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Abstract—Shape from focus (SFF) estimates the structure of of every point independent of the depth of the neighbouring
a 3D object using the degree of focus as a cue in a sequencyoints. The focus measure profiles of two adjacent points on
of observations. The estimate of the depth profile is however, the object may result in very different depth estimates. But

vulnerable to lack of sufficient scene texture. In this paper, we L .
propose a method to improve the estimate of the structure of the such a random variation in depth rarely occurs in natural 3D

object by exploiting neighbourhood dependencies. A degradation Objects.
model is used to describe the formation of space-variantly blurred  In this work, we attempt to improve the estimate of the depth
observations in SFF. The shape of the object is modeled as amap obtained through the traditional SFF method by address-
Markov random field and a suitably derived objective function .4 the above mentioned issues. Since, in SFF, a real apertur
is minimized to arrive at the final estimate of the shape. - h

Index Terms—Shape from focus, depth recovery, space-variant CAMera captures the stack of observations, We.descrlbe the
blur, Markov random fields. process of formation of the sequence of space-variantlydsu
images captured in a SFF scenario by a degradation model.
We use certain novel features of the mechanism of the process
of blurring in SFF to relate the blur induced in different
One of the techniques used to estimate the structure of a 8Bservations chosen from the stack. To account for the local
object is shape from focus [1]. It uses the degree of focdgoothness of the depth of the 3D object, its shape is modeled
in an image as a cue to extract shape. Several attempts hay@a Markov random field (MRF). The proposed algorithm also
been made in the past to improve upon the depth estimatgiges care of the fact that when the depth estimate of a point
computed using focus as a cue. Subbarao et. al. fit a low-or@der the 3D object is correct, the SML operator would return
polynomial to a few data points lying on the largest modge peak value for the focus measure. An objective funcson i
[2]. In [3], a piece-wise curved local window is proposed foproposed to estimate the shape profile of the 3D object using
computing the focus measure. Multilayer feed-forward akurspace-variantly blurred images taken from the stack in SFF.
networks are used in [4] for finding the shape. A dynamithe cost function is minimized by the iterated conditional
programming based optimization approach has been propoassties (ICM) [9] technique. Experimental results show that
in [5] which estimates the shape using the notion of a focusedr algorithm is robust to lack of scene texture and returns
image surface (FIS). The authors in [6] recover shape by estimate which is significantly superior to the depth map
maximizing the focus measure in the 3D image volume. Wsbtained using traditional SFF.
[7] super-resolution of the focused image of the underlying

I. INTRODUCTION

3D object in SFF is demonstrated. In a recent work, the shape Il. SHAPE FROM FOCUS
estimate was obtained using relative defocus blur derik@t f The traditional shape from focus scheme [1] is depicted in
actual image data [8]. Fig. 1. A 3D object is placed on a translational stage which

The traditional SFF method [1], uses the sum-modifiesioves in vertical direction in finite steps of sizZ&d. The
Laplacian (SML) focus measure operator to measure thstial position of the stage is denoted by the referencegla
degree of focus of a pixel in a space-variantly blurred imag€he optics of the camera defines a ‘focused plane’ wherein all
The behaviour of the focus measure profile is dependent e points will be perfectly focused on the sensor plane.
the local scene texture. If the texture is weak, e.g. at smoot As the stage moves in stepsAfl from the reference plane,
regions, the estimate of the depth computed by SFF may bedareach step, an image is captured in which barring a small
from the true value. The choice of the finite step size for thgortion of the object, other regions are defocused by differ
vertical movement of the translating stage is empiricahc8i degrees. This is because a real aperture camera cannot bring
the shape of focus measure profile depends upon the valualbthe points of a 3D object into focus at the same time. Thus,
the step size, interpolation may yield erroneous estimatesa stack of space-variantly defocused observations is reduai
depth [8]. Also, interpolation is not an ideal way for fillingThe shape of the object is determined by searching for those
up missing data. If the computation of the depth is made faames in which the object points come in focus. In order to
depend on image data directly, we believe that a better astimfind the frame in which any point of the 3D object comes
can be obtained. into focus, in traditional SFF [1], a focus measure profile is

The depth of a real-world 3D object is generally locallgomputed for each pixel across the image stack. The focus
smooth. Traditional SFF however, computes the depth esimaneasure at a poirits, [) in an imagel is computed using the
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to the focus measure profile.

