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Abstract—This paper considers the motion based super-
resolution problem in the stereo vision domain. For stereo images
the registration information at the high resolution (HR) is same
as the disparity between the images at HR. We point out that
registration information cannot be mapped from low resolution
(LR) coordinate system to HR coordinate system in cases where
shift of the pixels is not constant (e.g. for images from a stereo
setup). Because of such a ‘pixel migration’ phenomenon, ana
priori process of computing registration information at HR, as is
popular in super-resolution techniques, cannot be followed. We
hence use a MAP-MRF framework to simultaneously estimate
the HR disparity map and the super-resolved (SR) image given
low resolution images from a stereo setup. In this framework,
both the SR image and HR disparity are modeled as MRF.

Index Terms—Stereo, super-resolution, MAP-MRF, disparity
estimation.

I. I NTRODUCTION

Super-resolution techniques exploit either of the various
visual cues such as motion [1], [2], [3], [4], [5], [6], blur
[7], [8], [9], photometry [10] etc or follow a learning based
approach [11], [12]. All of these involve estimating a HR
image from multiple LR observations each of which ideally
contains some unique information about the HR image. This
work falls into the category of motion based super-resolution
in which the LR observations are relatively shifted and down-
sampled versions of the original HR image.

Motion based super-resolution has progressed from simple
cases of translational motion in planar scenes [1] to multi para-
metric motion [3], [4] and optical flow [13], [14]. An important
step in motion based super-resolution is the computation of
registration information in the HR coordinate system. The reg-
istration estimates for planar scenes involving two parameter
translational motion can be computed as a pre-processing step
and then fed into the main super-resolution algorithm. More
sophisticated Bayesian techniques simultaneously compute the
registration parameters along with the super-resolved image
[3], [4]. However, when the motion is not parametric (e.g.
scenes with moving objects), the problem of estimating the
registration information essentially becomes a combinatorial
optimization with large number of unknowns. Recently, optical
flow super-resolution methods have been proposed that iterate
over estimating the high-resolution dense optical flow between
and the super-resolved image [13], [14].

In this paper, we concern ourselves with a stereo setup
to capture the LR images in a static 3d scene. The relative
shift of the pixels, between images, is not global due to the

3D nature of the scene. This non-global shift of pixels, what
we term as ‘pixel migration’ phenomenon, does not allowa
priori mapping of the shifts from the LR to HR coordinates,
as is the traditional practice in super-resolution approaches
for planar scenes. The shifts or the registration information
required for SR is nothing but the HR disparity in case of a
stereo setup. Hence, in this work, we solve the problem of
simultaneously estimating the HR disparity and the SR image
from LR stereo observations. This problem can also be looked
at from a stereo vision point of view of estimating the high-
resolution disparity from LR stereo observations. The novelty
of the work lies in the integration of the super-resolution and
the disparity estimation problems in a single framework. We
pose the problem as a MAP-MRF estimation which essentially
leads to a energy minimization problem with prior knowledge.
We model both the disparity and the image priors as MRF.
Apart from allowing a large class of convex and non-convex
priors, we show that the MRF modeling of priors also makes
the posterior have the ‘locality’ property. Since the energy is
minimized for disparity and image in each iteration, a practical
advantage of the theorem is that energies can be computed
locally rather than on the whole HR grid in each iteration. This
drastically reduces the computation complexity of techniques
like simulated annealing or ICM which are known to perform
well in super-resolution problems [15].

The paper is organized as follows. The next section dis-
cusses the image formation and the necessity of simultaneous
estimation of HR disparity and SR image in a stereo super-
resolution problem. Section 3 covers the joint MAP-MRF
estimation of HR disparity and SR image. We provide the
experimental results in section 4 and conclude in section
5. In this paper, we consider a simple case of translational
camera motion that is used commonly in disparity estimation
problems.

II. I MAGE FORMATION: PIXEL MIGRATION

Typically, in motion based super-resolution we are given
low resolution observations[y1, y2, ..., yN ] of sizeN1 × N2.
These low resolution observations are modeled to be generated
when a high resolution imagex of sizeL1 × L2 is warped,
blurred and down-sampled; the down-sampling factor being
L1

N1

× L2

N2

. The warping is due to camera motion, the blurring
is due to the camera point-spread function (PSF). This can be
expressed in vector form as,

yi = DHiWix + ηi (1)



