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ABSTRACT
The paper presents a novel framework for learning the hash
functions for indexing through Multiple Kernel Learning.
The Distance Based Hashing function is applied which does
the object projection to hash space by preserving inter ob-
ject distances. In recent works, the kernel matrix has been
proved to be more accurate representation of similarity in
various recognition problems. Our framework learns the op-
timal kernel for hashing by parametrized linear combination
of base kernels. A novel application of Genetic Algorithm
for the optimization of kernel combination parameters is
presented. We also define new texture based feature rep-
resentation for images. Our proposed framework can also
be applied for optimal combination of multiple sources for
indexing. The evaluation of the proposed framework is pre-
sented for CIFAR-10 dataset1 by applying individual and
combination of different features. Additionally, the primary
experimental results with MNIST dataset2 is also presented.

Keywords
Indexing, Multiple kernel learning, Genetic algorithm, Dis-
tance based hashing

1. INTRODUCTION
The efficient and accurate indexing of the large amount of

digital documents e.g. images, documents, audio and video
files existing across the web is a challenging task. In such
scenario, the nearest neighbor search for retrieving similar
objects does not give a practical solution. The approximate
nearest neighbor search give efficient solution for such prob-
lems. The LSH is widely accepted as state of the art method
for solving the approximate nearest neighbor search prob-
lems [1]. The LSH based methods index similar objects
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to same location where the similarities of objects is com-
puted with respect to predefined distance metric. The effec-
tive representation of semantic information inherent in the
documents is still an open research problem. However, the
category or label information attached with the documents
to a great extent represent the semantics in the document
which can be utilized to improve the performance of hashing
scheme.

In this paper, we define a novel hashing function learn-
ing scheme through performing Multiple Kernel Learning.
The Distance based hashing (DBH) which is fundamentally
based on line projection formula is applied [2]. The DBH
projects the object to low dimensional hash space by pre-
serving the inter object distances. Therefore similar objects
are hashed to the same or nearby buckets, the similarity
is represented by the distance between objects. The ker-
nel methods have given excellent results for many classifica-
tion problems. The recent development of Multiple Kernel
Learning in this direction have the capability to learn the op-
timal kernel for classification from the data itself, as well as
by combining the multiple data sources. The kernel space
representation of DBH has inherent capability to perform
hashing by applying the given kernel matrix as similarity
matrix. However, the availability of optimal kernel can never
be guaranteed. We define a hashing function learning frame-
work on the line of existing MKL algorithms. The frame-
work learns the optimal kernel for hashing by combining set
of base kernels. We have applied Genetic Algorithm (GA)
for MKL which have the advantage of applicability to sym-
bolic objectives and it does not suffer from the problem of
local maximas and minimas. In addition, we propose novel
texture based image feature which represents the image us-
ing bag of words model. For various recognition problems
combination of multiple data sources have given improved
results [3][11]. Our proposed MKL framework learns the
optimal kernel for hashing through the set of supplied ker-
nels. The capability can be efficiently utilized to optimally
combine different features for indexing.

The DBH is fundamentally an unsupervised hashing method,
which performs the object indexing based on object space
distance computation. However, the object space distance
does not completely represent the semantic distance between
objects. Additionally for many computer vision problems
kernel distance is preferred as the notion of similarity. With
the application of kernel trick, the DBH can be extended
for hashing in kernel space. However, in practice the selec-
tion of optimal kernel parameters for performing hashing in
kernel space is time consuming and difficult process because



of the complex geometric structure of object space. In such
case, defining a MKL framework to learn the optimal ker-
nel for hashing can provide efficient solution to the problem.
Our MKL framework for hashing function learning combines
a set of base kernels for hashing. The optimization prob-
lem is formulated in the evolutionary algorithm framework,
which optimizes the kernel combination weights at conver-
gence. The category information available in training set
(i.e. labeled data) concludes the similarity and dissimilarity
between the objects. We can utilize this labeled data to eval-
uate the fitness function for GA population evaluation. The
limited amount of labeled data may lead to over fitting so-
lution. Thus to increase the generalizing ability of optimiza-
tion objective a regularizer is required. We use information
theory based regularizer proposed in [12] in our objective
function. The primary experimental results of the proposed
framework using the GIST feature and the proposed features
is presented for CIFAR-10 dataset. We also present index-
ing performance for the dataset by optimal combination of
GIST and texture features. The basic experimental results
with MNIST dataset is also presented.

