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ABSTRACT
We present a system for interactive animation of trees in
a wind-field. Wind forces are simulated by Navier-Stokes
equations, solved in real-time using multi-processor CUDA
architecture. The dynamics of the tree is also modeled
and simulated in real-time using elastic body physics on
CUDA. Due to the animation being entirely physics based,
it is straightforward to design wind-fields by adding artificial
sources and obstacles and have the animation respond. By
using an efficient parallel algorithm we are able to animate
over a hundred trees in real-time. We demonstrate anima-
tion of a forest of trees in a variety of wind conditions under
interactive control of a user.

1. INTRODUCTION

Figure 1: A forest scene (note the wind controller
icon at the bottom right)

Trees are among the hardest to model in an outdoor scene.
Nonetheless, trees and grass are also among the most essen-
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tial ingredients of an outdoor scene. Growth models and
L-systems are commonly used to create the basic structure
of a tree. However, realistic animation of trees remains a
challenge. Our focus in this paper is not on the actual shape
of the tree but on its response to wind.

Visually convincing animation of trees in real time is hard
because of the size of the problem. Tree shapes are geomet-
rically complex with many thousand branches and leaves,
Moreover, these branches are connected in a complex dy-
namic system that is hard to solve. Furthermore, the jittery
movement of leaves is a high-frequency phenomenon and
difficult to model and even approximate. As a result most
animation algorithms require off-line pre-processing.

Ones that are able to efficiently animate trees generally
rely on heuristic approaches, largely dispensing with the
physics. These algorithms, in principle, generate random
motion with the emphasis on controlling the randomness
so that the generated motion matches the characteristics of
some real animation.

Such heuristics-based approaches require a careful design
of the heuristic for each scenario with different trees and
wind patterns. Artful hit and trial may be required. On the
other hand a physics-based approach lends itself to a natural
framework that is able to directly model a variety of trees
and wind conditions. This also leads to easier integration
into existing animation work-flows. Furthermore, a physics-
based approach lets us model the effect of the presence of
the trees on the wind itself. We present the first interactive
algorithm for physics based tree animation.

1.1 Our approach
We exploit the parallel architecture of modern graphics

hardware (exposed through CUDA) to help our goal of real-
time physics based tree animation. In addition to the hard-
ware itself, the reasons for our efficiency is two-fold: a careful
choice of the models that is suitable for parallel processing
and an efficient parallel algorithm enabling us to achieve
high parallelism from end to end, including wind simula-
tion, tree dynamics, and rendering. Our main contributions
include:

1. devising an end to end parallel algorithm suitable for
CUDA

2. reducing or eliminating serial parts without introduc-
ing significant errors

3. exploring techniques to estimate physical properties
used in the simulation



1.2 Previous work
Previous approaches for simulating the dynamics of trees

can be roughly categorized into full physics simulation [1, 15,
20, 8], heuristic design [22, 6, 21, 3] and hybrid approaches
[16, 5]. Among these, [22, 6] harness GPU to speed up their
systems.

Although we use Navier-Stokes fluid equations to gen-
erate the wind field, [19] employs the Lattice Boltzmann
Model (LBM) instead, which is considered more paralleliz-
able. However, that also requires smaller time time steps
and lattice spacings. We have found the Navier-Stokes so-
lution more stable for larger steps and thus faster overall.

[6] uses Euler-Bernoulli Beam Model [14] to compute bend-
ing of tapered branches. However, the results are only valid
at equilibrium and do not actually apply in a dynamic en-
vironment. Their animation is driven by user provided 2D
motion textures.

[21] introduces three kinds of level of detail representa-
tions. Geometry LOD is achieved by clustering branches and
leaves. Animation LOD is achieved by deactivating joints
of the tree. Wind-field LOD is achieved by generating a
mipmapped texture for wind field.

[1] employs incompressible fluid Navier-Stokes equations
for simulating the wind. They introduce the concept of a
boundary-conditions map to build a resistance model for
leaves and branches that enhances the speed of computa-
tion of the interaction of wind with the tree. They treat
the leaves and branches as virtual resistive bodies. How-
ever, they employ a highly simplified dynamics model for
the branch deformation.

