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Abstract—Shape from focus (SFF) estimates the structure of
a 3D object using the degree of focus as a cue in a sequence
of observations. The estimate of the depth profile is however,
vulnerable to lack of sufficient scene texture. In this paper, we
propose a method to improve the estimate of the structure of the
object by exploiting neighbourhood dependencies. A degradation
model is used to describe the formation of space-variantly blurred
observations in SFF. The shape of the object is modeled as a
Markov random field and a suitably derived objective function
is minimized to arrive at the final estimate of the shape.

Index Terms—Shape from focus, depth recovery, space-variant
blur, Markov random fields.

I. I NTRODUCTION

One of the techniques used to estimate the structure of a 3D
object is shape from focus [1]. It uses the degree of focus
in an image as a cue to extract shape. Several attempts have
been made in the past to improve upon the depth estimates
computed using focus as a cue. Subbarao et. al. fit a low-order
polynomial to a few data points lying on the largest mode
[2]. In [3], a piece-wise curved local window is proposed for
computing the focus measure. Multilayer feed-forward neural
networks are used in [4] for finding the shape. A dynamic
programming based optimization approach has been proposed
in [5] which estimates the shape using the notion of a focused
image surface (FIS). The authors in [6] recover shape by
maximizing the focus measure in the 3D image volume. In
[7] super-resolution of the focused image of the underlying
3D object in SFF is demonstrated. In a recent work, the shape
estimate was obtained using relative defocus blur derived from
actual image data [8].

The traditional SFF method [1], uses the sum-modified
Laplacian (SML) focus measure operator to measure the
degree of focus of a pixel in a space-variantly blurred image.
The behaviour of the focus measure profile is dependent on
the local scene texture. If the texture is weak, e.g. at smooth
regions, the estimate of the depth computed by SFF may be far
from the true value. The choice of the finite step size for the
vertical movement of the translating stage is empirical. Since
the shape of focus measure profile depends upon the value of
the step size, interpolation may yield erroneous estimatesof
depth [8]. Also, interpolation is not an ideal way for filling
up missing data. If the computation of the depth is made to
depend on image data directly, we believe that a better estimate
can be obtained.

The depth of a real-world 3D object is generally locally
smooth. Traditional SFF however, computes the depth estimate

of every point independent of the depth of the neighbouring
points. The focus measure profiles of two adjacent points on
the object may result in very different depth estimates. But
such a random variation in depth rarely occurs in natural 3D
objects.

In this work, we attempt to improve the estimate of the depth
map obtained through the traditional SFF method by address-
ing the above mentioned issues. Since, in SFF, a real aperture
camera captures the stack of observations, we describe the
process of formation of the sequence of space-variantly blurred
images captured in a SFF scenario by a degradation model.
We use certain novel features of the mechanism of the process
of blurring in SFF to relate the blur induced in different
observations chosen from the stack. To account for the local
smoothness of the depth of the 3D object, its shape is modeled
as a Markov random field (MRF). The proposed algorithm also
takes care of the fact that when the depth estimate of a point
on the 3D object is correct, the SML operator would return
the peak value for the focus measure. An objective function is
proposed to estimate the shape profile of the 3D object using
space-variantly blurred images taken from the stack in SFF.
The cost function is minimized by the iterated conditional
modes (ICM) [9] technique. Experimental results show that
our algorithm is robust to lack of scene texture and returns
an estimate which is significantly superior to the depth map
obtained using traditional SFF.

II. SHAPE FROM FOCUS

The traditional shape from focus scheme [1] is depicted in
Fig. 1. A 3D object is placed on a translational stage which
moves in vertical direction in finite steps of size∆d. The
initial position of the stage is denoted by the reference plane.
The optics of the camera defines a ‘focused plane’ wherein all
the points will be perfectly focused on the sensor plane.