The organization of paper is as follows. The section 2
presents brief review of DBH and its extension to kernel
space (Kernel DBH). The section 3 presents the Distance
based hashing function learning framework through MKL.
The discussion includes optimization problem definition and
GA based optimization framework for MKL. Section 4 presents
the details for Local texture feature computation. The sec-
tion 5 presents the experimental results and discussion of the
proposed framework on two standard recognition datasets.
Finally, we conclude and present the perspective of our work.

2. DISTANCE BASED HASHING IN KER-
NEL SPACE

2.1 Review:The DBH
The DBH performs projection of objects on a carefully

selected line such that inter object distances are preserved.
The line projection is applied for performing object map-
ping. For two objects (x1, x2) in the space (X,D), the line
projection F x1,x2 : X → L for object x is defined as

F x1,x2(x) =
D(x1, x)2 −D(x2, x)2 +D(x1, x2)2

2D(x1, x2)
(1)

Here L represents the line connecting point representation
of pivot objects (x1, x2). The equation (1) can be used to
define a rich family of functions having N(N − 1)/2 unique
functions for each pairs of N objects from the database.
In practice, the hash values are discrete in nature, whereas
the equation (1) gives real values. The discretization of real
hash functions defined by (1) is performed by using threshold
parameters tl, t2 ∈ R as

F x1,x2
t1,t2

(x) =

{
1 if F x1,x2(x) ∈ [t1, t2]
0 otherwise

(2)

The selection of (t1, t2) should be such that, F x1,x2
t1,t2

(x) maps
approximately half the data points in X to 0 and half to
1, i.e. F generates balanced hash tables. Therefore the set
V (x1, x2) of intervals [t1, t2] for all pairs (x1, x2) ∈ X is
defined as

V (x1, x2) = [t1, t2]|Prx∈X(F x1,x2
t1,t2

(x) = 0) = 0.5 (3)

Now, the hash function family HDBH is defined as

HDBH = F x1,x2
t1,t2

(x)|x1, x2 ∈ X, [t1, t2] ∈ V (x1, x2) (4)

The HDBH can be generated by selecting N sample objects.
The equation (4) can be used to define an indexing scheme
by generating L hash tables where each hash table corre-
sponds to a k-bit hash function formed by concatenation of
k functions selected randomly from HDBH . The retrieval
process includes query hashing on hash tables (mapping of
query on each hash table) and performing similarity search
over the pool of objects collected from all the query buckets.
The hash table parameters (L, k) are adjustable parameters
and are defined by performance requirements.

2.2 Kernel based DBH
In the following discussion, the Kernel based DBH is pre-

sented. Considering X as Euclidean vector space and D
Euclidean distance, the squared distance D2(x1, x2) can be
expanded as xT1 x1+xT2 x2−2xT1 x2. Equation (1) is redefined
as

F x1,x2(x) =
xT1 x1 − xT1 x+ xT2 x− xT1 x2√

xT1 x1 − 2xT1 x2 + xT2 x2

(5)

The above expression represents the line projection compu-
tation using dot products. The kernel methods increase the
computational power of linear learning algorithms by map-
ping the data to high dimensional feature space [2]. The
mapping φ : X → S i.e. x → φ(x) from input space X to
kernel space S, defines dot product xTx′ in the kernel space
as φT (x)φ(x′). It is clear that direct mapping to space S can
be implicitly performed by selecting a feature space which
supports the direct computation of dot product using a non-
linear function in input space. The kernel function k which
performs such mapping is defined as

k(x, x′) = 〈φ(x), φ(x′)〉 = φT (x)φ(x′)

