 3D action recognition in a multi-camera
setup. Shape based templates, instead of foreground im-
ages, were used in [9][23] for recognizing arm gestures. Op-
tical flow templates were used in [8] for recognizing actions
with track windows of a stabilized human figure, while [1]
compared two space-time intensity patterns without explic-
itly computing the optical flow. More recently, [12] used a
combination of shape and flow features for event detection
in several cluttered scenes. In contrast to these approaches,
bag-of-words classifiers trained using local features extracted
around a sparse set of interest points, have become popular
due to their simplicity and good performance. Spatial cor-
ner detectors like the Harris detector were used in [6][18],
the sparser spatio-temporal interest point (STIP) detectors
were used in [13][18][14][4] and a combination of both was
used in [22].

The template based approaches directly model high-level
events in terms of image features, but need large training
sets to generalize across backgrounds, scales and viewpoints.
In contrast, several model based approaches that focus on
high-level spatio-temporal structure, semantic constraints,
and efficient multi-view search, have been considered. In
particular, hidden Markov models (HMM) and their exten-
sions have been very popular due to their flexibility and sim-
ple Bayesian semantics. HMMs were used in [25][26] for rec-
ognizing sentences in American Sign Language (ASL) from
hand tracks obtained by tracking colored gloves in video.
Coupled-HMM (CHMM) was used in [3] for recognizing mul-
tiple interacting actions. The switching hidden semi-Markov
model (S-HSMM) was used in [7] to simultaneously model
both the natural hierarchical structure as well as durations
of events. More recently, discriminative models like con-
ditional random fields (CRF) have been used due to their
flexibility and improved performance. CRFs were applied
for contextual motion recognition in [24], while [19] intro-
duced a 2-layer CRF (LDCRF) and applied it for continuous
gesture recognition. These approaches focus on modeling
different aspects of actions, but also make several assump-
tions to bridge the gap with image data. [3][7][19] use fairly
accurate tracks from an intermediate module while [24][17]
extract features from clean silhouettes, which make then un-
realistic for most real applications.

[17] mapped multi-view action templates obtained by ren-
dering Mocap data of actions to graphical models for view in-
variant action recognition. Keypose models of actions from
multiple viewpoints were embedded into an ActionNet. This
attempts to combine the advantages of both template based
and model based approaches. The approach is still con-
strained since they require difficult-to-collect Mocap data

for each new action. In recent work [21], this method was
generalized to include intermediate pose models.

Our approach here addresses these limitations of earlier
methods, by using simple keypose action models that do not
require Mocap, and features that do not require accurate sil-
houette extraction. Further, since we use multi-view search,
our method is robust to viewpoint variations, making it suit-
able for realistic settings. However, since we do not perform
occlusion analysis, our method is restricted to scenarios with
a single person or multiple non-occluding persons.

3. OVERVIEW OF APPROACH

Our system consists of the following modules-

2. Blob Tracking: At each frame, we run a person
detector and also obtain the foreground image. Our
tracking algorithm consists of the following steps-

— Initialize: We start with a confident person detec-
tion and fit the window on intersecting foreground
blobs, to initialize our tracker.

— Track: Once we initialize, we continue tracking
by resampling in a region around each previous
window, and then fitting the new windows on the
foreground.

2. Model Learning:

— KeyPose selection: We choose three to five 3D
key poses for events of interest by inspection.

— Motion model learning: In addition we learn mo-
tion models for each action, in the camera co-
ordinate system. This eliminates the need for ac-
curate camera calibration.

3. Recognition: Our recognition algorithm consists of
the following steps-

- We match keyposes with foreground blob of each
tracked window.

- We estimate the person height, width and orienta-
tion for each window, and normalize the keyposes
using them.

- We recognize the event corresponding to the best
keypose at each frame, by searching around the
estimated orientation.

We will now describe each of these steps in detail.

4. TRACKING THROUGH ERRORS AND
POSE ARTICULATION

The first step in traditional bottom-up action recognition
systems is to detect and track the person or object of in-
terest. This is extremely hard in cluttered and crowded
environments and is one of the fundamental challenges in
computer vision. In recent years, several successful object
and pedestrian detection methods have been proposed such
as [5][28]. These methods work by first training shape based
classifiers from a large set of training images for each ob-
ject. Given a new image, these classifiers are then used to
classify each spatial location to identify possible locations
where instances of the object are present. Tracking is then
done by associating detections in consecutive images using



appearance and motion models.