As the stage moves in steps of∆d from the reference plane,
at each step, an image is captured in which barring a small
portion of the object, other regions are defocused by different
degrees. This is because a real aperture camera cannot bring
all the points of a 3D object into focus at the same time. Thus,
a stack of space-variantly defocused observations is obtained.
The shape of the object is determined by searching for those
frames in which the object points come in focus. In order to
find the frame in which any point of the 3D object comes
into focus, in traditional SFF [1], a focus measure profile is
computed for each pixel across the image stack. The focus
measure at a point(k, l) in an imageI is computed using the
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Fig. 1. (a) Schematic of traditional SFF. (b) Fitting the Gaussian function
to the focus measure profile.

sum-modified Laplacian operator (SML) as

F (k, l) =

k+W
∑

m=k−W

l+W
∑

n=l−W

OL(m,n) for OL(m,n) ≥ T1

(1)
whereT1 is a threshold,2W + 1 is the size of the window
around the point(k, l), andOL is the modified Laplacian de-
fined in the discrete domain asOL(m,n) = |2I(m,n)−I(m−
δ, n)− I(m+ δ, n)|+ |2I(m,n)− I(m,n− δ)− I(m,n+ δ)|
where δ is a variable spacing between the image pixels for
computing the derivatives. The focus measure profile for a
pixel at (k, l) is obtained by plotting the value ofF (k, l)
computed at(k, l) in every image of the stack starting from
the reference frame. When the translating stage is at a height
d from the reference plane, the point(k, l) would reach the
focused plane as shown in Fig. 1. Therefore, whend = d

the value of the focus measure computed for the point(k, l)
would be maximum as compared to other positions of the
stage while moving through the stack. An estimate of the
depth at(k, l) is arrived at by Gaussian interpolation of a few
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Fig. 2. Erroneous Gaussian interpolation in traditional SFF for different
step-sizes [8]

values near the peak of the focus measure profile as shown
in Fig. 1. The values of the focus measure for the point(k, l)
corresponding to the heights of the translating stage from the
reference plane ofdm−1, dm and dm+1 are Fm−1, Fm and
Fm+1. The Gaussian function with peak valueFp is fitted to
these three focus measures. The mean of the fitted Gaussian
function corresponding to pixel location(k, l) is denoted in
Fig. 1 asd. The values ofd calculated for all the points of the
3D object and denoted asd yields the shape of the object.

A. Issues

As described above, the depth estimate of a point on a 3D
object in the traditional SFF [1] method is arrived at using
Gaussian interpolation of three values of focus measure near
the peak of the focus measure profile. Since the Gaussian
model is a good fit only in the peak region of the largest mode
of the focus measure plot [1], the outcome of interpolation
depends on whether the plot gets adequately sampled in that
region. If the three focus measure values that are used for
interpolation do not lie in the peak region of the actual
focus measure plot, interpolation would result in an erroneous
estimate of depth. The shape of the focus measure profile
depends upon the local texture in the scene and the choice of
the finite step size∆d is empirical which lead to a scenario as
depicted in Fig. 2. The actual continuous focus measure profile
of a point on an object is denoted by a solid line. The true
value of the depth isd corresponding to the peak of the solid
curve. Two different sampling scenarios are depicted for two
different choices of∆d with dotted lines. For the first sampling
of the continuous focus measure profile, shown by the dotted
line joining points marked with•, fitting a Gaussian function
through the three strongest focus measure values gives a depth
estimate asd1. In another sampling case shown by the dotted
line joining the � points, Gaussian interpolation yields the
depth estimate asd2. Both d1 andd2 are erroneous estimates
of the actual depthd because the actual focus measure curve
has not been adequately sampled in the vicinity of its peak.
This drawback of traditional SFF has been pointed out in [8].



In SFF, depth computation for a particular point of the 3D
object is done independent of the neighbouring points. This
can result in spurious spikes in the depth profile due to sudden
variations in the shape of the focus measure plot. Real-world
objects are locally smooth but this constraint is not used to
guide depth computation. The shape of the focus measure
profile is dependent on the local scene texture. If the region
in the scene lacks sufficient texture, the focus measure plotis
very smooth leading to errors in depth estimation by Gaussian
interpolation. We believe that by utilizing information present
in the real image data, i.e. the stack of observations captured in
SFF, it would be possible to improve upon the depth estimates.
Extending the work in [8], in this work we use information
embedded in real images to recover a better depth map than
in traditional SFF.

