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ABSTRACT
Active appearance models (AAM), a group of flexible de-
formable models, have been widely used in various applica-
tions such as, object tracking, medical image segmentation
and synthesis. AAMs are statistical models which model
the shape and texture of an object. There has been much
published work in this field to improve the speed and fit-
ting accuracy. However, there has not been any significant
study related to the quantity and selection of annotation
points (landmarks) used to define the object and its tex-
ture. This paper proposes four different annotation schemes
used for modeling the human face and evaluates each scheme
in regard to reconstructing face images. In pursuit of choos-
ing a particular annotation scheme for age progression and
synthesis, this paper presents qualitative and quantitative
methods for evaluation.
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1. INTRODUCTION
Active Appearance Models (AAM) have been successfully

used in many applications such as tracking, medical image
segmentation, recognition and synthesis. AAM is a flexi-
ble and powerful learning-based deformable model proposed
by Cootes et al. [24]. A primary advantage of AAM is that
both the shape and texture of the deformable object is mod-
eled through a set of training examples and a range of valid
instances of the object can be synthesized. There has been
a vigor in the research community involving AAMs owing to
the model’s flexibility and the simple framework.

The literature found on AAMs can be broadly catego-
rized into theory, extensions and improvements of AAM al-
gorithms and finally applications of AAM. The introduc-
tion, theory and implementation of the AAM algorithm is
described in [24]. Many improvements on the basic AAM
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have been proposed to strengthen the ability of the AAM.
Cootes et al.[3] introduced prior information to guide the
model fitting and obtain higher accuracy. Combining AAM
with ASM, Yan et al. [28] obtain the model robustness to
illumination. Stegmann et al. [22] discuss the details of
extension and applications of the AAM. Variations to the
AAM and a discussion on the different methods for esti-
mating the update matrix is provided by Cootes et al. [2].
Applications of the AAM are plentiful. Due to the discrimi-
nation capabilities of AAM, it is used for feature extraction
for recognition tasks. Xiao et al. and Tao et al. [26] [23]
use AAM for face and expression recognition. AAMs have
been used for tracking in real time situation [20]. In addi-
tion, AAMs have been used in important computer aided
diagnosis applications such as segmentation of MRI of the
knee [24] and segmentation of cardiac images for diagnosing
heart diseases [12]. Finally, one of the main applications is
in synthesis [7] [16]. Recently, a comprehensive review of the
active appearance models based on efficiency, discrimination
and robustness has been provided by Gao et al. [5].

Modern day face modeling and facial extraction meth-
ods are extensively based on AAMs. Lee et al. [9] at-
tempt to find a suitable facial appearance modelling method
for AAMs by a comparative study. Although AAMs are
2D, they can still be used to model 3D phenomena such
as faces moving across pose. Xiao et al. [27] study the
representational power of AAMs and show that they can
model anything a 3D Morphable Model can, albeit with ad-
ditional shape parameters. They propose a real-time algo-
rithm, Combined 2D+3D AAM, for fitting the AAM while
enforcing 3D shape constraints.

In the recent past, AAMs have been widely used in the
field of face biometrics. AAMs are used to model the shape
and texture of face images of the training set. A new set of
face images are then synthesized based on the AAM param-
eters. AAMs are used to model the pattern of facial aging by
Lanitis et al. [8]. Patterson et al. [15] [16] [19] [14] extend
the concept of facial aging to adults by utilizing AAMs for
face modeling. Luu et al. [10] and Ricanek et al. [18] use
AAM models for age estimation based on the face model.

It should be noted that AAM is a statistical technique
which models shape and texture of an object. The first step
in modeling the shape is to obtain a set of annotation points
or labeled landmarks. These annotation points are then con-
catenated into a shape vector while the texture, represented
by pixel intensities is captured by sampling a suitable im-
age warping function e.g. a piece-wise affine warp based
on Delaunay triangulation is used for texture model formu-



lation. Thus, a training set of images with corresponding
annotation points is required for AAM model training. The
selection and the optimum number of such annotation points
has not been studied thus far.