The expression shows the mapping to space S by function k
happens implicitly without considering the actual form of φ.
In this case, kernel space equivalent of the squared distance
D2(x1, x2) is defined as k(x1, x1) + k(x2, x2) − 2k(x1, x2).
Therefore kernel space representation of (5) is defined as

Fφ(x1),φ(x2)(φ(x)) =

k(x1, x1)− k(x1, x) + k(x2, x)− k(x1, x2)√
k(x1, x1)− 2k(x1, x2) + k(x2, x2)

(6)

The above expression gives the formulation of line projec-
tion in kernel space defined by pivot objects (φ(x1), φ(x2)).
Equation (6) can be discretized by defining the thresholds
as discussed in the section 2.1. Following the procedure dis-
cussed in section 2.1, we can generate family of hash func-
tions HKDBH by applying the discrete hash functions de-
fined for mapping function (6). The indexing framework
and retrieval procedure remains same as traditional DBH
(section 2.1).

3. DISTANCE BASED HASHING FUNCTION
LEARNING THROUGH MKL

3.1 Optimization problem formulation
Equation (6) represents line projection formula in kernel

space which defines the Kernel based DBH. The selection



of optimal kernel can be performed by defining a learning
based framework which is similar to MKL applied for various
recognition problems. Therefore we can learn the kernel K
for hashing by parameterized linear combination of the set
of base kernels, i.e. k(x1, x2) =

∑q
i=1 wiki(x1, x2) is consid-

ered. The resultant kernel should satisfy Mercer’s condition
therefore all the weights should be positive real number i.e.
∀i, wi ≥ 0. The maximization of precision based retrieval
defines the optimization objective. We use the labeled data
information for evaluation of the objective. The limited
amount of labeled data may lead to the condition of over
fitting, therefore a regularizer term is required in the objec-
tive. In practice, the DBH partitions object space uniformly
without considering the object data distribution. However
most of the real datasets are uniformly distributed. There-
fore, for a hashing scheme to be efficient, each hash function
should have 50% probability of getting 1 or 0, and the hash
functions should be correlated [13]. We apply the maximum
entropy principle based regularizer which ensures partition
balancing constraint. Following the result in [12], the max-
imization of hash values h(X) satisfies maximum entropy
condition for a hash function. The complete optimization
objective of MKL problem is defined as.

w∗ = argmaxw F(X,Xv, w) (7)

F is defined as mean{J(Xv, w)} + λV(X, w)
X is the complete training set, Xv is part of training data

assumed to be available with label information for which
function F is evaluated for different weight parameter w. λ
is the regularization parameter. The function J(Xv, w) rep-
resents the retrieval performance of KDBH computed over
Xv and w, and is defined as

J(Xv, w) =

|Xv|∑
i=1

δ(yi, ŷ(xi, w))

yi represents the correct label set and ŷi represents the pre-
dicted label for each object xi ∈ Xv. Function δ(· , · ) repre-
sents the Kronecker delta defined as

δ(a, b) =

{
1 a = b
0 otherwise

The function V(Xv, w) represents regularizer term defined
as the sum of variance of the hash values for all hash tables
which is computed as

V(X,w) =

L∑
i=1

mean

k∑
j=1

Variance{hij(X,w)}

3.2 GA based optimization framework for MKL
The weight parameters {wi for i = 1, ..., q} in the equation

(7) are optimization parameters. The existing MKL formu-
lations developed for various recognition problems have ob-
jective functions which are continuous in nature and apply
conventional gradient based methods for optimization [4, 3,
9, 10]. The current optimization problem (Equation (7))
is discrete in nature while the parameter space is continu-
ous. The discrete nature of optimization objective restricts
the application of gradient based algorithms. For such op-
timization tasks, the Evolutionary Algorithms can provide
efficient solution. The Genetic Algorithm (GA) is a type
of Evolutionary Algorithm which is well suited for global
optimal parameter search in complex spaces. In addition,

GA has the advantage of working with raw objectives when
compared with conventional techniques. Therefore we for-
mulate MKL for indexing in GA like paradigm. The function
F defines fitness function for GA population string. The it-
erative process of selection and regeneration of individuals
in the population is based on the evaluation of F as retrieval
performance for a validation query set.