III. I MAGE FORMATION

Suppose the image plane consists ofM ×M sensor elements.
Let the image intensity values be denoted by{y(i, j)}, (i, j) =
0, 1, ....,M −1. The space-variant blurring of an image of the
3D object in SFF can be expressed as

g(i, j) =
∑

k

∑

l

x(k, l)h(i, j; k, l) (2)

where h(i, j; k, l) is a space-variant blurring function and
{x(i, j)} is the focused image. Observation noise when added
to {g(i, j)} yields the observed image{y(i, j)} in the SFF
stack.

A point on the 3D object at a distanceD′ = wd from the
lens satisfies the lens law such that1

f
= 1

D′
+ 1

v
and will be in

focus on the sensor plane which is at a distancev from the lens
plane. Heref denotes the focal length. Points that are not at
distanceD′ from the lens plane will appear blurred. The point
spread function (PSF) of a camera is defined as the response
of the camera to a point light source. A point light source at
distanceD from the lens plane will be imaged on the sensor
plane as a circular disk called the circle of confusion with
radius rb = Rv

(

1

f
− 1

v
− 1

D

)

whereR is the radius of the
aperture of the lens. Due to diffraction and lens aberrations, the
PSF is best described by a circularly symmetric 2D Gaussian
function [10]

h(x, y) =
1

2πσ2
exp

−(x2 + y2)

2σ2
(3)

where σ = ρrb and ρ is a camera constant. Several works
[11], [12], [13] exist that validate the approximation of the
true camera PSF by a 2D Gaussian. Sinceσ depends onD as

σ = ρRv

(

1

f
−

1

v
−

1

D

)

(4)

the blur kernelh(·; ·) is space-varying and has the form

h(i, j; k, l) =
1

2πσ2(k, l)
exp

(

−
(i − k)2 + (j − l)2

2σ2(k, l)

)

(5)

As the translating stage is moved vertically in steps of∆d,
for the mth frame we can express the blur parameter at(i, j)

as

σm(i, j) = ρRv(
1

wd

−
1

wd − m∆d + d(i, j)
) (6)

When the separation between the stage and the reference plane
becomesd, i.e. m∆d = d(i, j), the 3D point whose image
pixel coordinates are(i, j) satisfies lens law, and will appear
in perfect focus.

Suppose, the stack of observations available in SFF, contains
N frames{ym(i, j)}, m = 1, 2, ...N , each of sizeM × M .
These are blurred and noisy versions of a single focused image
{x(i, j)} of size M × M . If ym is the lexicographically
arranged vector containing pixels from themth observed
image of sizeM2 × 1 andx is the lexicographically arranged
vector containing pixels from the original focused image of
sizeM2 × 1, then they can be related as

ym = Hm(d)x + nm, m = 1, ..., p (7)

whereHm(d) is a blur matrix of sizeM2×M2 that depends
on d. Noisenm is zero mean Gaussian of sizeM2 × 1 with
varianceσ2

η.
When the 3D object is placed on the translational stage

which is at the reference plane as shown in Fig. 1, the blur
induced by a point on the object in the reference frame is
governed by blur parameterσ0 which is given by

σ0 = ρRv

(

1

wd

−
1

D0

)

(8)

whereD0 is the distance of the object point from the lens when
the stage is at the reference position andwd is the working
distance of the camera i.e.,1

wd

= 1

f
− 1

v
. The stage is moved

vertically by a distance ofm ∆d to capture themth LR frame.
For the same point on the 3D object, the blurring induced in
the mth frame can be expressed by the blur parameterσm

which is given by

σm = ρRv

(

1

wd

−
1

D0 ± m∆d

)

(9)

The change in magnification across the stack of LR observa-
tions is assumed to be negligible so that there are no errors
due to registration. Eliminating the common termwd from the
above expressions forσm andσ0 we get

σm = σ0 + ρRv

(

1

D0

−
1

D0 ± m∆d

)

(10)

Using d computed by the SFF method the blur parameterσ0

at every point in the reference image can be computed. The
blur parameterσm at any point in themth observation,m =
1, 2, ...p, can be determined with the knowledge ofσ0 at the
same point in the reference frame using the relationship in
Eq. 10. It is to be noted that the values ofσm depend upon
the depth mapd of the 3D object. Hence, the blurring matrix
Hm(d) in Eq. 7 can be constructed with the knowledge of
σm.

In Eq. 10, it is important to note that the value ofρRv

remains constant during the entire image capturing process.