The Navier Stokes based wind simulation used by our al-
gorithm is similar in spirit to that of [1] and the tree dynam-
ics model is inspired mainly by [15]. We have adapted their
physics model for wind-tree interaction and devised the ap-
propriate geometric algorithms suitable for the CUDA plat-
form. This enables us to significantly improve the simulation
speed and obtain interactive animations. For readers unfa-
miliar with the CUDA model, we briefly describe it here.

1.3 CUDA model
CUDA is a parallel computing infrastructure developed

by nVIDIA to access GPUs (graphics processing units) as
co-processors [11].

Execution model.
Computation is organized into blocks of threads, with the

hardware capable of keeping thousands of thread contexts si-
multaneously. Each block runs concurrently on one Stream
Multi-processor (SM). The underlying hardware may con-
sist of many SMs executing independent blocks – there is no
GPU synchronization across running blocks (the only syn-
chronization is at the CPU level). A block can be organized
into 1, 2 or 3 dimensional array of threads. This allows
the thread identifier to be a 1, 2, or 3 dimensional entity,
whichever is natural for the application. For example, for
a 3D-grid solution of Navier-Stokes equation, 3D block fits.
Threads in a block may be synchronized using barriers.

Multiple blocks form a grid. A grid may also be organized
as 1 or 2 dimensional group of blocks. nVIDIA recommends
hundreds of blocks to be scheduled on each SM concurrently.
Each block of threads is further subdivided into groups of
32 threads: warps. A warp of threads execute in a SIMD
[4] fashion and proceeds in lock-step except when threads

execute different blocks of the if-then-else construct.
To parallelize our algorithms we need to design kernels

executed by each thread and specify the configuration by
providing the block and grid dimensions.

Memory Model.
CUDA has a non-uniform memory access model. Regis-

ters are the fastest; each thread gets its own private set.
Shared memory can be as fast as registers when there are no
bank conflicts or when all threads read from the same ad-
dress. Each block gets its own private set. Global memory is
two orders of magnitude slower than shared memory [11]. It
is accessible from both the host (CPU) program and all ac-
tive GPU blocks. It has the scope of the entire application.
Local memory resides in global memory and therefore has
the same performance overhead. However, like registers, it
has the scope of a thread. It may be used for local variables,
especially arrays. We have limited such variables to avoid
using local memory.

Global memory coalescing.
Global memory supports 32, 64, and 128 byte transac-

tions. Access by a thread are in smaller units. Simultaneous
global memory accesses by half a warp (16 thread) can be
coalesced into as few as a single memory transaction. Coa-
lescing is important for good performance [10] but requires
that [11]:

1. threads access 32, 64, or 128 bit data-types.

2. all 16 accesses are aligned, i.e., they in the same seg-
ment of, respectively, 32, 64 or 128 bytes (or twice for
128-bit accesses).

1.4 Tree generation
Although tree generation is not the subject of this paper,

we briefly describe our implementation. For animation, one
needs the complete structure of the tree. We employed a
Bracketed L-system tree[12, 18] generator using a random-
ized recursive grammar.

Following is an example of a recursive grammar rule, in
which each branch has 5 children, of which one is a contin-
uation of itself:

F = G [R1F ] [R2F ] [R3F ] [R4F ] [F ]

• G = Stem geometry & Translation matrix

• R1, R2, R3, R4 = Rotational matrices

• [ = Push matrix

• ] = Pop matrix

• F = Recursive rule

Everytime a recursion terminates (based on a random vari-
able), leaves are generated. We gradually reduce the branch
thickness and height at increasing recursion depths. We also
add a random small rotation along the axis of the branch
at each step. Finally, randomly choosing from a family of
generation rules results in a more realistic looking hierarchy.
We are able to generate a variety of trees as shown in Figure
2.



Figure 2: Examples of trees generated by the Brack-
eted L-system generator. Top row shows only the
branches, bottom row has leaves added.