1.1 Our Contribution
In this paper, we address the selection of landmark points

by evaluating four schemes for annotating the face. The
schemes are based upon anthropometric landmarks of the
soft tissue and the skull. Additional points were selected
based upon aging trends of the face. These schemes are
evaluated in regard to proper reconstruction of a face and
image quality of synthesized reconstructed faces. Although
this study is geared towards texture reconstruction for face
images and particularly aging, similar ideas may be useful
in recognition tasks using other related biometric modalities
e.g. periocular recognition. Periocular recognition is based
upon the analysis of the eye region for authentication [25]
[13]. It is universally accepted that the region around the eye
changes as adults age. Further, this approach can be gener-
alized for any object recognition problem that exhibits tem-
poral variability. A comparative evaluation of the schemes is
performed by visual analysis of how best the source images
can be reconstructed using the different annotation schemes.
Quantitative evaluation metrics viz. the root mean square
error (RMSE) and best match scores on experiments con-
ducted utilizing a commercial face recognition SDK are used
to analyze the results.

The remainder of the paper is structured as follows. In
section 2, a brief review of the AAM model is presented.
The problem statement and our contribution is presented in
section 3. In section 4, we present the experimental results
and evaluation of the annotation schemes. Finally, we sum-
marize our work, draw conclusions and outline future work
in section 5.

2. ACTIVE APPEARANCE MODELS
Active appearance model was first proposed by Cootes et.

al [24]. AAM decouples and models shape and pixel intensi-
ties of an object. The latter is usually referred to as texture.
The basic steps involved in AAM is as shown in Figure 1.
A very important step in building an AAM model is iden-
tifying a set of landmarks and obtaining a training set of
images with the corresponding annotation points either by
hand, or by semi- to completely automated methods. As
described in [24], the AAM model can be generated in three
main steps: (1) A statistical shape model is constructed to
model the shape variations of an object using a set of an-
notated training images. (2) A texture model is then built
to model the texture variations, which is represented by in-
tensities of the pixels. (3) A final appearance model is then
built by combining the shape and the texture models.

2.1 Statistical shape model
A statistical shape model is built from a set of annotated

training images. In a 2-D case, a shape is represented by
concatenating n point vectors {(xi, yi)}

x = (x1, x2, ...., xn, y1, y2, ...., yn)T (1)

The shapes are then normalized by Procrustes analysis [6]and
projected onto the shape subspace created by PCA

x = x̄+ Ps · bs (2)

Figure 1: Active Appearance Model - Methodology

where x̄ denotes the mean shape, Ps = {si} is the matrix
consisting of a set of orthonormal base vectors si and de-
scribing the modes of variations derived from training set,
and bs includes the shape parameters in the shape subspace.
Subsequently, based on the corresponding points, images in
the training set are warped to the mean shape to produce
shape-free patches.

2.2 Statistical texture model
The texture model is generated very similar to the shape

model. Based on the shape free patch, the texture can be
raster scanned into a vector g. Then the texture is linearly
normalized by the parameters u = (α, β)T and g is given by

g =
(gi − β · 1)

α
(3)

where α and β are, respectively, the mean and the variance
of the texture g, and 1 = [1, 1, ..., 1]T is the vector with the
same length of gi . The texture is ultimately projected onto
the texture subspace based on PCA

g = ḡ + Pgbg (4)

where ḡ denotes the mean texture, Pg = {gj} is the ma-
trix consisting of a set of orthonormal base vectors gj and
describing the modes of variation derived from training set,
and bg includes the texture parameters in the texture sub-
space.

2.3 Combined appearance model
Finally, the coupled relationship between the shape and

the texture is analyzed by PCA and the appearance sub-
space is created. At the end, the shape and the appearance
can be described as follows:

x = x̄+Qs · c (5)

g = ḡ +Qg · c (6)

where c is a vector of appearance parameters controlling
both the shape and the texture, and Qs and Qg are matrices
describing the modes of variation derived from the training
set. Thus the final appearance model can be represented as
b = Qc where

b = (
Wsbs
bg

) = (
Ws(Ps)T (x− x̄)

(Pg)T (g − ḡ)
) (7)

and Q is the matrix of eigen vectors of b.



3. METHODOLOGY
One of the many applications of AAM is facial age pro-

gression and age estimation. As already discussed in the
above section, the first step in the modeling process is se-
lecting an annotation scheme. Figure 2 shows an applica-
tion of AAM where a source image of an individual is age
progressed to several decades. For such an application, an
annotation scheme should be chosen such that the AAM
model can generate accurate reconstructions of original im-
ages. Hence, for a specific task of synthetic age progression,
the problem statement can then be described as “What is a
good annotation scheme to be adopted for synthetic age pro-
gression?”. Unfortunately, there is a not a gold standard to
address such a problem. In this work, we analyze and com-
pare four annotation schemes to address such a problem.