IV. T HE PROPOSED METHOD

The problem that we address here is the extraction of the shape
profile d of the 3D object, givenp space-variantly blurred
observations chosen from the stack in SFF, the focus measure
profiles for all points on the object, and the focused image
x. The problem of estimation of the depth profile of the 3D
object from the space-variantly blurred 2D images captured
in SFF is typically ill-posed. Regularization in the form ofa
priori constraints on the solution can be imposed to estimate
the depth map. Real-world 3D objects have depth profiles
which are locally smooth. To incorporate spatial dependencies
of the depth estimates on neighbouring points, we modeld as
a Markov random field. Using Bayes’ rule we can write

log P (d|y1,y2, ...,yp) = log P (y1,y2, ...,yp|d) + log P (d)
(11)

wherey1,y2, ......,yp are thep chosen observations from the
stack.

MRFs can encode contextual constraints as well as provide
a prior distribution with which to model the probability density
function (pdf) of the depth map [14]. The Markovian property
of the MRF states that the probability of a pixel being
assigned a particular depth value depends only on the depth
estimates of pixels in its neighbourhood. The Hammersley-
Clifford theorem [15] provides the all-important equivalence
between MRF and the Gibbs random field (GRF). If the shape
profiled is modeled as a Gauss-Markov random field (GMRF)
then

P (d) =
1

Z
exp

[

−
∑

c∈C

Vc(d)

]

(12)

whereZ is the partition function,c is a clique,C is the set
of all cliques andVc(·) is the potential associated with clique
c. For a first-order neighbourhood, we propose

∑

c∈C

Vc(d) =

M
∑

i=1

M
∑

j=1

1

F 2(i, j)

[

(d(i, j) − d(i, j − 1))2

+(d(i, j + 1) − d(i, j))2

+(d(i + 1, j) − d(i, j))2 + (d(i, j) − d(i − 1, j))2
]

(13)

Assuming the noise processn′

ms to be independent in Eq. 7,
from Eqs. 11 and 13

log P (d|y1,y2, ...,yp) = −

p
∑

m=1

‖ym − Hm(d)x‖2

2σ2
η

(14)

−
∑

c∈C

Vc(d)

We derive an estimate ofd by minimizing the following

objective function

ˆ
d = arg min

d

{

p
∑

m=1

‖ym − Hm(d)x‖2

2σ2
η

+λ1

M
∑

i=1

M
∑

j=1

1

F 2(i, j)

[

(d(i, j) − d(i, j − 1))2

+ (d(i, j + 1) − d(i, j))2

+ (d(i + 1, j) − d(i, j))2 + (d(i, j) − d(i − 1, j))2
]}

(15)

Note that we also incorporate the focus measure into the
minimization procedure. HereF (i, j) denotes the SML focus
measure value at pixel location(i, j). The SML focus measure
operator is expected to yield a high value whenever the pixel
at a particular location comes into focus in a certain frame in
the stack of observations captured in SFF. The focus measure
values are normalized such that the maximum value is unity.
Being in the denominator, the SML values adaptively control
the degree of smoothness for the estimation of the depth of
a particular point on the 3D specimen. The focus measure
profiles are obtained by applying the traditional SFF technique
on the stack of observations. However, these values exist only
for the positions of the translating stage through the entire
stack. When the value ofd for a point lies in between two
frame positions we use bilinear interpolation to compute its
focus measure.

Assignment of depth values to pixel locations is a combi-
natorial optimization problem and we use iterated conditional
modes (ICM), a fast but suboptimal technique [9]. The pa-
rameterλ1 in Eq. 15 is tuned to obtain a good estimate of
d.