Here,yi is the lexicographically arrangedith LR observation
andD, Hi andWi are the respectively the down-sampling,
blur and warp matrices that produceyi from the HR image
X. Without loss of generality, for this particular work, we
assume the camera to be a pinhole and hence theHi matrices
are essentiallyI. Hence the above equation can be expressed
in scalar form as,

yi(n1, n2) =

L1,L2∑

l1,l2=1

d(n1, n2, l1, l2)·x(θ1i(l1), θ2i(l2))

+ηi(n1, n2) (2)

where, d(n1, n2, l1, l2) is the element of theD matrix that
maps the(l1, l2)

th pixel in HR imagex(θ1i(l1), θ2i(l2)) to
the (n1, n2)

th pixel in theith LR image. The transformations
θ1i and θ2i are the warping transformations that are encoded
in the matrixWi. Clearly for the reference image(i = 1),
θ11(l1) = l1 andθ21(l2) = l2. For the stereo setup, the above
equation can be rewritten as,

yi(n1, n2) =

L1,L2∑

l1,l2=1

d(n1, n2, l1, l2)·x(l1− δi(l1), l2− δi(l2))

+ηi(n1, n2) (3)

δi(l1) andδi(l2) being the disparities in thex andy directions
respectively. We now justify the necessity for simultaneous
estimation of HR disparity and SR image. TheD in equation
(1) is considered to transform the HR image to LR observation
by an averaging process of pixels. e.g. for a down-sampling
factor of 2, 4 pixels in the HR image will be averaged to
produce 1 pixel in the LR image. In a simple case global
translation (for planar scenes), all the pixels shift by thesame
amount. A two step approach for motion estimation can be
used in such situations where the translation is estimated at LR
and then multiplied by the resolution factorK. This approach
is valid in a global translation scenario because when the
LR pixels are mapped to their corresponding HR ‘averaging
groups’, each pixel in one such group is separated from a
pixel in another such group by a constant amount which is
equal toK times the distance between the corresponding LR
pixels. When we have a situation where different pixels at HR
move differently, there is no global translation. We term this
non-constant pixel motion as ‘pixel migration’. The motion
(disparity) found at LR will be on aN1N2 sized grid. First
of all finding accurate disparities or flow is in itself an ill-
posed problem. Assuming that we are given the exact motion
at LR, to map this motion at HR on aL1L2 sized grid, one
has to interpolate and multiply the flow or disparity byK.
Due to ‘pixel migration’, the distance between the pixels at
HR can change in an arbitrary fashion unlike in the case of
translation in a planar scene. This can result in an arbitrary
formation of the HR ’averaging groups’ in the shifted versions
of the reference HR image. The registration estimate generated
from a two step process of mapping the disparity estimates
from a N1N2 grid to the L1L2 grid by interpolation and
multiplication by theK is a very crude approximation of

the true HR motion since, the ‘averaging group’ that we
get at HR by doing this can be grossly different from the
actual ‘averaging group’ which is getting averaged from the
HR image to form the LR observation. Hence due to the
‘pixel migration’ phenomenon, a simultaneous estimation of
HR disparity and SR image is inevitable.

In this work we restrict ourselves to binocular stereo images.
Ideally, for our experiments, this will super-resolve the image
in one direction and in the other direction we shall have
Bayesian interpolation. However, in general, given the cali-
brated stereo images bothx andy directions, we can achieve
super-resolution in all the directions without increasingthe
complexity. This is because the number of disparity and image
unknowns will still remain the sameL1L2 irrespective of the
number of images due to the calibrated nature of the stereo
setup.

III. MAP-MRF ESTIMATION

We now express the problem of estimating the HR disparity
map and the SR image using a MAP framework. More
specifically, given the observationsy1, y2, ...yn from a stereo
setup, we wish to solve for the HR disparitiesδ and the SR
image x. For simplicity of notation, we do away with the
subscripts forδ that are used in the last section. This also
supports the facts that the choice of reference disparitiesis
essentially arbitrary. LetY1, Y2, ... Yn be the random fields
associated with the observationsy1, y2, ... yn and let∆, X

be the random fields associated with the HR disparityδ and
SR imagex. We wish to compute estimateŝ∆ and x̂ such
that,

δ̂, x̂ = max
δ,x

P (∆ = δ,X = x|Y1 = y1...Yn = yn) (4)

Now since the SR image is consists of intensity values and
the HR disparity is essentially a function of depth, these two
are statistically independent. Hence using Bayes rule, and
imposing statistically independence between SR imageX and
HR disparity∆, the above equation can be written as,

δ̂, x̂ = max
δ,x

P (Y1 = y1...Yn = yn|∆ = δ,X = x)

P (∆ = δ)P (X = x) (5)

As mentioned above, we consider a special case of a stereo
pair as observation. Hence in our case, this can be re-written
as