A key limitation of this framework is that many human
actions involve extensive pose articulations. The shape and
appearance of these poses vary widely, and it is infeasible
to collect sufficient examples to train for all possible poses.
Hence, we need methods to predict and interpolate the poses
between detections of known poses. This was addressed in
[20] by using high-level action models. The sequence of poses
and actions in the frames between two pedestrian detections
were simultaneously inferred using a combination of shape
and flow based features, followed by a Viterbi search through
the action models.

While effective, this method is top-down in the sense that
high-level action models drive low-level tracking. Hence they
work only in domains with a known closed-set of possible
actions. The best way to address this is to extract suitable
features from each frame of the video and track them. We
take a first step at this by combining shape based pedestrian
detections with foreground blobs. While blob tracking has
a long history in computer vision, their applicability in real
indoor settings as input to high-level action recognition is
still limited. This is because foreground blobs tend to break
up due to errors, occlusions and similarity of clothing with
background.

Our approach to track a person through pose articulation
and large blob detection errors, works by first detecting the
person in a known pose, and then tracking the overlapping
blobs by perturbing the previous track window. We will now
describe this in detail.

4.1 Track Initialization

Getting an accurate initial track window of a person from
foreground blobs is challenging, since a person’s foreground
can be broken up due to similarity of clothing with back-
ground. In many cases, large portions of the person’s body
can be missing due to similarity of clothing with the back-
ground. Shape based pedestrian detectors are robust to such
issues, but they typically produce a coarse window as illus-
trated in figure 1. This is not accurate enough for most
action recognition applications.
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Figure 1: Blob Initialization

To address these issues, we use a combination of shape and
blob based detections to initialize our tracker. We start with
a confident detection from a standard shape-based pedes-
trian detector, similar to [28]. Next, we extract foreground
blobs in the image and fit bounding boxes around each of
the extracted contours. We fit the detection window on in-

tersecting foreground blobs, to get a tight fit of the window
around the person’s body. This is illustrated in figure 1. If
there are multiple windows left, we compute an observation
potential for each window, based on its intersection with the
foreground blobs and detections:

¢0bs = wdet¢det + wfg¢fg (1)

where, ¢qer and ¢4 are potentials from the person detection
and foreground blobs, and wge: and wyy are their relative
weights. Also, ¢qe¢r and ¢y are defined using the inter-
sections between the final observation window W,y and the
detection window We¢ and foreground windows Wy, respec-
tively:

|”obs N ”det|
ot = ———————— 2
¢d t HVObs' ( )
[Wobs N Wiyl
= 3
¢f9 |Wobs| ( )

We next store an array of distinct windows W, sorted ac-
cording to ¢ops for tracking the person. In our implementa-
tion we set,

Wiet = Wrg = 1

Note, this framework can be extended to include other fea-
tures whose relative weights are learned from training data.

4.2 Blob Tracking

Once we obtain the initial window, we track the person
through the video using a CRF-Filter[16] framework. In the
original CRF-Filter framework, we first sample from a tran-
sition potential ¢irans to get possible current states, and
then compute the observation potential ¢ops, followed by
re-sampling. Applying this framework directly to person
tracking in video is challenging since small errors in the track
windows can accumulate causing them to wander away from
the person. Hence, at each step we re-fit the new windows
with the observed foreground blobs. We eliminate identical
windows and compute the observation potential. This is il-
lustrated in figure 2.

Previous State

Current State

Al
Current Foreground

Figure 2: Blob Tracking

Given the previous track window, we obtain the current
window by considering different perturbations of it, and fit
each one on the current set of foreground blobs, while elimi-
nating duplicate windows. This is described in Algorithm 1.
The transition potential ¢irans(Wi, Wi_1,O;) corresponds
to the motion model of the person. In top-down approaches,



Algorithm 1 Modified CRF-Filter for Person Tracking
1: Inputs: Previous track windows-
Sia={(W,al? )i = 1..N}
Observations O;=(Wget, W/9)

: Resampling: Draw N samples Wt(i)l with probability

[\V]

proportional to importance weights a_;

3: fori=1to N do

4:  Prediction: Sample Wi ~ ¢prans (Wi, Wi_1, 0¢)

5. Refit: Wi with (Wget, w/9)

6:  Prune: If W} exists in the current set of windows S;
ignore it; else add to St.