model is a good fit only in the peak region of the largest mode

of the focus measure plot [1], the outcome of interpolation
depends on whether the plot gets adequately sampled in that
region. If the three focus measure values that are used for
interpolation do not lie in the peak region of the actual
focus measure plot, interpolation would result in an eromse
estimate of depth. The shape of the focus measure profile
(1) depends upon the local texture in the scene and the choice of
where T} is a threshold2W + 1 is the size of the window the finite step sizé\d is empirical which lead to a scenario as
around the pointk, 1), andOy, is the modified Laplacian de- depicted in Fig. 2. The actual continuous focus measurel@rofi
fined in the discrete domain & (m,n) = |2I(m,n)—I(m— ©of @ point on an object is denoted by a solid line. The true
5,n)—I(m+d,n)|+[2(m,n) —I(m,n—38)—I(m,n+9)| value of the depth ig corresponding to the peak of the solid
where§ is a variable spacing between the image pixels f@urve. Two different sampling scenarios are depicted far tw
computing the derivatives. The focus measure profile for different choices ofAd with dotted lines. For the first sampling
pixel at (k,l) is obtained by plotting the value of (k,1) of the continuous focus measure profile, shown by the dotted
computed atk,!) in every image of the stack starting fromline joining points marked with, fitting a Gaussian function
the reference frame. When the translating stage is at a heigflipugh the three strongest focus measure values givestia dep
d from the reference plane, the poifi, ) would reach the estimate agl;. In another sampling case shown by the dotted
focused plane as shown in Fig. 1. Therefore, whier= d line joining the » points, Gaussian interpolation yields the
the value of the focus measure computed for the p@int) depth estimate a$,. Both d; andd, are erroneous estimates
would be maximum as compared to other positions of the the actual deptll because the actual focus measure curve
stage while moving through the stack. An estimate of theas not been adequately sampled in the vicinity of its peak.
depth at(k,!) is arrived at by Gaussian interpolation of a fewlhis drawback of traditional SFF has been pointed out in [8].

sum-modified Laplacian operator (SML) as

k+W +W

F(k,)= > > Oy(m,n) for Og(m,n) > T

m=k—W n=[-W



In SFF, depth computation for a particular point of the 3@&s
object is done independent of the neighbouring points. This om(i,j) = pRv(i _ 1 _ (6)
can result in spurious spikes in the depth profile due to sudde wq  wg —mAd + d(i, j)

variations in the shape of the focus measure plot. Realewotlyhen the separation between the stage and the reference plane
objects are locally smooth but this constraint is not used fcomesd, i.e. mAd = d(i, j), the 3D point whose image
guide depth computation. The shape of the focus measyige| coordinates aréi, j) satisfies lens law, and will appear
profile is dependent on the local scene texture. If the regigfl perfect focus.

in the scene lacks sufficient texture, the focus measureiplot Suppose, the stack of observations available in SFF, centai
very smooth leading to errors in depth estimation by Gauossia; frames {y,n (i,§)}, m = 1,2,...N, each of sizeM x M.
interpolation. We believe that by utilizing informationgsent These are blurred and noisy versions of a single focusedémag
in the real image data, i.e. the stack of observations ceptar ,.; ;)1 of size M x M. If y,, is the lexicographically
SFF, it would be possible to improve upon the depth estimat%q:ranged vector containing pixels from the'® observed
Extending t_he Work in [8], in this work we use informationimage of sizeM? x 1 andx is the lexicographically arranged
embedded in real images to recover a better depth map tRaRior containing pixels from the original focused image of
in traditional SFF. size M? x 1, then they can be related as

I1l. | MAGE FORMATION Ym = Hp (d)x 4 n,y,, m=1,...p 7)
Suppose the image plane consists\dfx M sensor elements.
Let the image intensity values be denoted{byi, j)}, (¢,5) =
0,1,....,M — 1. The space-variant blurring of an image of th
3D object in SFF can be expressed as

whereH,,,(d) is a blur matrix of sizeM/? x M? that depends
on d. Noisen,, is zero mean Gaussian of sidé? x 1 with
varianceo?.
When the 3D object is placed on the translational stage
g(i,3) =3 _> a(k,Dh(i,j; k1) (2) which is at the reference plane as shown in Fig. 1, the blur
ko1 induced by a point on the object in the reference frame is

where h(i, j; k,1) is a space-variant blurring function anddoverned by blur parameter, which is given by

{z(i,7)} is the focused image. Observation noise when added 1 1
to {g(i,7)} yields the observed imaggy(i,j)} in the SFF oo = pRv (wd - Do) (®)
stack.