δ̂, x̂ = max
δ,x

P (Y1 = y1,Y2 = y2|∆ = δ,X = x)

P (∆ = δ)P (X = x) (6)

The first term in the product on the right hand side of the
equation is the likelihood term, that arises from the image
formation model. From equation (1), assuming a pin hole
camera and consideringη be AWGN with varianceσ2

P (Y1 = y1,Y2 = y2|∆ = δ,X = x) =

1

(2πσ2)N1N2

exp

(
−

2∑

i=1

‖yi −DWix‖2

2σ2

)
(7)



HereW contains the information about the disparitiesδ.
The Prior probabilities for disparityP (∆ = δ) and image

P (X = x) are both modeled as MRFs. Such a ‘double MRF’
modeling in justified because in stereo vision works, it is well
known that the disparity varies smoothly [18] and similarlyin
super-resolution applications, MRF modeling for images have
shown good results [1], [15], [8]. Thus, we have,

P (∆ = δ) = K exp

(
−
∑

c∈Cδ

V δ
c (δ)

)

P (X = x) = K exp

(
−
∑

c∈Cx

V x

c (x)

)
(8)

whereV x
c (x) andV δ

c (δ) are the clique potential functions for
the image and depth respectively. Thus from equations (7) and
(8), we can rewrite equation (6) as,

δ̂, x̂ = min
δ,x

(
2∑

i=1

‖yi −DWix‖2

2σ2
+
∑

c∈Cδ

V δ
c (δ) +

∑

c∈Cx

V x

c (x)

)

(9)
Thus, MAP estimation leads to an energy minimization prob-
lem, where the cost within the brackets in the above equation
is to be minimized. The minimization can be performed in an
iterative fashion where in one iteration the current estimate of
image is used for estimating the disparity in the next iteration,
the current estimate of disparity is fixed to estimate the image.
The type of smoothness functions depend on the exact form
of V x

c (x) andV δ
c (δ) which include various convex, piecewise

constant, piecewise smooth, discontinuity adaptive functions.
The minimization of MAP-MRF energy functions as in (9)

has gained a lot of popularity in recent years. Lately efficient
graph based techniques, that update pixels in a parallel fashion,
have been shown to perform very well in minimizing such
energy functions [19], [20]. Although such techniques have
been proved to be very successful for regular energy func-
tions [20], their potential for non-regular functions, forcases
where pixel averaging takes place such as super-resolution,
deblurring etc, is not yet fully explored [21], [22]. On the other
hand sequential updating methods such as simulated annealing
(SA) or iterated conditional modes (ICM) have been shown to
perform very well for super-resolution. Since our main stress
is not on the solution approach but on the novelty of joint
computation philosophy of SR image and HR disparity, we
resort to SA for the energy minimization as given in (9).

The drawback of SA is its computationally complexity.
However, MRF modeling of priors allows the posterior distri-
bution to have the locality property. i.e. the posterior distribu-
tion is also an MRF. This property has a practical significance
that it allows one to immensely reduce the complexity of
sequential methods such as SA. In [15], the authors proved
the locality property of posterior distribution for motion-based
image super resolution in presence of space-variant blur. We
now prove the locality property for our case of posterior
distribution in simultaneous estimation of HR disparity and
SR image.

Theorem 1: (i) For observationsy1, y2, the posterior prob-
ability P (∆ = δ,X = x|Y1 = y1,Y2 = y2) has a Gibbs
distribution with energy function,

Upos(x, δ) =

(
2∑

i=1

‖yi −DWix‖2

2σ2
+
∑

c∈Cδ

V δ
c (δ) +

∑

c∈Cx

V x

c (x)

)

(10)
(ii) The conditional posterior probability is Markov and can
be expressed as,

P [Xp,q = xp,q,∆p,q = δp,q|Xk,l = xk,l,∆k,l = δk,l;

1 ≤ (k, l) ≤ L1L2, (k, l) 6= (p, q);Y1 = y1,Y2 = y2]

=
exp(−U cpos(x, δ))∑

xp,q,δp,q
exp(−U cpos(x, δ))

(11)

where the conditional posterior energy function is,

U cpos(x, δ) =

2∑

i=1

∑

S−Si

‖yi −DWix‖2

2σ2

+
∑

c∈C,(p,q)∈c

V x

c (x) +
∑

c∈C,(p,q)∈c

V δ
c (δ) (12)

(iii) The posterior neighbourhood corresponding to site(p, q)
is given by,

ψpos
p,q =

(
ψx

p,q

⋃
ψδ

p,q

) 2⋃

i=1




⋃

(k,l)∈S−Si

ζyi

k,l



 (13)

where ψx
p,q and ψδ

p,q are the original neighbourhood corre-
sponding to the basic MRF in the image and the disparity,ζyi

k,l

is the neighbourhood in the HR grid corresponding to the site
(k, l) in the observationyi, S = {(k, l) : 1 ≤ (k, l) ≤ N1N2}
andSi =

{
(k, l) : (i, j) /∈ ζyi

k,l

}
.

