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Abstract— We present an efficient object detection and track-
ing technique using still cameras in low contrast conditions.
The tracking algorithm involves background subtraction using
Gaussian Mixture Model (GMM). Our method involves updating
the parameters of the Mixture Model using a combination of an
online k-means approximation technique and the Expectation-
Maximization (EM) algorithm. We have shown experimentally
that our proposed method yields results with higher accu-
racy and superior performance in situations where foreground-
background contrast is low, as compared to established tech-
niques involving only either one of k-means or EM algorithm to
update mixture parameters.

I. INTRODUCTION

Object tracking has been a major focus area in computer
vision over the last couple of decades. As a result, several
methods have been proposed by authors for the same [7], [2],
[9], [6].

An important application of object tracking is in the field
of video surveillance. High end video surveillance is required
in military operations and sporting events among others. In
these cases, often the contrast between the detected object
and the background is low. This is particularly true in the
case of military operations. While many methods exist which
assume a high contrast between the foreground and back-
ground, methods which address low contrast object detection
are relatively few. Our goal is to create a robust adaptive
tracking system which can detect objects accurately when the
contrast between the detected object and the background is
low. The system should also be able to handle variations in
lighting, moving scene clutter, multiple moving objects and
other arbitrary changes to the observed scene.

In general, the existing approaches to object detection
and tracking can be broadly be classified as - background
subtraction, statistical and prediction based approach, feature
based approach and block matching technique. Both block
matching and feature matching techniques require a priori
knowledge of the object to be tracked.

Among these, background subtraction remains a popular
method for object tracking. Many models have been proposed
for background subtraction. Ridder et al.[5] model each pixel
as Kalman filter. However this model recovers slowly to scene
changes. Pfinder[9] uses a multi-class statistical model for
the tracked objects, but the background model is a single
Gaussian per pixel. Raja et al.[4] use a Gaussian Mixture
Model for segmentation based on object color. Stauffer et al.[7]

use a Gaussian Mixture Model for background subtraction,
with an online k-means approximation technique to update
the parameters of the model. This model is very effective in
dealing with lighting changes, repetitive motions from clutter
and long term scene changes. While the method is very
effective for object detection when the contrast between the
background and foreground is high, it however yields poor
results when the contrast is low. Davies et al.[2] have tried to
address the problem of detection of very small objects in low
contrast conditions using a Kalman Filtering model. In doing
so, however, the inherent advantages of a Gaussian Mixture
Model, viz. adaptation to lighting changes and multimodal
backgrounds are lost. In the light of the above, the best method
for low contrast object detection using the GMM remains an
open question.

Our objective is to build a robust tracker which is flexible
enough to handle changes in illumination, adapts quickly to
the removal and addition of static objects in the scene, is
able to handle detection of objects through clutter and can
detect objects which have varying degrees of contrast with the
background.

To achieve these objectives an adaptive Gaussian mixture
model has been used. Intensity values of a particular pixel
position, over time, are modeled as a mixture of Gaussians.
These values continuously update the parameters of the mix-
ture. Depending on certain criteria (elaborated later), every
pixel is classified into either background or foreground.

Various parameter estimation techniques exist that keep
updating the parameters of the Gaussian Mixture Model as
pixel values come in. Stauffer et al. [7] have used an on-
line K-means approximation throughout the processing of all
frames to estimate model parameters. However, we have seen
that this does not yield good results when the foreground-
background contrast is low. The EM algorithm is a superior
technique but as mentioned in [7], it is computationally more
expensive for real time applications. It is also very sensitive
to initialization and end results may vary greatly depending
upon the initial guess parameters. To achieve good results
in low contrast conditions, and also to avoid the problem
of inaccurate initialization, we have proposed a two-phase
parameter updation technique. In the first phase, we have
used the k-means approximation technique as in [7] for a few
initial frames only, to obtain model parameters. In the second
phase, we have used the resulting parameters to initialize EM



algorithm for the subsequent frames. A detailed description is
given in section 3.

We have verified experimentally that our system yields far
superior results as compared to a tracker using online K-
means approximation alone [7], for low contrast detection.
Our system also robustly deals with changes in illumination,
detecting objects through clutter and introducing and removing
objects from the scene.

II. MATHEMATICAL PRELIMINARIES

Gaussian Mixture Model

Gaussian Mixture Model is a probability density model
which comprises of a number of Gaussian component func-
tions. These component functions are combined to provide a
multimodal density.