A point on the 3D object at a distand®’ = wy from the whereDy i; the distance of the obqut point frpm the Iensf when
lens satisfies the lens law such tHat= 2, + 1 and will be in the stage is at the refer_enlce p?SItloln andis the working
focus on the sensor plane which is at a distanfrem the lens distance of the camera i.ez = 7 — . The stage is moved
plane. Heref denotes the focal length. Points that are not ¥grtically by a distance af: Ad to capture then'” LR frame.
distanceD’ from the lens plane will appear blurred. The poinfor the same point on the 3D object, the blurring induced in
spread function (PSF) of a camera is defined as the respoﬂk%mt? frame can be expressed by the blur parameigr

of the camera to a point light source. A point light source dthich is given by

distanceD from the lens plane will be imaged on the sensor

1 1
plane as a circular disk called the circle of confusion with om = pRv <wd - DoimAd> 9)

radiusr, = Rv 75D where R is the radius of the The ch ) ificati h K of LR ob
aperture of the lens. Due to diffraction and lens aberratitre € change in magni |cat|on_§cross the stack o observa-
ans is assumed to be negligible so that there are no errors

PSF is best described by a circularly symmetric 2D Ga ss'g . ) oS
I ! y a crediarly sy ! . Iue to registration. Eliminating the common tetm from the

function [10] .

above expressions for,, andoy, we get
(o) = o exp 8 ©)

DY) = org2 P 202

whereo = pr, and p is a camera constant. Several works
[11], [12], [13] exist that validate the approximation ofeth Usingd computed by the SFF method the blur parameter
true camera PSF by a 2D Gaussian. Sinagepends orD as at every point in the reference image can be computed. The
(1 1 1 ) blur parametew,,, at any point in then'” observationyn =

1 1
= — 1
Om ao—|—pRv<D0 DO:I:mAd) (10)

(4) 1,2,...p, can be determined with the knowledge «of at the
same point in the reference frame using the relationship in
the blur kerneli(+; ) is space-varying and has the form Eg. 10. It is to be noted that the values @f, depend upon
1 (i— k)2 +(j—1)? the depth mapel of the 3D object. Hence, the blurring matrix
h(i,5:k,1) = ————— — 5) H,,(d) in Eq. 7 can be constructed with the knowledge of
ik = 5o (- oy ) @ Hal@ n E g
As the translating stage is moved vertically in steps/af, In Eq. 10, it is important to note that the value pRv
for the m'" frame we can express the blur parametefiat) remains constant during the entire image capturing process




IV. THE PROPOSED METHOD objective function

- p ) 2
The problem that we address here is the extraction of theeshap d = argmin { Z lym — H”;(d)XH
profile d of the 3D object, givery space-variantly blurred m=1 20,
observations chosen from the stack in SFF, the focus measure M M 1 B B
profiles for all points on the object, and the focused image 2 67 [(d(i,j) —d(i,j — 1))*
x. The problem of estimation of the depth profile of the 3D i=1 j=1 )
object from the space-variantly blurred 2D images captured + (d(i,j +1) —d(i, 5))?

in SFF is typically ill-posed. Regularization in the form af @i +1,7) —d(i,5)* + @, §) —d(i — Lj))z]} (15)

priori constraints on the solution can be imposed to esémat

the depth map. Real-world 3D objects have depth profilggte that we also incorporate the focus measure into the
which are locally smooth. To incorporate spatial depenigsnc minimization procedure. Herg (4, j) denotes the SML focus

of the depth estimates on neighbouring points, we mddas measure value at pixel locatign 5). The SML focus measure

a Markov random field. Using Bayes’ rule we can write  operator is expected to yield a high value whenever the pixel
at a particular location comes into focus in a certain frame i
the stack of observations captured in SFF. The focus measure
values are normalized such that the maximum value is unity.

) o . .
wherey,, v, ...... ,y, are thep chosen observations from theBeing in the denominator, the SML values adaptively control
stack. the degree of smoothness for the estimation of the depth of

. %eparticular point on the 3D specimen. The focus measure
MRFs can encode contextual constraints as well as provi € files are obtained by anplving the traditional SEE techei
a prior distribution with which to model the probability dety P y applying o

: . on the stack of observations. However, these values exigt on
function (pdf) of the depth map [14]. The Markovian propert¥or the positions of the translating stage through the entir

of 'ghe MRF St‘f’“es that the probability of a pixel bein%tt ck. When the value of for a point lies in between two
assigned a particular depth value depends only on the de ra%me positions we use bilinear interpolation to compuse it

estimates of pixels in its neighbourhood. The Hammersle ScUs measure
Clifford theorem [15] provides the all-important equivade Assianment ;)f depth values to pixel locations is a combi-
between MRF and the Gibbs random field (GRF). If the shape '9 pth valu PIX ' ! !