Proof: From equations (4) to (8), the posterior probability
can be written as,

P (∆ = δ,X = x|Y1 = y1,Y2 = y2) = K exp(−Upos(x, δ))
(14)

This is nothing but a Gibbs distribution where K is a normaliz-
ing constant and posterior energy functionUpos(x, δ) is same
as the bracketed term in equation (9) and (10). At this stage,
we note that warping and down-sampling operations depend
on a specific neighbourhood in the HR grid. That is, they have
a finite local support of the order of a few pixels.

The conditional probability ofXp,q and ∆p,q, given the
observations is

P [Xp,q = xp,q,∆p,q = δp,q; 1 ≤ (p, q) ≤ L1L2|Y1 = y1,Y2 = y2]

= P [Xp,q = xp,q,∆p,q = δp,q|Xk,l = xk,l,∆k,l = δk,l;

1 ≤ (k, l) ≤ L1L2, (k, l) 6= (p, q);Y1 = y1,Y2 = y2] ·
P [Xk,l = xk,l,∆k,l = δk,l; 1 ≤ (k, l) ≤ L1L2, (k, l) 6= (p, q)|

Y1 = y1,Y2 = y2] (15)



Using equation (14) we have,

P [Xp,q = xp,q,∆p,q = δp,q|Xk,l = xk,l,∆k,l = δk,l;

1 ≤ (k, l) ≤ L1L2, (k, l) 6= (p, q);Y1 = y1,Y2 = y2]

=
exp(−Upos(x, δ))∑

xp,q,δp,q
exp(−Upos(x, δ))

(16)

where the summation in the denominator is over all possible
levels ofxp,q andδp,q. We now define vectors,

νi =
1√
2σ

(yi −DWix) (17)

Hence, the posterior energy function can be written as,

Upos(x, δ) =

2∑

i=1

∑

1≤(k,l)≤N1N2

(νi
k,l)

2+
∑

c∈Cδ

V δ
c (δ)+

∑

c∈Cx

V x

c (x)

(18)
The above equation can be decomposed as,

Upos(x, δ) =

2∑

i=1

∑

S−Si

(νi
k,l)

2 +

2∑

i=1

∑

Si

(νi
k,l)

2

+
∑

c∈Cδ,(p,q)∈c

V δ
c (δ) +

∑

c∈Cδ,(p,q)/∈c

V δ
c (δ)

+
∑

c∈Cx,(p,q)∈c

V x

c (x) +
∑

c∈Cx,(p,q)/∈c

V x

c (x) (19)

Substituting equation (19) in equation (16) and canceling
common terms in numerator and denominator, we obtain the
conditional posterior as,

P [Xp,q = xp,q, δp,q = δp,q|Xk,l = xk,l, δk,l = δk,l;

1 ≤ (k, l) ≤ L1L2, (k, l) 6= (p, q);Y1 = y1,Y2 = y2] (20)

=
exp(−U cpos(x, δ))∑

xp,q,δp,q
exp(−U cpos(x, δ))

where

U cpos(x, δ) =

2∑

i=1

∑

S−Si

(νi
k,l)

2+
∑

c∈Cδ,(p,q)∈c

V δ
c (δ)+

∑

c∈Cx(p,q)∈c

V x

c (x)

(21)
It is important to note that in the first term, the inner sum is
over a small areaS−Si as opposed to the complete image in
equation (18). The setS−Si consists of all pixels(k, l) in yi

such thatS − Si = (k, l) : (p, q) ∈ ζyi

k,l. This means that each
(k, l) in the LR imageyi has a small neighbourhoodζyi

k,l in the
HR image. Hence, the posterior neighbourhood corresponding
to site (p,q) is given by,

ψpos
p,q =

(
ψx

p,q

⋃
ψδ

p,q

) 2⋃

i=1




⋃

(k,l)∈S−Si

ζyi

k,l



 (22)

as required in equation (13).
The theorem implies that, in sequential methods, as one

updates one pixel at a time in one iteration, the update in
energy due to that pixel is computed only by using a small
neighbourhood of that pixel rather than the whole image. This
reduces the computation drastically, since this neighbourhood

is much smaller than the image. Applying the above theorem,
we perform the minimization in (9) by SA, iteratively for the
SR image and HR disparity. More specifically, in the same
metro-polis iteration, for a particular site in the HR grid,given
the current estimate of the HR image we compute the current
estimate of HR disparity and vice-versa. The parameters for
the SA algorithm are empirically selected.