3.1 Shapes and Annotations
A shape can be defined as a collection of correspond-

ing border points. Alternately, as defined by D.G.Kendall,
shape is all the geometrical information that remains when
location, scale and rotational effects are filtered out from an
object. One way to describe a shape is by locating a finite
number of points on the outline. A landmark or an anno-
tation can then be defined as a point of correspondence on
each object that matches between and within populations.
Dryden et. al. [4] further discriminate landmarks into three
subgroups:

1. Anatomical landmarks: Points assigned by an expert
that correspond between organisms in some biologi-
cally meaningful way

2. Mathematical landmarks: Points located on an object
according to some mathematical or geometrical prop-
erty, i.e. high curvature or an extremum point

3. Pseudo landmarks: Constructed points on an object
either around the outline or between landmarks

Although the concept of landmarks is conceptually useful,
the process of acquisition can be cumbersome. In addition to
placing annotations manually, the process usually involves
comparing annotations to ensure correspondence across the
training set.

The choice of annotation scheme is important when AAMs
are used to develop models for synthetic face aging i.e. the
capability of the AAMs to reconstruct facial images and syn-
thesize older facial images, with minimum texture loss, is
also dependent on the choice of annotation scheme. From
the literature found on dynamics of craniofacial aging [1] and
consultation with an anthropologist, in addition to the above
guidelines on landmarks, four annotation schemes were de-
vised. As already mentioned, the schemes are based upon
anthropometric landmarks of the soft tissue and the skull
with additional points selected based upon aging trends of
the face.

Figure 3 shows the different annotation schemes that are
reviewed in this paper. The number of annotation points
for each of these schemes are as shown in Table 1. It should
be noted that Scheme A and Scheme B are detailed mark-up
schemes. Scheme C is derived from Scheme A and Scheme D
is derived from Scheme B by keeping the anatomical and
mathematical landmarks. The goal was to choose an opti-
mum annotation scheme for the face. Experimental set-up,
evaluations and results are presented in the next section.

Table 1: Number of landmark points
Annotation Scheme Number Landmark Points

A 161
B 252
C 114
D 138

Table 2: Dataset details
Group Number of images

Caucasian American Female 95
Caucasian American Male 101
African American Female 95
African American Male 95

4. EXPERIMENTAL RESULTS
Stegmann’s AAM-API [21] was used for implementation

and evaluation of the annotation schemes. The model was
set to capture 95% of the variance in the training data. Four
groups of datasets - Caucasian American Female (CAF),
Caucasian American Male (CAM), African American Fe-
male(AAF) and African American Male(AAM) - were cre-
ated based on ethnicity and gender. The images were chosen
to be clean and without any occlusions from the Morph [17]
and the PAL database [11]. In addition, the ethno-gender
groups were formulated with equal distribution of images
between 18 and 65 years. The number of images in each
group is as shown in Table 2.

Evaluation
Individual ethno-gender AAM models were built using the

AAM-API for the training data set for the four different
schemes. The number of AAM parameters obtained for the
models for the various schemes are as shown in Table 3

4.1 Reconstructed Images
For each of the ethno-gender models and the annotation

scheme, active appearance parameters were generated for
each training image. The image was then reconstructed back
using the appearance parameters and the model. Some ex-
ample images and their reconstructions for each of the ethno-
gender groups and the annotation schemes are as shown in
Figures 4 - 11

On careful visual inspection of the reconstructed images,
it can be observed that Scheme B and Scheme D can bet-
ter preserve the shape of the physical features such as the
eyebrows, eyes, nose and the mouth. Also, in some of the
images, the texture reconstruction seems to be better in
Scheme B and Scheme D. In addition to this qualitative
measure, a couple of quantitative measures were evaluated
as explained in the next section.

4.2 Quantitative analysis - RMSE

Table 3: Number of AAM parameters
Scheme A Scheme B Scheme C Scheme D

CAF 51 49 48 46
CAM 50 51 42 48
AAF 52 48 50 45
AAM 52 49 52 46



Figure 2: Age progression: an application of AAM

Figure 3: Annotation schemes: (L-R) - Scheme A, Scheme B, Scheme C and Scheme D

Figure 4: CAF image reconstructions: (L-R) Original Image, Scheme A, Scheme B, Scheme C, Scheme D

Figure 5: CAF image reconstructions: (L-R) Original Image, Scheme A, Scheme B, Scheme C, Scheme D