Tree model storage:.
One can choose to store the grammar rules and generate

some part of a tree on the fly every time it is needed. Storage
is low but the generation takes long. Alternatively, pre-
generating the entire forest of trees leads to a large storage
but a lower processing time. We instead store each tree
in an intermediate form. Rather than storing the actual
vertices and faces, we only store the branch dimensions and
the hierarchy structure. The information stored is sufficient
to derive the geometry of the tree and leaves later during
dynamics simulation and rendering. More importantly, it
also leads to a lower overall time for dynamics simulation
using CUDA as we trade off slower memory bandwidth for
more efficient in-parallel tree generation.

2. WIND FIELD GENERATION
Most heuristic approaches simplify the wind parameters

by only considering the global wind direction and strength
at any time. However, such an approach would not be able
to easily generate complex wind patterns such as stormy
weather, a passing tornado or a landing helicopter. Much
hand tuning becomes necessary to generate desired wind tex-
tures.

We seek to know the wind velocity at each point in the
3D world to correctly simulate complex wind patterns. In-
stead of an artist designing such a wind field, we want to
dynamically generate it depending on external forces or ob-
stacles. We employ Navier-Stokes equations to sample these
velocities on a 3D grid.

2.1 Navier-Stokes solution
We assume wind to be an incompressible, inviscid, homo-

geneous fluid. Incompressibility ensures that the resultant
flux at any point is always zero, i.e., incoming flux matches
the outgoing flux. This ensures that sources and sinks don’t
appear inside our wind field. The inviscid assumption is
valid as the viscosity of air is negligible. The homogeneous
assumption forces the density of the wind to remain uniform.
This easily holds for a small domain area, say, less than a
kilometer square.

Keeping these assumptions in mind we employ a stable
Navier-Stokes solver to calculate the wind field. Solving

Navier-Stokes equations have become synonymous with fluid
physics simulation and have been widely used for various
wind animations. We borrow the algorithm outlined in [17,
7, 2]. A brief description follows. The equations for inviscid
fluid are:

∂u

∂t
= −(u.∇)u− 1

ρ
∇p + f. (1)

∇.u = 0, (2)

where u is the velocity, p is the pressure, ρ is the density, and
f is the external force. Eq. 1 is known as the momentum
equation and Eq. 2 as the incompressibility constraint.

The pressure and the velocity fields that appear in the
Navier-Stokes equations are in fact related. A single equa-
tion for u can be obtained by combining Eq. 1 and Eq. 2 as
follows:

∂u

∂t
= P (−(u.∇)u + f), (3)

where P is an operator that projects any vector field onto
its divergence free part.

2.2 Implementation issues
Navier-Stokes equations are solved discretely by consid-

ering an initial state u0 = u(x, 0) and marching through
time with a time step of 4t. We start from the solution
w0(x) = u(x, t) of the previous step and then sequentially
resolve each term on the right hand side of Eq. 3, followed
by a projection onto a divergent free field. The general pro-
cedure is outlined below,

w0(x)

advectz}|{
−→ w1(x)

add forcez}|{
−→ w2(x)

projectz}|{
−→ w3(x)

The solution at time t+4t is then given by the last velocity
field, i.e. u(x, t +∇t) = w3(x).

Advection.
Artifacts in the fluid propagate according to the expres-

sion −(u.∇)u. This is modeled as a backward advection.
That is, to obtain the velocity at a point x at the new time
t +4t, we back-trace the point x through the velocity field
w0 over a time 4t at its ”old”position: v′. The new velocity
at the point x is then set to v′

w1(x) = w0(x−4t.w0(x)). (4)

External forces.
If we assume that the force does not vary significantly in

period 4t,

w2(x) = w1(x) +4t.f(x, t). (5)

Projection.
Projection keep the velocity field divergence free, accord-

ing to Eq. 2. By Helmholtz-Hodge Decomposition Theo-
rem, the vector field w2 can be uniquely decomposed into
the form.

w2 = u +∇p, (6)

where u has zero divergence: ∇.u = 0 and p is the scalar
field that corresponds to the pressure. This result lets us
define the projection operator P as follows :

u = P (w2) = w2 −∇p. (7)



To obtain the pressure field we apply the divergence operator
to both sides of Eq. 6, to obtain

∇.w2 = ∇.(u +∇p) = ∇.u +∇2p. (8)

Enforcing the incompressibility constraint of Eq. 2, we get

∇.w2 = ∇2p, (9)

which is a Poisson equation for the pressure of the fluid, also
known as the Poisson-pressure equation.