The probability of observing a data sample in a Gaussian
Mixture Model is given by:

p(x) =
K∑
i=1

ωif(x|θi), (1)

where ωi is the prior probability of the ith Gaussian i.e.,

p(component i) = ωi

and it is a measure of the fraction of data accounted for by
the ith Gaussian. Therefore,

K∑
i=1

ωi = 1.

f(x|θ) is the probability density function of the individual
components of the mixture model, which can be written as:

f(x|θ) = f(x|µ,Σ) =
1

(2π)
n
2 |Σ| 12

· e− 1
2 (x−µ)′Σ−1(x−µ) (2)

Mixture Models provide greater flexibility and precision in
modelling the underlying statistics of sample data. They are
able to smooth over gaps resulting from sparse sample data
and provide tighter constraints in assigning object member-
ship. Such precision is necessary to obtain the best results
possible from pixel classification for qualitative segmentation
requirements.

Expectation-Maximization Algorithm

Let us say we have a density function p(x|Θ), governed by
the set of parameters Θ. We also have a set of N samples
drawn from this distribution, i.e X = {x1, x2, ..., xN}. We
assume that these data samples are independent and identically
distributed. Therefore the resulting density for the samples is,

p(X|Θ) =
N∏
i=1

p(xi|Θ) = L(Θ|X)

The function L(Θ|X) is called the likelihood of the pa-
rameters given the data, or just the likelihood function. The
likelihood is thought of as a function of the parameters
Θ where the data X is fixed. In the maximum likelihood
problem, our goal is to find the Θ that maximizes L. Often
we maximize log (L(Θ|X)) instead because it is analytically
easier. However, when one considers a missing data problem
such as finding the parameters for GMM or fitting number of
straight lines for given observation, it is not very easy to get
simple analytical solution and EM algorithm is very useful.

The EM algorithm first finds the expected value of the
complete-data log-likelihood log p(X,Y |Θ) with respect to
the unknown data Y and the observed data X and the current
parameter estimates. That is, we define:

Q(Θ|Θ(i−1)) = E[logp(X,Y |Θ)|X,Θ(i−1)]

where Θ(i−1) are the current parameter estimates that we
used to evaluate the expectation and Θ are the new parameters
that we optimise to increase Q.

The evaluation of this expression is called the E-step of the
algorithm.

The second step (the M-step) of the EM algorithm is to
maximise the expectation we computed. That is we find:

Θ(i) = argmaxΘQ(Θ,Θ(i−1))

These two steps are iteratively repeated. Each iteration is
guaranteed to increase the log-likelihood and the algorithm
is guaranteed to converge [3].

Here the algorithm is presented in its most general form.
The details of the steps required to compute the given quan-
tities are very dependent on the particular application. For
a Gaussian Mixture Model, the implementation of the EM
algorithm is discussed later.

III. PROPOSED METHOD

Pixel Process

As described by Stauffer et al. in [7], the values at a
particular pixel position over time are considered as a “pixel
process”. A “pixel process” would be a time series of pixel
values, (scalar values for videos having grayscale frames and
vectors for videos having colour frames). We have used the
Luminosity (Y) component of the Y CbCr colour space to
define a scalar “pixel process” for colour videos. Every pixel
process is modeled using a Gaussian Mixture Model.

Consider a pixel process at (x0, y0) upto time T :

{x1, x2, ..., xT } = {I(x0, y0, i); 1 ≤ i ≤ T}

where I is the image sequence.
These values continuously update a mixture of K adaptive

gaussians. We have experimentally observed that using 4 or 5
Gaussians proves sufficient for our application.

The probability of observing a pixel value in the Mixture
Model is given by (1).
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Parameter Estimation

We partition the frames in the video sequence into two
categories, “learning frames” and “general frames”. “Learning
frames” are a set of initial frames for the model to learn
the background. The “learning frames” help to initialise and
form a Gaussian Mixture model. The parameters of the model
formed using these frames are used to initialise the EM
algorithm for the “general frames” (explained later). We have
verified experimentally that 30-40 initial “learning frames” are
sufficient for the background to be learnt. Frames following
the “learning frames” are classified as “general frames”.

Based on the type of frame, the parameter estimation
technique differs (Fig. 1).

For a “learning frame” (first 30-40 frames), the parameter
updation technique is as follows: To begin the process, for
each pixel position, each of the K Gaussians is intialised
with a high standard deviation σi and a low prior weight
ωi (i = 1, 2, ...,K). Subsequently, when any pixel from a
“learning frame” comes in, it is checked against the existing
K gaussians for a “match”. A match is found when the
pixel value lies within 2.5 times the standard deviation of
a particular distribution [7]. This threshold can be changed
with little effect on performance. A variable threshold for each
distribution is extremely effective in dealing with objects under
different lighting conditions, as objects in low lighting exhibit
lesser noise and therefore have a lower standard deviation as
compared to objects in brightly lit regions. Having a threshold
varying with the standard deviation therefore reduces the
chance of erroneous detection.

