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ABSTRACT
We propose a novel particle filter-based motion compensa-
tion strategy for video coding. We use a higher order linear
model in place of the traditional translational model used
in standards such as H.264. The measurement/observation
process in the particle filter is a computationally efficient
mechanism as opposed to traditional search methods. We
use a multi-resolution framework for efficient parameter esti-
mation. Results of our experimentation show reduced resid-
ual energy and better PSNR as compared to traditional
video coding methods, especially in regions of complex mo-
tion such as zooming and rotation.
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1. INTRODUCTION
In this paper, we propose two modifications to traditional

motion compensation techniques used in popular standards
such as H.264. First, we propose a higher order parametric
2-D linear transformation model in place of a pure trans-
lational model. The entire system is in a particle filtering
framework. Next, we replace traditional search techniques
such as full-search and diamond search with a randomised
measurement model of a particle filter. In addition to hav-
ing a good estimate of the matching block in the previous
frame, this offers a considerable computational advantage.
Our system uses a multi-resolution framework to get a bet-
ter motion estimate in a computationally efficient manner
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as opposed to exhaustive search techniques. We show ex-
perimental results in support of the proposed ideas.

Traditional video coding techniques such as H.264 [8] use
motion estimation and compensation for rectangular blocks
to represent information in a block in terms of a closely
matching block in a previous/future frame and the corre-
sponding motion vector, in addition to storing the prediction
error in terms of a coded residual image. The assumption
is that all pixels in the rectangular block correspond to the
same translational motion model. This assumption is quite
justified for very small block sizes. Further, it provides ad-
vantages of low computational complexity and small motion
vector overhead since only two parameters are required to
represent translational motion. However, the assumptions of
rectangular blocks, and a translational model for the motion
of a block are highly restrictive.

The idea of using higher order motion models for estima-
tion and compensation is not new. Zhang et al. [10] pro-
pose an affine model for the same. The authors propose
a layered approach for the same. They first estimate the
zoom, rotation and translation at the frame level. They use
a 4 parameter restricted affine model at a 32 × 32 block
level. At a microblock level 16× 16, the authors use a stan-
dard translational model. A disadvantage of this approach is
the relative complication of the layered approach. Further,
there is no prediction to help in the process of estimation of
the affine parameters. Gahlot et al. [4] use an affine model
for motion compensation. The authors however, operate
only on MPEG-4 videos, which facilitate object-background
segmentation. In our approach we do not use any object-
background segmentation, or assume MPEG-4 streams, or
use any separate object coding. We operate on image blocks
irrespective of any semantic separation into objects moving
across a background. In the work by Wiegand et al. [9],
affine motion compensation is combined with long-term mem-
ory motion-compensated prediction. The idea was to deter-
mine several affine motion parameter sets on sub-areas of the
image. For each affine motion parameter set, a complete ref-
erence frame is warped and inserted into the multi-picture
buffer. Given the multi-picture buffer of decoded pictures
and affine warped versions thereof, block-based translational
motion compensated prediction and Lagrangian coder con-
trol are utilized. The prime disadvantage of this work is the



huge computational overhead, and larger memory require-
ment - to store affine warped frames as well as previously
decoded frames to be used for motion compensation. In con-
trast, we do not reply on any warped frames to be generated
at the decoder side. We use motion compensation in the pa-
rameter domain instead of the image domain. Kalman fil-
tering is a possible prediction mechanism which assumes the
prior state model, the state/process dynamics model, as well
as the observation/measurement model - all three as Gaus-
sians. The authors in [6] use Kalman filtering, but only for
refinement of the motion vector. The work is a combination
of a full search algorithm, AR model and Kalman Filtering.
A limitation of the above approach is that the authors use
an AR model for predicting motion vectors for all blocks,
but the coefficients of the model are fixed - empirically de-
termined. In contrast, our system avoids the complexity of
a full search over the entire image, our motion models are
adaptive in getting coefficients using a multi-resolution ap-
proach (A pyramidal model [1]). The authors in [6] consider
only a translational model. A particle filter generalises the
idea of a Kalman filter to work for any distribution: not nec-
essarily Gaussian. Bober and Kittler [2] propose a Hough
Transform-based hierarchical algorithm for motion segmen-
tation and estimation. A disadvantage of their technique
is the use of non-linear optimisation for motion estimation.
In contrast, our technique does not suffer from any such
overhead. Particle filtering is a common thread through our
approach. The particle filter uses an affine state vector,
and the motion vector identification happens through the
measurement/observation phase of the particle filter using
a randomised approach. An estimate of the motion vec-
tors comes from a computationally efficient multi-resolution
approach. To the best of our knowledge, no related work
addresses these issues.