The labeled data Xv is used as validation query set, and
the precision oriented retrieval i.e. average precision in K
nearest neighbors (mean of correct matches in K nearest
neighbors) in retrieved result represents the fitness value for
population individual. The tournament selection is applied
for the selection of individuals for successive population gen-
eration. The process selects p individuals randomly from
the current population, and individual with highest fitness
among the selected p is placed in Mating Pool. The pro-
cess is repeated for M times, here M is population size and
p is tournament size. The reproduction operators for off-
spring generation from the individuals selected in Mating
Pool consists of single point crossover and uniform mutation.
The construction of new population for successive genetic al-
gorithm iteration is performed by applying elitist selection
strategy. The elitist selection combines offspring with cur-
rent population and selects M best individuals with based
on their fitness value. The distance computation for nearest
neighbor search is performed in kernel space using equation
(5).

Algorithm: GA for MKL

1 Population generation ⇒ Pop=Generate()
2 Population initialization ⇒ Initializa-

tion(Pop): Evaluate(F) for each individual in
Pop
For each i < noIterations

3 Selection of individuals for successive population
generation ⇒ Pop sub = Selection(Pop) using
Tournament Selection

4 Offspring generation step 1 ⇒ Pop 1 =
Crossover(Pop) using Single Point Crossover

5 Offspring generation step 2 ⇒ Pop 2 = Muta-

tion(Pop 1 ) using Uniform Mutation
6 Evaluate Offsprings ⇒ Evaluate(F) for each in-

dividual in Pop 2
7 New population generation ⇒ Pop new = Gen-

erate(Pop, Pop 2 ) using Elitist Selection
end

4. LOCAL TEXTURE FEATURES
Texture feature is an important cue for image analysis.

It has been extensively used for various content based im-
age retrieval applications. The image texture is defined as
the set of local neighborhood properties of the gray levels
of an image region. The texture features represent the im-
age at multiple resolutions which contain spatial as well as
frequency information of the image.

Fundamentally, an image can be considered as a mosaic of
different texture regions. In our texture based feature rep-
resentation, we consider the image as the mosaic of different
overlapping texture regions. The regions are identified as
the key point neighborhoods. For key point identification,
we follow the procedure used for SIFT key point identifica-



tion [5]. The initial step of key point identification is done by
analysis of image scale space at multi scale. The key points
are obtained as the local maxima/minima points obtained
after difference of Gaussian smoothened image g(x, y) ap-
plied in scale space. The selection of maxima and minima
locations as key points helps in achieving rotational invari-
ance in key point selection.

g(x, y) =
1√
2πσ

exp−x
2 + y2

2σ2

The efficient identification of key points can be performed by
generating the image pyramid by resampling between each
level. The detection of maxima and minima is performed by
comparing each pixel in the pyramid with its 8-neighbors.
First the comparison is performed at the same level of the
image pyramid. If the pixel is maxima or minima at this
level, closest pixel location at next lower level is identified
by performing 1.5 times resampling. If the pixel remains
lower or higher than the closest pixel location and its 8-
neighbors, we compare the pixel with closest pixel location
and its 8-neighbors at the image a level above. If the pixel
corresponds to local maxima or minima location point, we
consider this pixel as key point (Figure 1). We have consid-
ered Haar wavelet response to define the texture property of
the key point neighborhood. We have considered, W ×W
pixel neighborhood around centered around each point for
wavelet response computation. The noisy key points i.e. the
points for which the neighborhood region of W ×W pixel
crosses the image boundary have been neglected. Each key
point is represented by approximation coefficient obtained
after 2-scale decomposition of neighborhood image. We con-
sider only the approximation coefficient as fine scale wavelets
capturing high frequency details are inefficient in character-
ization of different object details. To enhance the effective-
ness of wavelet response against intensity value transitions,
we normalize coefficients value with mean of approximation
coefficients in the neighborhood. Following the above pro-