profile d is modeled as a Gauss-Markov random field (GMR atorial optimization problem and we use iterated condélo
then odes (ICM), a fast but suboptimal technique [9]. The pa-

rameter); in Eqg. 15 is tuned to obtain a good estimate of

IOgP(ab’laY%--w}’p) = 10gP(Y17Y2a ?yp|a) +10gp(a)

12) In Eq. 15, we have assumed that the focused imagd
the 3D object is available. To an approximation and to avoid
the additional burden of computing, one can estimatg in
where Z is the partition functiong is a clique,C is the set the following manner. The formation of a pixeli, j) in an
of all cliqgues andV.(-) is the potential associated with cliqueppserved image can be expressed as

c. For a first-order neighbourhood, we propose
y(i,5) =D > a(k,Dh(i,j;k, 1) +n(i,j)  (16)
k l

M M
- 1 = = 2
Z Ve(d) = Z Z F2(i, ) [(d(i.5) —d(i,j — 1)) During the imaging of a particular frame, if the correspaogi
ceC =1y=1 point (i, j) on the 3D object was on the focused plane, it would

+(d(i,j + 1) = d(i, §))* satisfy the lens law and hence would be perfectly focused on
+(d(i+1,7) — d(i,5))* + (d(4,5) —d(i — 1,5))?] (13) the image plane. If the poir(t, ) lies in a smooth region in
the 3D object, the blur induced in it due to the space-variant
defocusing mechanism by neighbouring pixels would also be
negligible. This is because the neighbouring points woldd a
be very close to the focused plane. Assuming that the noise
during image capture is low, the intensity valueydf, j) from
that frame in the stack can be chosen as an estimate of the
intensity of the focused image at pixel (i, 7). Since the
_ whole stack of frames is available with us, for every point on
- Z Ve(d) the 3D object, we can choose the frame in which each point
ce¢ comes into focus and pick the corresponding pixel intensity
for x from that frame. This allows us to construct a reasonable
We derive an estimate ofi by minimizing the following approximation of the focused image.

Assuming the noise process, s to be independent in Eq. 7,
from Egs. 11 and 13

P q 2
I Ym — Hm d)x
log P(@ly 1, v, - yp) = — > 1Y Al @XE (g
m=1 n



Fig. 3. (a) Focused image of a portion of a coin. (b) Estimatepthdenap obtained using the traditional SFF algorithm. (c) &cale image of the
corresponding depth map.

V. EXPERIMENTAL RESULTS specimen. A stack of 150 frames, of sz x 230 pixels, was

An LV-150 Nikon industrial microscope was used for imaging(.:aptured by moving the translating stage of the microscope i

The lens objective was 2.5x, the working distancg = 8.8
mm, focal lengthf = 80 mm and the depth of field = 48:8n.
The PSF of the camera was assumed to be Gaussian, which
is a reasonable approximation as discussed in section 3.
We present experimental results using a coin as the 3D

(b)

Fig. 5. (a) Focused image of another portion of a coin. (b) €sale image
Fig. 4. Optimized by ICM (a) Estimated shape obtained usingptioposed of the corresponding estimated depth map obtained usingddéional SFF
algorithm. (b) Grayscale image of the corresponding shapiepro algorithm.

(b)



captured is of size228 x 198 pixels. The focused image
obtained is shown in Fig. 5 (a). The stack of observations
are used to estimate the depth map using the traditional SFF
algorithm. The grayscale image corresponding to the estitha
depth profile is shown in Fig. 5 (b). The features of the head
of the lion have not emerged well here.

The proposed method is then used to obtain an estimate
of the shape of the 3D object. Choosing frame numbers 15,
20, 65 and 70, the depth map is estimated by minimizing
the proposed cost function and is shown in Fig. 6 (a). The
grayscale image corresponding to this depth map is shown in
Fig. 6 (b). Comparing Fig. 5 (b) and Fig. 6 (b), we can easily
observe that the proposed algorithm has been successful in
estimating the variations in depth over the engraving on the
coin. Various features like the ears, eyes and the moutlomegi
can be seen clearly.

VI. CONCLUSIONS

We proposed a method for improving the depth map estimated
in traditional SFF. Using a few of the space-variantly bdair
images from the captured stack, and the focus measure profile
for all the pixels, the shape of the 3D object was reconstdict

A degradation model was used to describe the image formation
process in SFF. Incorporating spatial dependencies ofeshap
estimates by modeling the shape as an MRF, considerable
improvement in the quality of reconstruction of the struetu

of the object was obtained.
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