We solve Eq. 9 using the Jacobi iterative method. More
sophisticated methods such as conjugate gradient and multi-
grid methods converge faster, but we use Jacobi iterations
because of its parallelizability.

Once we solve Eq. 9 for p, we can use w2 and p to obtain
the new velocity field u(x, t +4t) using Eq. 7.

Boundary conditions.
At the solid-fluid boundaries, we impose a free-slip bound-

ary condition, which requires that the velocities of the fluid
and the solid are the same in the direction normal to the
boundary:

u.n = usolid.n (10)

Thus the wind can’t flow into or out of a solid, but it is
allowed to flow freely along its surface.

2.3 Controlling the wind field
User control of the wind field is through external forces.

We propose two intuitive trackball based interfaces to con-
trol the wind patterns. In both the current wind direction
and strength decide the magnitude and direction of the force
added to the wind field.

The first method adds a Gaussian ball of the required
force into the wind field. The size of the ball decides how
widespread the impact is. Trees in the direct path of the
wind are the most affected by the added force and the rest
will have a decreasing effect. We can also add a random
translation to the centre of the Gaussian ball to simulate
turbulent wind. Figure 3 shows the changes in the wind
field as we add wind in this fashion.

Figure 3: left: wind flowing from South to North;
right: Wind after a while

The second method adds the external force to only the
border voxels of the grid. This indirectly simulates external
wind coming into the domain of interest.

2.4 CUDA implementation
We have discretized the wind domain into a 256x256x16

grid. x and y dimensions are larger mainly to cover a forest
of trees spread over an area. Grid-based Navier-Stokes solver
parallelizes well. We need to solve the same set of equations
(see Section 2.2) for each voxel of the grid. CUDA allows

the maximum block size of 512. We are able to use maximal
blocks, choosing 16x8x4 threads per block. The grid dimen-
sions to 16x32 blocks. We would like blocks to be as close to
cubical as possible, i.e., 8x8x8, but setting the x dimension
of the block to 16 results in better global memory coalescing
as explained later in Section 1.3. The following kernels solve
Navier-Stokes equations:

Advection implements backward advection velocity as
mentioned in Section 2.2. We tri-linearly interpolate velocity
values from the 8 nearest voxels to (x−4t.w0(x)) to find
the velocity at any point. This allows us to use a rather
sparse grid. Without this interpolation, if |w0(x)| is low and
the nearest voxel to (x−4t.w0(x)) turns out to be x itself,
the velocity would freeze.

External Force adds velocity into the desired areas of
the velocity field as mentioned in Section 2.2. The direc-
tion and magnitude of velocity is dictated by the trackball
interface.

Divergence calculates the divergence of the velocity field
after applying the external force.

Jacobi implements a single Jacobi iteration. We call this
kernel in a loop to solve Poisson-pressure equation (Eq. 9).
Our experiments suggest that 4 iterations are generally suf-
ficient and there seems to be little improvement in the tree
animation quality after this.

Projection eliminates the divergence in the velocity field
as mentioned in Eq. 7.

Velocity, pressure and other temporary variables are all
stored in the global memory as each step is in a different
kernel. Combining the kernels does not help as all threads
must finish each step before anyone can start the next. Data
remains persistent in the global memory.

To maximize global memory coalescing, we store all val-
ues either as float4 s (128-bit) or floats (32-bit). For storing
values such as the velocity field, we actually require only
3 floats per voxel. However, using float4 s results in better
global memory coalescing. The fourth component can be
used for other auxiliary data.

To meet the alignment requirement, we set the x dimen-
sion of the block size of the fluid simulation kernel to 16.
This results in each thread in a half warp making aligned
global memory accesses from successive memory locations
and therefore getting coalesced.

3. BRANCH DEFORMATION DYNAMICS
To correctly simulate the deformation of branches, we

must compute for each branch, the influence its parent as
well as the children branches have on it. For accurate com-
putation of the cause-and-effect relationships among all con-
nected branches, techniques such as the finite-element method
are used [20, 8]. However, computational costs are large and
these do not easily lead to efficient rendering later.