Figure 1: Distribution of key points on an image

cedure, set of local feature vectors for each image is ob-
tained. Here each local feature vector is associated with
a key point. For a unique feature extraction method many
key point neighborhoods from different images as well as the
same image are similar in terms of feature value. Therefore
we can associate each key point neighborhood to a word
and, we can define the image representation based on bag
of words model. We can generate a visual vocabulary us-
ing all the local feature vectors from the training images by
performing k-means clustering. The clustering generates a
visual vocabulary having p words. The words are defined by
the learned cluster centers. The visual vocabulary based im-
age representation improves robustness to minor variations
local feature vectors corresponding to similar image regions.

Using the visual vocabulary, each image can be represented
by a vector which is basically the histogram of word fre-
quency appearing in the image. The number of histogram
bins as equal to p, i.e. number of unique words. Formally the

Image I is represented as vector
−→
I = {sw1 : sw2 : · · · : swp}.

Here, the value swi represents the occurrences of ith word
in the image. The initial evaluation of the proposed feature
is performed by applying it for annotation task over a col-
lection of Indian classical dance posture images discussed in
[6]. The experimental images belong to collection of Odissi
and Bharatnatyam dance postures. All the images belong to
medium sizes group therefore the neighbor window parame-
ter W is fixed as 33. For the selection of number of bins for
indicator vector computation corresponding to texture fea-
ture, we performed initial experiments with 50,60,100 and
150 bins. For both the collection, the indicators vectors com-
puted with 100 bins gave the best result. The comparison
of the proposed feature (LWV) is performed with SIFT fea-
ture. For the selection of number of bins for indicator vector
computation corresponding to SIFT feature, we performed
initial experiments with 50,100 and 150 bins. For Odissi col-
lection indicators vectors computed with 100 bins, and for
Bharatnatyam collection indicators vectors computed with
50 bins gave the best result. The comparison results are
presented in the table 1 and 2.

Table 1: With Odissi dance image collection
KNN SVM

SIFT 87.63 92.04
LWV 88.26 91.96

Table 2: With Bharatnatyam dance image collection

KNN SVM
SIFT 79.46 81.22
LWV 83.20 84.18

5. EXPERIMENTAL RESULTS AND DISCUS-
SION

The experiments have been performed on two standard
datasets. First, the CIFAR-10 dataset is selected which
has primarily been used for object recognition problems.
The dataset is the labeled subset of 80 million image
dataset3. The image set consists of 60000 color images
of size 32x32 and belong to 10 different categories. There
are 6000 example images belonging to each category and
dataset is partitioned as 50000 training images and 10000
test images. Next, we test the proposed MKL framework
over the MNIST dataset. The dataset has been primarily
used for testing handwritten digit recognition and classifi-
cation algorithms. The dataset contains 60000 training and
10000 test images of handwritten digits. Each image is a
28x28 image displaying an isolated digit between 0 and 9.

For all the MKL experiments, common coding and stop-
ping criterion is applied for Genetic Algorithm. Each kernel
weight parameter is encoded with 6-bit binary string. The

3http://groups.csail.mit.edu/vision/TinyImages/



initial population set for experiments consisted 40 individ-
uals. The iterative GA optimization cycle is run for 100
iterations for parameter optimization. The details of the
algorithm have been presented in section 3.2.

Corresponding to both the datasets, we have selected 5%
of the complete training images as the set of pivot objects for
generation of family of hash functions. For MNIST dataset
Xv consists of 600 images i.e. 60 images selected randomly
from the subset of images belonging to each class. For CI-
FAR dataset Xv consists of 500 images i.e. 50 images se-
lected randomly from the subset of images belonging to each
class. The precision and Mean Average Precision (MAP) in
K nearest neighbors is considered as the performance mea-
sure as in [12]. The MAP is computed as follows

MAP(Q) =
1

|Q|

|Q|∑
j=1

1

mj

mj∑
k=1

Precision(Rjk)

Average Precision takes the mean of precision at each re-
call point (i.e. location of relevant result) in the retrieved
results. MAP takes the mean of Average Precision over all
queries. Q represents the set of query, mj is the number of
relevant retrieved results for query qj ∈ Q. The Rjk repre-
sents the ranked retrieval results from the top to kth relevant
results. When a retrieved document in Rjk is not relevant,
the precision value in the above equation is taken to be 0
[7]. The selection for parameter λ is done with some prelim-
inary experiment such that the contribution of terms J and
λV in F (Equation (7)) is of same order. The value of λ is
selected as 0.025 and K as 20 for performance evaluation.
The experimental results for both datasets is following.