The rest of the paper is organised as follows. Section 2
outlines the basic approach in the paper. We show experi-
mental results in support of the proposed ideas in Section 3.
Section 4 concludes the paper.

2. RESTRICTED AFFINE MOTION COM-
PENSATION

2.1 General 2-D Parametric Motion Models
A 2-D affine motion model is particularly attractive since

it has 6 parameters (as opposed to the most general linear
model: a projective model, which has 8 parameters), estima-
tion of which is easier than for a projective case, for instance.
An affine model can handle common cases of motion and de-
formation, such as translations, rotations, non-uniform scal-
ing/zooming and shear - which a simple translational model
cannot handle.However, if the camera is moving, depth par-
allax cannot be taken care of using translational as well the
affine model. But affine definitely increases the no of frames
to which the approximation can be assumed to be valid. A
commonly used model is a restricted affine one (e.g., [7]).
This model has 5 parameters (i.e., an oriented rectangle),
which are not difficult to estimate. This strikes a balance
between the class of linear deformations that the transfor-
mations can handle, and the difficulty in estimating these
parameters. In our approach a block in the image is de-
scribed by an oriented rectangle specified by 5 parameters
[x, y, w, h, θ]T where, x, y represents centroid of the tracking

window, w, h represent its width and height, and θ repre-
sents the angle of the tracking window.

2.2 Particle Filtering-based Tracking for Mo-
tion Estimation and Compensation

Isard and Blake [5] proposed CONDENSATION/Particle
Filtering as a tracking paradigm that works for any distribu-
tion which can be represented as a discrete array of samples.
In coding standards such as H.264, for every (rectangular)
block in an image, one searches for the closest matching
block of the same size, in a reference image (e.g., the pre-
vious frame), using a simple translational model. For each
frame, we use a particle filtering-based approach to find the
most suitable block in the previous frame, using a more com-
plex 2-D linear transformation model (restricted affine, Sec-
tion 2.1). Any predictive tracker has two models

1. The State/Process Dynamics Model: In the absence of
any prior information about the movement of pixels in
a particular block, a random walk model is often the
best possible option which can account for any type of
motion.

Xt = Xt−1 + Wn (1)

We consider W to be the noise covariance, and the
noise term n to be a time-independent zero-mean unit-
variance Gaussian. While there is no general rule for
fixing covariance values, one can often make some good
estimates if one has some prior knowledge. A common
assumption in trackers is to assume different elements
of the state vector to be uncorrelated, and hence, have
the covariance matrix modelled as 1-D Gaussians in
each dimension. For instance, sports videos involve a
lot of action, usually. Even in the absence of such prior
information, we take high individual variance terms,
to start with. We have experimented with an adaptive
strategy. We start with high values, and depending on
typical values in a region of an image, we gradually
increase or decrease these values. Making a tracker ro-
bust to such situations is not difficult in a multi-scale
scenario [3]. This fits in seamlessly with our frame-
work here. We estimate the parameters of the model
i.e., W using a computationally light multi-resolution
framework (described in detail in Section 2.3). Here, t
is the subscript indicating the given frame, and t − 1
refers to the reference frame (e.g., the previous one).

2. The Measurement/Observation Model: We use a sim-
ple sum-of-squared errors-based observation model to
obtain the probability of a block (orientated rectangle
in the reference frame) being the closest match to a
block being considered in the given image. We esti-
mate the match probability as

Πt
4
= P (Zt|Xt) ∝ e−SSE (2)

where Zt is the measurement/observation at time t
corresponding to state Xt, and SSE is the sum-of-
squared errors for the oriented rectangular block in
the reference image, when warped into the frame of
reference of the block in the given image.