When a match is found then the parameters of gaussian
mixture are updated using K-means approximation [7] as
follows:

ωt = (1− α)ω(t−1) + α(Mt)

where Mt is 1 for the gaussian which matched and 0 for
the remaining gaussians. 1/α defines the time constant which
determines the speed at which the distribution’s parameters
change.
µ and Σ for the unmatched distributions remain the same.

For the matched distribution, they as updated as:

µt = (1− ρ)µ(t−1) + ρXt

σ2
t = (1− ρ)σ2

(t−1) + ρ(Xt − µt)′(Xt − µt)

where the second learning rate, ρ, is,

ρ = αf(Xt|µ, σ)

If no match is found, then the least probable distribution
to account for the new observation is replaced with a new
distribution with mean as the value of the new observation, a
high variance and low prior weight (ω).

When the “learning” frames have been processed, the sub-
sequent “general frames” update the gaussian mixture using

the EM algorithm. The final parameters obtained by the K-
means approximation (by the end of the “learning frames”)
are used to initialize the EM algorithm. The EM algorithm
proceeds iteratively. Whenever a new pixel comes in, several
iterations of the algortihm are required, that would result in
an accuarate estimation of parameters. Experimentally it was
found that 5-6 iterations per processing of a pixel resulted
in a sufficient degree of accuracy for determining mixture
parameters. At every iteration, the parameters obtained are
used as the “guess parameters”, Θg for the next iteration. The
converged parameters are used to initialize the EM algorithm
when the next pixel (next frame) comes in. The algorithm uses
the following EM equations for GMM (derived in [1]):

ωnewl =
1
N

N∑
i=1

p(l|xi,Θg)

µnewl =
∑N
i=1 xip(l|xi,Θg)∑N
i=1 p(l|xi,Θg)

(σ2
l )new =

∑N
i=1 p(l|xi,Θg)(xi − µnewl )2∑N

i=1 p(l|xi,Θg)

where l ∈ {yi}Ki=1.
yi identifies the Gaussian which generates the ith sample

value, xi. That is, yi = r if xi belongs to the rth Gaussian in
the mixture.

The function p is defined using Bayes’ rule as:

p(l|xi,Θg) =
ωgl f(xi|θgl )
p(xi|Θg)

=
ωgl f(xi|θgl )∑K
r=1 ω

g
rf(xi|θgr )

where f is the Gaussian probability function, given by (2).
It can be seen that at every iteration, the EM algorithm

requires the complete history of the pixel process. This means
that for the processing of the tth frame, all the frames from
1 to t − 1 need to be revisited. This is not practical for
applications involving video segmentation. To avoid this, we
use an approximation which only considers a window of a
fixed number of frames as the history for the current frame.
This ensures a consistent processing speed throughout the
processing of the video.

The EM algorithm is highly sensitive to initial parameters.
A wrongly initialised EM algorithm may take longer, or may
not even converge to the correct parameters. In our method,
however, this problem is avoided as the EM algorithm is
initialised using the parameters obtained by the online K-
means approximation technique (after all the learning frames
have been processed), which is a fairly suitable approximation.

Classification of pixels into background and foreground

During the processing of a pixel, when the necessary param-
eters have been updated, the next step is to determine whether
that pixel (in the current frame) is a part of the background
or the foreground. We have adopted a classification technique
similar to stauffer et al [7]. To understand the basis behind
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Fig. 1: Summary of Steps involved in parameter estimation

the classification, let us first consider a pixel position, that
has been part of the background process. The samples drawn
from this process would be represented by one (or more)
existing gaussian. Being a relatively static backgound, the
samples would more or less be identical. Hence, the gaussians
corresponding to them will have a low variance and high
consistent evidence, ω supporting it. On the other hand, a
foreground process may or may not even be represented by an
existing distribution, and hence a new gaussian might have to
be added to the existing mixture. In either case, the gaussian
will definitely have low evidence supporting it and perhaps
a high variance. Background distributions will therefore have
high ω/σ values, whereas foreground pixels will have com-
paratively lower ω/σ values. ωi/σi (i = 1, 2, ...,K) values
of the gaussians in the distribution can therefore be used to
distinguish between background and foreground gaussians.

To classify a pixel value into background or foreground,
we use the following procedure. Firstly, based on the pixel
value and the updated parameter values of the mixture model
representing that pixel process, the probabilities of the pixel
belonging to each of the gaussians in the mixture are calculated
using:

pi(X) = f(X|µi, σi), i = 1, 2, ...,K

where f represents the Gaussian probability density function.
Let the gaussian having the highest probability (as obtained

above) be called “P”. This means that the the current pixel
value under consideration belongs to the gaussian “P”. Fol-
lowing this step, the all the distributions are theoretically orga-
nized based on their ω/σ values. Then the first B distributions
are chosen as the background model, where

B = argminb

(
b∑

k=1

ωk > Th

)
where Th is a measure of the minimum portion of the data that
should be accounted for by the background. Let the remaining
distributions which are not classified as background be denoted
as “F”. If the distribution “P” is part of the distribution set “F”
then clearly, the new pixel is part of the foreground. Else the
pixel is classified as background.