7: Importance Sampling: ai=ops(Wi,O4)

8: end for

we have a set of motion models corresponding to the ac-
tions, and we can sample from them to predict the next
track window. In our approach we do not know the actions
apriori. Further, the track windows not only translate but
also can change shape due to changing pose. Hence, we
perturb (z,y,w,h) of each window by sampling uniformly in
range [-10%,+10%)], and fit them to the observed foreground
blobs and detections.

S. MODEL REPRESENTATION AND LEARN-

ING
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Figure 3: 23D body model

We represent each action by a sequence of 3D keyposes
using the ideal body model illustrated in figure 3. Our body
model has 19 dimensions for the joint angles, with three
additional dimensions for direction of translation(x,y,z) and
one for scale(H), to give a total of 23 degrees of freedom.
Note that we ignore the motion of the head, wrist and ankles
as our image resolutions are generally too small to capture
them. Each body part is represented as a cylinder, and the
pose is fit to the image by projecting it to 2D. The keyposes
are selected at key transition points in the action, similar to
[17]. This is illustrated in figure 4.

We obtain the keyposes by manually transforming the
standing pose to the required keypose. Here, we start with
the neutral standing pose and rotate body parts around rel-
evant joints by angles obtained by inspection. The angles
are easy to obtain by inspection for many actions like arm

0 0
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Figure 4: Keyposes for actions recognized

gestures, walk run etc.

5.1 Motion Model Learning

The speed at which a person moves is an excellent fea-
ture for distinguishing between many common actions like
stand, walk, run etc. However, it is difficult to estimate the
speed if the person moves in a non-fronto-parallel direction,
like towards the camera. In such cases, besides translation
the person’s relative height in the image also changes as il-
lustrated in figure 6. Accurately normalizing for this effect
requires precise camera calibration parameters, which is dif-
ficult to obtain.

We address these issues by tracking the centroid of the
lower 25% of the body, as the rate of displacement of the leg
determines a person’s speed of motion. This is illustrated in
figure 6. To make the system robust to noise and background
subtraction errors, we smooth the lower-centroid trajectory
over a large window of frames, and then use the frame-by-
frame x and y displacements to determine the instantaneous
speed. We learn each action’s motion model to be a Gaus-
sian distribution over the instantaneous speeds of a few (typ-
ically 3) actors.

Further, we model the scale change Ah linearly w.r.t the
y displacement Ay in the image co-ordinates:

W =h+kAy (4)

We learn the constant k from a few sample videos shot at
the location of interest. This linear model is a good approx-
imation at low tilt angles, which is valid for most surveil-
lance cameras having ~15° tilt. Further, it also allows us to
estimate a person’s height in image co-ordinates without re-
quiring camera calibration, for highly articulated poses. We
use it as an input in our recognition system.

6. RECOGNITION

We track the person through changing poses and do frame-
by-frame action recognition. We first estimate the person’s
height, width and orientation, and infer the action from
matching keyposes and motion model.



6.1 KeyPose Matching

Given a track window, we first compute centroids of fore-
ground blobs in a 3*4 (x,y) grid, and ignore grid locations
with too few foreground points. Next we compute similar
centroids for each key pose, and then compute key pose to
track window distance using scaled Hausdorff distance [10]
between the centroids as follows:

e Let A be the track window centroids and B be be pose
centroids.

o Let t=(ta,ly,55,5y) denote a translation and scaling of
key pose B. corresponding to event e.

Then the scaled-Hausdorff distance dsnape(A, B) is given by
dsha,pe(A Be ) -

max{max ggm |a — (Sabz + tz, Syby + ty)],

max min |(szbe + ta, syby +1y) — al} (5)

This is illustrated in figure 5.

extract

foregroundalobs
compute

N:mroids

current track
window

Q .
‘YI _ project | 1 o
compute
centroids

3D Model
il match centroids
‘-], ’ using
o Hausdorffmeasure

Figure 5: KeyPose Matching using Scaled Hausdorff
Distance

6.2 Motion Matching

In addition to the shape matching, we also match the
motion model of different actions. At each step in the track-
ing process, we estimate the person’s relative image height,
width and orientation to assist our recognition. The method
is illustrated in figure 6 and is described as follows :

e If projected person height at location Pi(z,y) is h,

height at location Pz (z+Az,y+Ay) is- h'=h+kAy, where

k is learnt during motion model learning describe in
section 5.1.

e The orientation (relative pan) is approximated to be
tan™'(Ay/Azx).

e We also normalize for different widths among different
people. To do this we estimate the width fraction, i.e
the ratio of width to height, during the first 15 frames
of tracking the person and maintain it for the rest of
the sequence.