Our particle filtering-based motion estimation algorithm
has the following steps. We consider an array of N particles
(We have considered N to be a function of the resolution for
computational efficiency: details in Section 2.3).



1. Initial Distribution of Particles: We consider a 5-
dimensional Gaussian distribution of particles around
the current position of the block, and take N samples
from it, to form the set of particles. For our experi-
ments, we have chosenN as a function of the resolution
level. In most cases, we had N as 300 for the highest
resolution.

2. Prediction: We move particles s
(i)
t , i ∈ {1, N} ac-

cording to the deterministic dynamics of motion model
(drift), then perturb them individually (diffusion). The
above state/process dynamics model (Eqn. 1) comes of
use here. Fig. 1 illustrates these two points.

Figure 1: For a block in the given image, the sys-
tem uses particle filtering to find the best matching
block in the reference frame (here, shown to be the
previous frame). Section 2.2 outlines the details.

3. Measurement/Observation: We use the measure-
ment/observation model (Eqn. 2) for each particle i,
i ∈ {1, N}.

Π
(i)
t = P (Zt|Xt = s

(i)
t ) (3)

4. Output: The output of the prediction process is the
best particle i.e., the particle corresponding to the
highest measurement/observation probability.

2.3 Multi-Resolution Analysis to Efficiently Seed
the Motion Model for a Block

We use multi-resolution analysis to efficiently estimate
the state/prediction model parameters in a computation-
ally efficient manner. We represent the image as a Gaussian
pyramid [1]. In Gaussian pyramidisation there is a trade-
off between the accuracy and the time complexity of the
prediction algorithm. At higher resolutions the accuracy of
the prediction is higher but at the same time the compu-
tational complexity also high and at the lower resolution
time complexity is low but the accuracy of prediction is
also reduced. To consider this we take the image up to a
level which preserves the basic characteristics of an object
and at the same time ensures the reduction in computa-
tion complexity. Since video and image resolutions are not
completely arbitrary (CIF/QCIF/VGA etc define de-facto
standard sizes), we can only have a fixed number of levels of
a pyramid before the dimensions of the image start getting
too small. For instance, for QCIF resolution, we consider a
total of three levels - empirically. After the prediction of mo-
tion parameters for the states at the lower resolution we use

them as a seed for accurate prediction at the higher resolu-
tions. These form the initial set of values for the estimation
of the corresponding parameters at a higher resolution level.
At higher resolutions, to get the affine refinement we gen-
erate a random particles around the seed point and then
Measurement/Observation model is applied to each particle
to get a better estimate of the required motion vector. At
each stage, the best particle is chosen to be the output of
the particle filter.

3. EXPERIMENTAL RESULTS
In our experiments we demonstrate the performance of

the proposed affine motion compensation scheme in compar-
ison to the traditional translational model that is commonly
used in video coding applications. The standard test video
sequences that are used for the experiments are “Mobile ”,
“Flower ”, “Tempete ”, “Container ”and “Salesman ”, each
of frame-size 352 X 288. Each of these sequences have been
sub sampled to 15 frames by frame skipping (1 frame each)
to create larger motion displacement. Mobile sequence con-
tains rotation and zooming. Flower sequence contains rota-
tion and translation. Tempete sequence contains zoom-out.
Container sequence contains translation. Salesman contains
rotation of an object. In the translational scheme videos are
encoded with a block-size of 16 X 16 and search window of
32 X 32 pixels.

To evaluate the performance of the proposed scheme we
use PSNR (dB) and residual energy (in terms of SSE) as
measurement.Table 1 summarizes the comparison of the PSNR
and residual energy.

The real motivation for using affine compensation can be
seen in the results for PSNR in Table 1 which show an im-
provement of up to 1.2 dB and an average improvement
of 0.7 dB over the translational model. In these standard
test sequences the object has not been segmented out, if
the motion estimation is performed over the segmented re-
gions rather than pure block based search then the algorithm
would perform much better. For this purpose we have cap-
tured our own video sequences in which different motions are
carried.These videos can be made available on demand. Ta-
ble 2 summarizes the results for different types of motions
of an object.Results show that the proposed model gives
lower residual energy and better PSNR for affine motions
like rotation, zooming and translation as compared to the
translation model.