In Eq. 15, we have assumed that the focused imagex of
the 3D object is available. To an approximation and to avoid
the additional burden of computingx, one can estimatex in
the following manner. The formation of a pixely(i, j) in an
observed image can be expressed as

y(i, j) =
∑

k

∑

l

x(k, l)h(i, j; k, l) + n(i, j) (16)

During the imaging of a particular frame, if the corresponding
point (i, j) on the 3D object was on the focused plane, it would
satisfy the lens law and hence would be perfectly focused on
the image plane. If the point(i, j) lies in a smooth region in
the 3D object, the blur induced in it due to the space-variant
defocusing mechanism by neighbouring pixels would also be
negligible. This is because the neighbouring points would also
be very close to the focused plane. Assuming that the noise
during image capture is low, the intensity value ofy(i, j) from
that frame in the stack can be chosen as an estimate of the
intensity of the focused imagex at pixel (i, j). Since the
whole stack of frames is available with us, for every point on
the 3D object, we can choose the frame in which each point
comes into focus and pick the corresponding pixel intensity
for x from that frame. This allows us to construct a reasonable
approximation of the focused image.
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Fig. 3. (a) Focused image of a portion of a coin. (b) Estimated depth map obtained using the traditional SFF algorithm. (c) Grayscale image of the
corresponding depth map.

V. EXPERIMENTAL RESULTS

An LV-150 Nikon industrial microscope was used for imaging.
The lens objective was 2.5x, the working distancewd = 8.8
mm, focal lengthf = 80 mm and the depth of field = 48.9µm.
The PSF of the camera was assumed to be Gaussian, which
is a reasonable approximation as discussed in section 3.

We present experimental results using a coin as the 3D

(a)

(b)

Fig. 4. Optimized by ICM (a) Estimated shape obtained using theproposed
algorithm. (b) Grayscale image of the corresponding shape profile.

specimen. A stack of 150 frames, of size220×230 pixels, was
captured by moving the translating stage of the microscope in

(a)

(b)

Fig. 5. (a) Focused image of another portion of a coin. (b) Grayscale image
of the corresponding estimated depth map obtained using the traditional SFF
algorithm.



(a)

(b)

Fig. 6. Optimized by ICM (a) Estimated shape obtained using theproposed
algorithm. (b) Grayscale image of the corresponding shape profile.

fixed steps of∆d = 0.025 mm. The focused image of the
specimen is shown in Fig. 3 (a). The traditional SFF method
is used to obtain the depth map which is given in Fig. 3 (b).
The grayscale image of this depth map is shown in Fig. 3 (c).
It can be observed that the spokes of the wheel are not visible.
The depth map obtained from the traditional SFF method is
smoothed by median filtering and is used as the initial estimate
of the shape profile. The proposed algorithm is next used to
estimate the depth map. The focus measure profiles for every
pixel earlier obtained in computing the depth map were used
in the proposed method. The cost function in equation (15) is
minimized using the ICM algorithm and the estimate of the
shape is shown in Fig. 4 (a). The algorithm converges in 5 - 6
iterations. In all our experiments, the values ofλ1 = 1 × 108

andσ2
η = 5 in the proposed cost function. The grayscale image

of the shape profile is shown in Fig. 4 (b). The spokes of the
wheel and other details are clearly visible now.

For the next example, we imaged another portion of the
same coin, wherein the head of a lion is depicted. By moving
the translating stage of the microscope in fixed steps of 0.025
mm, a stack of 100 frames is captured. Each of the images

captured is of size228 × 198 pixels. The focused image
obtained is shown in Fig. 5 (a). The stack of observations
are used to estimate the depth map using the traditional SFF
algorithm. The grayscale image corresponding to the estimated
depth profile is shown in Fig. 5 (b). The features of the head
of the lion have not emerged well here.

The proposed method is then used to obtain an estimate
of the shape of the 3D object. Choosing frame numbers 15,
20, 65 and 70, the depth map is estimated by minimizing
the proposed cost function and is shown in Fig. 6 (a). The
grayscale image corresponding to this depth map is shown in
Fig. 6 (b). Comparing Fig. 5 (b) and Fig. 6 (b), we can easily
observe that the proposed algorithm has been successful in
estimating the variations in depth over the engraving on the
coin. Various features like the ears, eyes and the mouth region
can be seen clearly.

VI. CONCLUSIONS

We proposed a method for improving the depth map estimated
in traditional SFF. Using a few of the space-variantly blurred
images from the captured stack, and the focus measure profiles
for all the pixels, the shape of the 3D object was reconstructed.
A degradation model was used to describe the image formation
process in SFF. Incorporating spatial dependencies of shape
estimates by modeling the shape as an MRF, considerable
improvement in the quality of reconstruction of the structure
of the object was obtained.
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