We adapt the approach of [15], in which each branch (long
branches are subdivided into smaller ones) is modeled as a
rigid body. Like them we assume that they are fixed at the
parent branch end and may only rotate with respect to that
end. Thus we are able to employ their equations of motions
occasionally modified as described below. The force that
propagates from the parent branch is expressed by making
the fixed end of the child branch follow the movement of the
the parent branch. The restoration force that propagates
from the child branch to a parent is appended to the external
force at the parent branch.



We have decomposed the simulation of dynamics into two
phases (to map it well to CUDA). Dynamics calculation
phase begins from the tips of the tree and proceeds to the
root. Integration phase proceeds from the root to the tips
of the tree and integrates the movements of all branch seg-
ments and calculates the final position and orientation of
each branch.

3.1 Dynamics calculation
We model each branch as a tapered cylinder. The equa-

tion of motion of a cylinder about a fixed end O is given as
follows :

N =
ml2

3

dω

dt
. (11)

where N is the moment of the force acting on the cylinder,
ω is its angular velocity, m its mass and l its length. For
short tapered cylinders, this approximately holds.

Let F be the sum of all forces applied to a segment. Then,
the moment N can be expressed by N = F × c, where c is
the vector from the fixed end to the center of gravity of the
branch. Hence, we get

F × c =
ml2

3

dω

dt
. (12)

3.1.1 Forces acting on a branch
The force F consists of the force applied by wind Fwind,

the restoring force K, the axial damping force R and the
back-propagation force from the child branches T , as in [15].
We also neglect gravity, which we incorporate in the sta-
tionary tree (as computed by the L-system). We also ne-
glect the viscous resistance of air as it is significant only for
lightweight objects, unlike trees.

∴ F = Fwind + K + R + T (13)

Wind force.
We sample the external force (interpolated from the wind-

field) for each branch segment at its centroid as the segments
are small. Integration of true forces over the segment leads
to no noticeable improvement in quality but a significant
loss in speed. We integrate by simply scaling the centroid
force by the surface area of the branch. Therefore, we get

Fwind = Sfσv, (14)

where Sf is the surface area in contact with air, σ is a con-
stant considering the viscosity coefficient of air and v is the
velocity of the wind.

Restoration force.
Elastic restoration force tries to restore the original posi-

tion of a branch segment with respect to its parent segment.
It is proportional to the angular displacement from the orig-
inal orientation.

K = k(θ − θ′), (15)

where k represents the rigidity of the branch and is a con-
stant determined by the thickness of the branch, θ is the
original orientation and θ′ is the current orientation.

Axial damping force.
Due to strong binding forces which exist in branch seg-

ments, a force proportional to the square of the velocity

damps the movement of the branches. It plays a role in
gradually suppressing the vibrations of the branches caused
by the external force.

R = −µω |ω| , (16)

where µ is a constant determined by the thickness of the
branch.

By itself this axial damping force can be large and instead
of damping the motion can even reverse it. To ensure that
the negative acceleration caused by the axial damping force
would not exceed ω, we clamp R:

|R| = min(µω2, Iω). (17)

Back-propagation force.
This reaction force models the forces that propagate from

the child segments to the parent.

Ti−1 = −
X

kiKi, (18)

where i corresponds to each of the children of segment (i−1)
and ki is the propagation coefficient of the force and it is a
constant determined as

ki = kc
Thi

Thi−1
, (19)

where kc is the fixed propagation coefficient and Th is thick-
ness of the branch segment.

Note that if the child segments have no angular displace-
ment, their restoration force would be zero and the back-
propagation force would also remain zero. We exploit this.

3.1.2 Equations of angular motion
We take the classical coordinate system (x, y, z) as our

basis. Hence, θ, ω and α = dω
dt

all have three components.
The equations of angular motion are:

θ′ = θ + ω(4t) +
1

2
α(4t)2, (20)

ω′ = ω + α(4t). (21)

Once, we have calculated the new θ′, we can find the ac-
tual orientation of the branch by rotating the branch about
its fixed end by an angle of |θ′| about the axis along the

direction of θ̂′.