Figs. 3 and 5 display a comparison of PSNR and residue
energy of “Salesman ”and “Mobile ”using respectively for
both the schemes. It is observed that the PSNR in the
reconstructed “Salesman ”frame no. 12 is 35.8 dB by our
scheme as compared to 34.1 dB by the translational model.
It is due to the sudden rotation in the left hand of the sales-
man and movement in his face as highlighted in Fig. 2. The
most important point to note is that the proposed algorithm
compensates this sudden motion and thereby reduces resid-
ual energy and increases PSNR as shown in Fig. 3.

For the “Mobile ”sequence due to the constant zooming
and rotation of the ball and train a constant improvement
of about 1.2 dB in the PSNR is achieved as shown in Fig. 5.
This is due to the zoom out in the sequence along with the
rotation of the ball in the sequence. The improvement in
residual energy can be seen from Fig. 5.

In addition, the visual quality of the reconstructed image
is also improved considerably. This can be seen in Fig. 2



Table 1: Residual energy and PSNR comparison for standard test sequences
Sequence type Full

Search(Avg
SSE)

Proposed
Scheme (Avg
SSE)

Residual En-
ergy Gain(%)

Full Search
(Avg PSNR
dB)

Proposed
Scheme (Avg
PSNR dB)

PSNR Gain (dB)

Mobile 21263000 16116242 24.21 23.99 25.19 1.2
Container 2268000 1844300 18.68 33.71 34.61 0.89
Salesman 568580 490720 13.69 34038 35.13 0.75
Flower 14265000 12175000 14.65 26.08 26.73 0.65
Tempete 12063000 11025011 8.60 26.46 26.85 0.39

Table 2: Residual energy and PSNR comparison for object motion in our own captured videos
Test Sequence Full

Search(Avg
SSE)

Proposed
Scheme (Avg
SSE)

Residual En-
ergy Gain(%)

Full Search
(Avg PSNR
dB)

Proposed
Scheme (Avg
PSNR dB)

PSNR Gain (dB)

Translation 373890 263670 29.48 39.03 40.15 1.12
Rotation 156230 131520 15.82 34.27 35.57 0.3
Zooming 679120 582140 14.5 36.92 37.21 0.29

which shows the reconstructed images of frame no. 12 for
the Salesman sequence. For the Mobile sequence the im-
provement can be seen in Fig. 4. The frames have been
reconstructed without adding the residue for both models.

In order to validate our results we have performed Intra-
coding on residue at different values of QP obtained from
both the schemes. As we have seen that the residue energy
in proposed scheme is less as compared to the other scheme
so at different values of QP compression is also better than
the other scheme. In Fig. 6 we have shown the percentage
compression gain of proposed scheme over translation model.
We have shown these results on “mobile ”,“Tempete ”, and
“Flower ”videos which contains different types of motions.
Fig. 6 also shows the variation in compression gain with
change in QP. We have used standard H.264 JM encoder (ver
17.0) for Intra Coding. The configuration file is modified to
work in Intra mode only.

4. CONCLUSIONS
An efficient affine motion estimation algorithm using par-

ticle filtering is presented. In sequences where complex mo-
tion is involved, frame prediction on the basis of affine mo-
tion estimation is more suitable than that involving estima-
tion of translational motion only. Experimental results indi-
cate proposed algorithm outperforms standard translational
model in terms of PSNR, residual energy and compression.
The proposed motion estimation algorithm takes care of ob-
ject motion due to translation, zooming and rotation. This
in turn results in high quality video coding. However, the
computational complexity involved in this proposed algo-
rithm is high as compared to traditional translational model.
We may overcome this limitation if a dedicated architecture
is developed for this purpose.
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Figure 2: Reconstructed image (for a frame of the Salesman sequence) using the proposed method, and that
using a translational model

Figure 3: The PSNR, and residual energy comparison of both schemes (proposed, translational model) for
the Salesman Sequence

Figure 4: Reconstructed image (for a frame in the Mobile sequence) using proposed scheme, and that using
a translational model



Figure 5: The PSNR, and residual energy comparison of both schemes (proposed, translational model) for
the Mobile Sequence

Figure 6: Residue Compression as a function of QP