IV. EXPERIMENTS AND RESULTS

In our experiments we used the stereo datasets from Mid-
dlebury [16], [18] and CMU [17]. We formed the LR stereo
observations, down-sampled by 2 by averaging groups of 4
pixels in each image. The averaging had equal weight of
0.25 for each of the four pixels. We note here that the first
term in the bracketed expression in equation (9) is what is
commonly known as the data term in MAP-MRF minimization
framework [19], [20]. In equation (9) this data term computes
the squared distance or theL2-norm since we assume the
noise is AWGN. However, more generally we can replace
it with L1-norm or any other sensible distance metric [23].
We experimented with bothL1- and L2-norm (i.e. squared
and absolute distance) and with quadratic and linear priorsfor
both the image and disparity. We used cliques belonging to
the first order neighborhood in the prior terms for both image
and disparity.

Figure 1 shows the results for the ’parking meter’ stereo
pair. This is the case of a predominantly slanting surface stereo
imagery. For this example theL1-norm was used as a data
term. The prior termsV δ

c (δ) andV x
c (x) are linear functions,

V δ
c (δ) = 1.5 |δp,q − δr,s| andV x

c (x) = 0.1 |xp,q − xr,s| where
(p, q) and (r, s) are pixels belonging to the cliquec. Starting
with any arbitrary initialization for the HR disparity and the
SR image, we minimize the cost function of (10) by SA,
where the SR image label and the disparity label is updated
iteratively for each point(p, q) on the HR grid. While updating
the disparity, the SR image is fixed at its current estimate and
vice-versa. The energy in (13) for each point(p, q) is updated
locally, taking the advantage of Theorem 1. Fig 1(a) shows
the low resolution observation. Fig 1(b) shows the bilinear
interpolation output. Our SR image result is shown in Fig
1(c), whereas the HR disparity can be seen in Fig 1(d).

The fronto-parallel scene of the ’tsukuba’ stereo pair is
shown in Fig 2. Here, we choose absolute distance data term
and linear priors both for image and disparity, except for the
change in the weights of the priors. The prior terms used
were V δ

c (δ) = |δp,q − δr,s| and V x
c (x) = 0.05 |xp,q − xr,s|.

This scene contains more details than the previous one. Also,
the surfaces are mainly fronto-parallel as opposed to the
previous example. Hence, the weights on both the prior terms
is reduced to avoid oversmoothing. One can clearly make
out the difference between the interpolated image and SR
result especially around the face region. Also at well textured
regions, the HR disparity estimates are good. However, at
textureless regions (such as the bottom of the desk), the
disparity results tend to be oversmoothed by the nearby better
textured regions.



(a) (b) (c) (d)

Fig. 1. Parking meter stereo pair (a) LR observation (b) Bilinear interpolated image (c) Super-resolved image (d) HR disparity.

(a) (b) (c) (d)

Fig. 2. Tsukuba stereo pair (a) LR observation (b) Bilinear interpolated image (c) Super-resolved image (d) HR disparity.

(a) (b) (c) (d)

Fig. 3. Sawtooth stereo pair (a) LR observation (b) Bilinearinterpolated image (c) Super-resolved image (d) HR disparity.

Fig 3 shows the ’sawtooth’ stereo pair from the Middle-
bury stereo database [16]. In this experiment we used the
squared distance data term and quadratic priors (also known
as Gaussian MRF),V δ

c (δ) = (δp,q − δr,s)
2 and V x

c (x) =
(xp,q − xr,s)

2. This is especially a good example for showing
the super-resolution of the image. One can see that the
textured details and the edges on the surfaces of the bottom
sawtooth shapes have come out to be much sharper than in
the interpolated version.

V. CONCLUSION

In this paper, we discussed a framework to simultaneously
estimate the HR disparity and SR image from a set of LR
stereo images. Our results clearly show the feasibility of
such an approach. Although, our stress was on the idea of
joint estimation rather than the solution methodology, we
mention that a better solution approach, e.g. based on recent
graph based methods could be explored. Moreover, physical
aspects such as occlusion handling or estimation at slanting
surfaces in such a integrated disparity estimation and super-

resolution framework are some future prospects of this work.
In summary, we look at this this work as a step towards taking
super-resolution research in the 3d domain.
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