(a) (b)

(c) (d)

(e)

Fig. 2: (a) An original frame having high object-background
contrast. (b) Its ground truth image. (c) Segmented image using
k-means approximation on GMM [7]. (d) Segmented image
using our approach. (e) Graphs showing Sensitivity and False
Alarm Rate

IV. EXPERIMENTAL RESULTS

In order to test the effectiveness of our algorithm for low
contrast detection, several benchmark videos (provided by
Advanced Computer Vision GmbH - ACV [8]) were used.
The video sequences have the same background, but differ-
ent shades of moving objects (hence different foreground-
background contrast). The image size was fixed at 128x96
pixels and frame rate was fixed at 14fps. (Note: For clarity
of display in print, the screenshots shown are negatives of the
original images.)

One of the most widely accepted techniques of object
detection and tracking using background subtraction, proposed
by Stauffer et al. [7], failed to segment objects under low
contrast conditions (Fig. 3(c) and 4(c)). Only objects having
high contrast with the background are detected effectively (Fig.
2(c)).

However it can be seen that our approach effectively
segments moving objects when the background-foreground
contrast is low. (Fig. 3(d) and 4(d) )
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(a) (b)

(c) (d)

(e)

Fig. 3: (a) An original frame having a slightly lower object-
background contrast. (b) Its ground truth image. (c) Seg-
mented image using k-means approximation on GMM [7]. (d)
Segmented image using our approach. (e) Graphs showing
Sensitivity and False Alarm Rate

Quantitative Analysis

To better understand and analyse the results, we use quan-
titative measures of Sensitivity and False Alarm Rate. For the
same, we first divide the pixels of any frame into 4 categories:

True Positive (TP): Number of pixels which are actually
foreground and are detected as foreground in the final seg-
mented image.

False Positive (FP): Number of pixels which are actually
background but are detected as foreground in the final seg-
mented image.

True Negative (TN): Number of pixels which are actually
background and are detected as background in the final seg-
mented image.

False Negative (FN): Number of pixels which are actually
foreground but are detected as background in the final seg-
mented image.

We define,

Sensitivity =
TP

TP + FN

and

(a) (b)

(c) (d)

(e)

Fig. 4: (a) An original frame having a very low object-
background contrast. (b) Its ground truth image. (c) Segmented
image using k-means approximation on GMM [7] (no segmen-
tation can be seen). (d) Segmented image using our approach.
(e) Graphs showing Sensitivity and False Alarm Rate

FalseAlarmRate =
FP

FP + TN

A plot of Sensitivity gives a measure of the fraction of
the actual background detected.

We tested and compared our proposed method viz a viz the
method proposed by Stauffer et al. [7] on three benchmark
video sequences. We observe that in Fig. 2, where there is
considerable contrast between the object and background, both
the methods give appreciable results.

In Fig. 3, the contrast is slighly lowered. We can see
that very few regions are being segmented using k-means
approximation on GMM [7]. Our method, however, yeilds far
more superior results.

In Fig. 4, there is extremely low contrast between the
moving body and its background. None of the pixels got
segmented using k-means approximation on GMM [7]. Our
method still provides very appreciable results even in this case.
This clearly demonstrates the robustness of our system in such
conditions.
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V. CONCLUSION AND FUTURE WORK

In this paper, we have successfully addressed the problem
of detection and tracking of objects under low contrast condi-
tions. We have successfully tested our system on a variety
of videos involving different environmental conditions and
having extremely low object-background contrast. We have
also compared our algorithm with the more popular method
of updating the mixture model via k-means approximation
[7], and have obtained superior results. Due to the inherent
advantage of using a Gaussian Mixture Model, our system
has the ability to deal with multimodal distributions and adapt
to lighting changes. The system has a very high potential to be
used in applications involving military camouflage, detection
and tracking of balls etc in sport events, tracking of hazed out
objects at a large distance, among others.

To further improve the performance of the tracker, we are
focusing on two areas - speed and accuracy.

We are using an approximation of the EM algorithm to save
on processing time at the loss of some accuracy. Optimization
of the algorithm used can lead to a further increase in the
speed of convergence of the algorithm.

To improve the accuracy of the detected object we are in
the process of implementing a ’split and merge’ algorithm
to reorganize the Gaussians in the mixture more optimally,
which may yeild better results. Also, a self learning algorithm
to dynamically determine the optimum number of Gaussians
would make the system more adaptive.
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