3.1.3 Branch parameters
The restoration constant k and the axial damping con-

stant µ are proportional to the average thickness of the
branch r. This is because we expect thicker branches to pro-
vide more restoration force and thereby result in less bending
as compared to thinner stems. Similarly, we expect thicker
branches to damp vibrations more effectively than thinner
stems. However, we could find no literature on the exact
dependence k and µ had on the thickness of the branch, or
the wood material.

Hence, we tested all combinations of k and µ for various
branch dimensions and computed resulting deformations.
Deformations that matched one observed in a population
of real trees around our campus were saved as candidates.
Once, we collected a database of acceptable combinations
for various branch dimensions, we regressed a curve to ob-
tain the following dependence of k and µ on r (for all branch
lengths).

k ∝ r2.5, (22)



µ ∝ r3.5. (23)

This is what we have used in our simulations.

3.2 CUDA implementation
Parallelizing of the dynamics model is difficult because

trees are hierarchical and have inter-dependencies between
the parent and child segments. In the dynamics calculation
phase, a branch’s computations are based on the results of
its children’s computations. And in the integration phase,
a branch’s computations require the results of its parent’s.
We resolve these dependencies as follows.

Dynamics calculation.
The dependence on the child segments is only required

for calculating the back-propagation forces as mentioned in
Section 3.1.1. We eliminate this dependence by using the
restoration forces of the child segments from the previous
time step. This is based on the observation that the restora-
tion forces vary slower than the other forces and that their
effect on the final positions is small. Our experiments show
that there is no observable difference in the resulting anima-
tion quality.

We now can employ as many threads as there are branches
and leaves. Leaves are simulated as pseudo-branches as men-
tioned in Section 4 and we use a single kernel for both. All
branch parameters, such as height, radius, original trans-
formation matrix, etc. are initially passed to the GPU and
stored in the global memory. Similarly, current orientation,
current angular velocity, current transformation matrix, etc.
are also stored in the global memory and are updated at each
step.

Integration of movements.
The dynamics calculation phase provides the local trans-

formation matrix of each branch. To calculate the position
of a branch, we must calculate the cumulative transforma-
tion matrix of the branch (from the root), meaning the par-
ent’s cumulative transformation must be known first. Un-
like restoring forces, one simply cannot use the motion of the
parent in the last frame or the tree would become disjointed.

We process the hierarchy breadth first. We calculate the
cumulative transformation matrix of all the branches/leaves
at one level concurrently. To do this efficiently and with
memory coalescing, we store the branches and leaves in the
increasing order of depth, root first. We also maintain the
starting index of the branches/leaves in each level along with
the total number in each level.

Thus, if the depth of the forest is d, we call the integration
kernel d times and each time we pass the starting index and
the number of branches/leaves in the corresponding level
as an argument to the kernel. The kernel implements the
required matrix multiplication operations by using as many
threads as there are branches/leaves in each level.

A note about matrix multiplications: both dynamics cal-
culation and the integration kernels require (4x4) matrix
multiplications where both input and output lie in the global
memory. We speed this computation up by staging the ma-
trices in the shared memory and performing the multipli-
cation there. For this purpose, we set the block size to 64
threads. This leaves 256 bytes per thread as the total shared
memory available is only 16KB.

4. LEAVES AS PSEUDO-BRANCHES

Capturing the jittery movement of leaves in an animation
is difficult. Most heuristic approaches (even [15] resorts to
heuristics) model their movement using a combination of
high-frequency sinusoidals augmented with certain random-
ness. We instead transfer the branch deformation model to
leaves as well thus employing a unified framework and ker-
nel. This also leads to more parallelism as there are more
blocks to cycle through (see Section 3.2).

We model a leaf as a flat polygon (rather than a cylin-
der). Therefore, we assume that only the velocity compo-
nent along the normal of the face of the leaf applies to the
dynamics of the leaf. This ensures that each leaf only has
a single degree of freedom, i.e. it only rotates about the
branch.

In essence, we try and model the leaves as very thin flat
branches. However, to capture the jittery movement of
leaves, we also make the following changes to the param-
eters previously used for branches.

• Moment of Inertia I : We set I to a value much
lower than of even the thinnest branches to model the
fact that they are very light and therefore would be
affected by even light wind.