Figure 6: CAM image reconstructions: (L-R) Original Image, Scheme A, Scheme B, Scheme C, Scheme D

Figure 7: CAM image reconstructions: (L-R) Original Image, Scheme A, Scheme B, Scheme C, Scheme D

Figure 8: AAF image reconstructions: (L-R) Original Image, Scheme A, Scheme B, Scheme C, Scheme D

Figure 9: AAF image reconstructions: (L-R) Original Image, Scheme A, Scheme B, Scheme C, Scheme D



Figure 10: AAM Image reconstructions: (L-R) Original Image, Scheme A, Scheme B, Scheme C, Scheme D

Figure 11: AAM Image reconstructions: (L-R) Original Image, Scheme A, Scheme B, Scheme C, Scheme D

Although in practical scenarios, qualitative judgement is
better for such experiments, some quantitative evaluation of
the results is possible. In particular, we calculated:

1. Root mean squared error (RMSE) between the orig-
inal image and the reconstructed image for the four
annotation schemes of each ethno-gender group. Let
IS and IR be the original source image and the respec-
tive reconstructed image. The RMSE for each image
can then be calculated as

RMSE =
√
mean(|IS − IR|2) (8)

2. Frequency of minimum RMSE occurrences: For each
training image, RMSE values were compared across
annotation schemes. A voting scheme was then adopted
to flag the scheme with minimum RMSE value for each
example image.The number of such votes was then
counted for each annotation scheme which is termed
as the frequency of minimum RMSE occurences. A
plot of such frequency of minimum RMSE occurrence
across all the ethno-gender models is as shown in Fig-
ure 12.

From Figure 12, it is clear that Scheme B and Scheme D
have the highest number of minimum RMSE values across
all the ethno-gender models. This further suggests that
Scheme B and Scheme D are better choices of annotation
schemes for this application.

4.3 Quantitative analysis - Best match score
To further evaluate the efficiency of the annotation schemes,

FaceVACS c©SDK from Cognitec, a commercial face recog-
nition toolkit was used to generate the match scores. The
experiment was set-up such that

1. For each of the training images, a gallery G was formed

Figure 12: Frequency of minimum RMSE occur-
rences



from the reconstructed images of each of the schemes.

G = {RA, RB , RC , RD} (9)

whereRA, RB , RCandRD are reconstructed images un-
der the different annotation schemes. The original im-
age I was set as the probe image.

2. The probe image was then matched to each image in
the gallery to get the corresponding match scores.

3. A voting scheme to flag the annotation scheme with
the highest match score was adopted.

4. This was then repeated for all the examples across the
ethno-gender models. Figure 13 shows the frequency
of best match score using the FaceVACS SDK. Only
examples for which a valid score was generated by the
SDK for each of the schemes were included in the anal-
ysis.

From Figure 13, it is observed that Scheme B and Scheme D
have higher frequency of best match scores than the other
two schemes. Owing to all the qualitative and quantitative
evaluation measures as discussed above, it can be inferred
that Scheme B and Scheme D, which are comparable in per-
formance, are better annotation schemes when compared to
the other two schemes. It should be noted that one of the
desired features of annotation schemes is the ability to auto-
mate the process. Since Scheme D is a subset of Scheme B
and for the following reasons: 1) the number of annotation
points is much lesser in Scheme D than Scheme B, but with
comparable performance; 2) Scheme D is a much better can-
didate for automation; 3) Due to fewer annotation points,
Scheme D is less prone to human/automated annotation er-
rors; Scheme D can be chosen as the best annotation scheme
among the schemes chosen for modeling the human face.

5. CONCLUSIONS
In this paper, we have presented four annotation schemes

for AAM modeling of the human face. Two of the anno-
tation schemes are derivatives of the other two schemes.
AAM models based on these four annotation schemes are
evaluated on a set of four ethno-gender models - Caucasian
American female, Caucasian American male, African Amer-
ican female and African American male models. We have
presented a qualitative (visual inspection) and quantitative
(RMSE and best match scores) analysis to evaluate the four
annotation schemes. Based on this evaluation, the anno-
tation scheme with 232 landmark points and its derivative
performs better both qualitatively and quantitatively. How-
ever due to desired features such as the ability to automate
and the number of annotation points which are lesser when
compared to the original scheme, the derived scheme from
the original 232 annotation scheme was chosen as the opti-
mum scheme for building synthetic models for the face using
AAM. Future work will involve comparing the performance
of the 232 landmark annotation scheme and its derivative
for age progression.
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