W =h+kAy

Ay
AN
AN
\.
N
0 = tan"1(Ay/Ax)

Figure 6: Estimation of relative height and orienta-
tion

We compare the distance moved by the actor at each frame
with each event’s motion model as follows:

t=+/Ax2+ Ay?

t— pe)?

dmo ion = _(7 6
won(e) =~ 15 (6)
where, Az and Ay are the displacements in the z and y di-
rections as illustrated in figure 6. p. and o. are the mean
and standard deviations of the motion model for event e,

and dmotion (€) gives the log-likelihood score.

Given these scores, we recognize the best (event,keypose)
as:

H}Bax(wshapedshape (A, Be) 4 Wmotiondmotion (€)) (7

where, Wshape and Wmotion are the weights for the shape and
motion scores. In our implementation we used,

Wshape = Wmotion = 1

7. RESULTS

We tested our approach on the Groccery store dataset [21]
which is collected in the cluttered setting of a grocery store.
The camera is static and has a downward tilt of ~ 20°. In
each video, an actor enters the scene, picks up an item and
leaves. The action set includes 3 full body actions - walking,
pickup from shelf (Pickupl), crouch and pickup (Pickup?2),
from 8 different actors for a total of 18 videos and 3657
frames. The observed size of the actor varies from 200 to
375 pixels in a 852 x 480 frame. The main challenges here
are poor foreground extraction, highly articulated and am-
biguous poses and large changes in the orientation and scale
of the actor. The poor foreground extraction is due to the
shadows, changes in lighting due to reflection from outside
traffic and color similarities between actor’s clothing and the
background. Sample results are shown in figure 7, which
demonstrates our method’s effectiveness in tracking humans
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Figure 7: Sample results from Grocery dataset showing Walk (a-e), Pickupl (f-i) and Pickup2 (j-n) actions.

through complex pose variation, and also inferring the ac-
tion.

Table 1 summarizes the accuracy on the grocery set, with
the numbers in the brackets indicating the actual number of
frames in each entry. The entire system runs at ~5fps on
on a 3 GHz Xeon CPU running Windows/C++ programs
and include all the steps. Most of the computation arises
from person detection and foreground extraction.

| || Walk | Pickupl | Pickup2 |
Walk 78.28%(1074) | 20.04%(275) 1.68%(23)
Pickupl || 1.86%(21) | 84.64%(953) | 13.5%(152)
Pickup2 3.30%(39) 11.51%(136) | 85.19%(1007)

Table 1: Frame-by-frame confusion matrix on the
Grocery Dataset

Our system has an accuracy of ~82.5% for frame-by-frame
classification, without any temporal information. It is diffi-
cult to show a comparison with [21], as the authors do not
report per-frame classification results. Our dominant ac-
tion classification over individual segments of video is per-
fect (as also in [21]), where each segment contains a single
actor performing a single action. The per-frame classifica-
tion performance can be significantly improved by including
temporal reasoning into our system. Further, we also note
that these results were obtained using models trained on
completely different dataset of similar actions collected in
a different setting which demonstrates the transferability of
our approach.

8. CONCLUSION

We presented an approach to track a person through chang-
ing poses in realistic indoor settings using a CRF-Filter.
Our approach combines shape based pedestrian detectors
and foreground blobs to obtain an accurate bounding box
around the person. We then used this as input to our action
recognition system, for frame-by-frame classification using
key pose matching. In addition, we also presented a simple
approach to learn motion models without accurate camera

calibration. We tested our approach in indoor settings, and
presented results on a dataset collected in a grocery store.
Our entire system runs at 5fps on a standard PC, and pro-
duces ~82.5% with models trained on a different dataset.
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