• Axial damping constant µ : We set µ to a low value
to ensure that the damping of vibrations is minimal.
This results in the jittery motion we desire for leaves.

• Restoration constant k : We set k to a value slightly
higher than of the thinnest branches, to balance the
effect of using very low values of I. This ensures that
the leaves flutter significantly in strong winds but do
not bend excessively.

5. RENDERING
In traditional tree simulation, physics is the bottleneck

by far. Due to the speedups achieved by our algorithm,
however, rendering quickly becomes the bottleneck. Thus
efficient rendering becomes important.

We use OpenGL display lists: one for rendering a leaf
and one for a branch (tapered cylinder). We make the as-
sumption that all leaves have the same size. However, since
branches have varying sizes we perform a scaling per branch.
Similarly, the look of branches are changed by using the same
texture but rotated from branch to branch.

We also employ levels of detail (LOD) [9], computing mul-
tiple LODs for the branches and the leaves. Depending on
the branch thickness and tree distance from the viewer, each
tree calls the appropriate sequence of display lists. As can be
seen in the accompanying video, we have chosen to be con-
servative with the simplification so the image quality does
not suffer.

We also pay close attention to data transfer between CUDA
physics simulation and the OpenGL rendering engine. The
cumulative transformations computed by CUDA (and stored
in global memory) are bound to dynamic OpenGL texture.

The CPU host does not copy matrices nor performs ma-
trix multiplications per branch – it only calls the appropriate
display list for each tree based on the distance. The desired
matrix per branch (and leaf) is available as a texture (con-
stant memory is used) to be fetched by the vertex shader.
The index into this texture needs to be passed per branch.
This index and additional parameters such as scaling factors



and texture translations are themselves passed in a second
OpenGL texture, which is indexed by the instance ID.

Please note that we do not implement this direct transfer
for the CPU implementation as there is no CUDA. How-
ever, for the CUDA implementations, dynamic textures and
shaders lead to a significant speedup as shown in Section 6.

6. RESULTS AND ANALYSIS
To illustrate the benefits of parallelization, we built two

implementations of each component of the entire physics
engine - a serial implementation that runs completely on
the CPU and a parallel CUDA implementation. We com-
pared both of them on the following four platforms (all linux
based):

Serial runs on a 3 GHz Intel Xeon E5450 quad core ma-
chine with 4 GB memory. This is the CPU used for all
implementations.

9800 uses an affordable nVIDIA 9800 GTX graphics card,
which performs both the CUDA-based physics computations
and OpenGL rendering. It has 512 MB global memory and
has 16 multiprocessors (128 cores) and has a clock rate of
1.7 GHz.

280 uses a high end gaming graphics card used for both
CUDA and OpenGL. It has 1GB global memory and 30
multiprocessors (240 cores) with clock rate of 1.3 GHz.

Tesla uses professional-grade Tesla T10 for CUDA-based
physics computations and a low-end graphics device, Quadro
NVS 290, for rendering. Tesla T10 has 4 GB global memory
and 30 multiprocessors (240 cores) with a clock rate of 1.3
GHz. NVS 290 has 256 MB with 2 multiprocessors (16 cores)
and a clock rate of 0.92 GHz. On this platform rendering
and simulation happen on different GPUs.

6.1 Wind-field generation
Total time taken for each implementation of the Navier-

Stokes computations is listed in Table 1. We achieved over
11x speedup on the 9800 GTX platform and a 36x speedup
on 280 (Tesla is similar).

Serial 9800 speedup 280 speedup

520 48 11x 14.1 36x

Table 1: Comparison of overall time taken (in ms)
for fluid solver

6.2 Dynamics model
For dynamics testing, we use a tree with 1597 branches

and 3603 leaves (5200 components). We compare each im-
plementation for varying number of trees as shown in Table
2.

#Trees Serial 9800 280 Tesla
(ms) speedup speedup speedup

1 3.1 3.56x 2.04x 5.74x
4 12.25 6.13x 3.71x 8.63x
9 25.4 7.13x 6.68x 9.27x
16 49 8.55x 8.91x 10.43x
25 77 8.92x 9.86x 11x
100 459 14.02x 17.06x 17.24x

Table 2: Speedup in dynamics model computations

Although there is a significant speedup due to the paral-
lelization, because of level-dependence the overall speedup
is lower than for the fluid solver.