5.1 Results with CIFAR-10
The experiments on the dataset have been performed us-

ing the GIST feature and the proposed texture feature. The
GIST feature represents the orientation energies in the im-
age at different scales an orientation [8]. The GIST descrip-
tor defines each dataset image by a vector having 384 ele-
ment. The set of base kernels for experiments with GIST
feature included a linear and set of Gaussian kernels var:
0.1, 1, 2, 5.

Considering the small size of the dataset images the neigh-
bor window parameter W is fixed as 7, i.e. Local texture
feature (LWV) is computed using a neighbor window of 7×7.
For visual visual vocabulary generation for the dataset, we
experimented with 25, 40 and 50 visual words and finally se-
lected 40 visual words for computation of Indicator vectors.
The results for various hash table parameters (L, K) is in
table 5.1. The set of base kernels for experiments with tex-
ture feature included set of Gaussian kernels {var: 0.1, 1, 5,
25, 100}. In experiments for combining the two features, the
set of base kernels applied individually is ORed. The per-
formance of the texture feature is poor in comparison with
GIST feature. The low density of the key points because of
the low resolution (32x32) of dataset images is the primary
reason. However, the complementary nature of information
present in both the features improves the indexing perfor-
mance by learning the optimal combination through MKL.

5.2 Results with MNIST dataset
For experiments with MNIST, we have selected raw im-

ages representing its gray scales intensities as the feature
values. Thus each image will represented by a 784 dimen-

Table 3: Results with CIFAR-10 dataset
L = 20, k = 18
MAP Precision Avg.

Comps.
MKLDBH{GIST} 0.42 0.46 3208
DBH{GIST} 0.40 0.42 3981
MKLDBH{LWV} 0.19 0.23 2208
DBH{LWV} 0.19 0.20 2781
MKLDBH{GIST
+ LWV}

0.44 0.48 3173

L = 24, k = 25
MAP Precision Avg.

Comps.
MKLDBH{GIST} 0.41 0.49 3012
DBH{GIST} 0.40 0.42 3523
MKLDBH{LWV} 0.24 0.24 2132
DBH{LWV} 0.23 0.22 2531
MKLDBH{GIST
+ LWV}

0.44 0.49 3037

sional vector. The set of base kernels included a linear and
set of Gaussian kernels {var: 1, 10, 100}. The experimen-
tal results in comparison with basic DBH for different hash
table parameters is presented in table 5.2.

Table 4: Results with MNIST dataset
L = 20, k = 18

MAP Precision Avg. Comps.
MKLDBH 0.70 0.73 1827
DBH 0.68 0.69 1923

L = 24, k = 25
MAP Precision Avg. Comps.

MKLDBH 0.70 0.75 1699
DBH 0.69 0.72 1789

The increase in number of hash bits k increases the pre-
cision, but the collision probability {P{g(x) = g(y)}, g =
[h1, h2, ..., hk]} decreases with increase in k. However the
increase in number of tables compensates the decrease in re-
call at the increasing cost of search time complexity (number
of comparisons).

6. CONCLUSIONS
The paper presents novel hash function learning frame-

work through MKL. The DBH is applied for hashing which
preserves the distance between objects while projection. The
framework proposes novel application of Genetic Algorithm
for solving MKL optimization. A novel texture based image
representation using bag of words model is presented. The
experimental results of the proposed framework is presented
for two standard dataset. The framework also demonstrates
the capability to combine multiple features for indexing.
The evaluation of the proposed framework for wider range
of datasets is the future work.
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