However, notice the sub-linear increase in computation
times as we increase the number of trees. The serial imple-
mentation is over 100 times slower for 100 trees than it is
for a single tree. On the other hand, 9800 GTX is only 38
times slower and Tesla is 49 times slower. This is because
we calculate the dynamics of all branches/leaves in parallel
across the tress. For more trees, we exploit more parallelism,
especially at the lower levels (near the root).

6.3 Rendering optimizations
Table 3 compares the frame rates (on 9800 GTX) for ren-

dering varying number of trees (no physics simulation).

#Trees Vanilla DL LOD Range DT Range

1 152.3 258 258 - 299 782 - 1400
4 36.7 52 54 - 58.4 270 - 360
9 13.8 18.9 20 - 20.8 120 - 156
16 7.7 11.2 11.3 - 11.7 70.5 - 93
25 5.2 7 7.1 - 7.4 45.8 - 60
100 1.2 1.8 1.8 - 1.9 11.6 - 14.6

Table 3: Effect of Display Lists (DL), LOD and Dy-
namic texturing (DT) on framerates (fps).

The Vanilla column has the framerates obtained render-
ing the trees in the immediate mode. For LOD and Dy-
namic Texturing we have shown the range of frame rates
observed. There is an improvement from Vanilla to display-
lists to LOD to dynamic texturing. Note that LODs (or-
ganized as display lists) do not yield interactive framerates
for more than 16 trees. However, with the use of Dynamic
Textures and shaders, we get a 5-8x improvement.

6.4 Overall results
The comparison of the framerates of the entire tree anima-

tion, including the physics computations and the rendering,
and the performance benefits of parallelization using CUDA
are shown in Table 4.

The CPU implementation barely runs 2 frames per second
even for a single tree. Physics computations are the bottle-
neck. 280 GTX achieves rates of 63 fps on the same machine.
This highlights the benefit of parallelization. Further, the
GPU implementations scale better.

Figures 4 and 5, show the breakups of the times taken
by the fluid solver, the dynamics model and the rendering
as we vary the number of trees, keeping the grid size fixed.
Thus for a large number of trees, rendering them becomes a
bottleneck.

Among the physics based methods, ours is the first in-
teractive system. Other GPU based methods have been
reported but they are all heuristic based and we are still
competitive. For example, [22] is able to render nearly 10
frame a second animating 100 trees on 9800. In contrast,
the quality of [6] appears better but they report 32 fps us-
ing an nVIDIA 8800 GTS with only 4 trees (it was hard to
replicate their result in our environment). [3] manages to
perform heuristic-based CPU simulation of a simple tree at
30 fps.

7. CONCLUSIONS



#Trees Serial 9800 280 Tesla
(fps) speedup speedup speedup

1 1.9 10.7x 33.2x 27.4x
4 1.8 10.7x 28.3x 23.6x
9 1.6 11.1x 26.6x 20.5x
16 1.5 10.9x 23.4x 16.7x
25 1.3 11.3x 22.3x 14.6x
100 0.7 11.4x 16.3x 9.3x

Table 4: Comparison of framerates of the overall
tree animation (physics + rendering), for varying
number of trees

Figure 4: Percentage breakup of the time taken for
the serial benchmark, for varying no. of trees.

We have successfully demonstrated that physics-based ap-
proaches can be used for animating trees without resorting
to heuristics. We achieve this by moving the entire physics
computations - the Navier-Stokes fluid solver as well as the
dynamics model - onto the GPU, using CUDA. We have
shown that we obtained considerable speedups in the pro-
cess, enabling us to achieve interactive animations. Further-
more, the CPU load goes down leaving it to focus on other
parts of the application like AI or user interaction.

We have shown that numerical solution to Navier-Stokes
equations parallelizes well. We have also shown that the
dynamic part can parallelize well by breaking the hierar-
chical dependencies. Further rendering improvements are
necessary to interactively animate even larger forests. In-
corporating levels-of-detail in dynamics computation should
further reduce the physics time as well.

Finally, our results should encourage attempts to transfer
other physics-intensive simulations to GPUs.
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