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Abstract—This paper considers the motion based super- 3D nature of the scene. This non-global shift of pixels, what
resolution problem in the stereo vision domain. For stereo images we term as ‘pixel migration’ phenomenon, does not allaw
the registration information at the high resolution (HR) is same priori mapping of the shifts from the LR to HR coordinates,

as the disparity between the images at HR. We point out that is the traditi | tice i luti
registration information cannot be mapped from low resolution S 1S the traditional practice in super-resolution appiieac

(LR) coordinate system to HR coordinate system in cases where for planar scenes. The shifts or the registration inforamati
shift of the pixels is not constant (e.g. for images from a stereo required for SR is nothing but the HR disparity in case of a

setup). Because of such a ‘pixel migration’ phenomenon, an  stereo setup. Hence, in this work, we solve the problem of
priori process of computing registration information at HR, as is simultaneously estimating the HR disparity and the SR image

opular in super-resolution techniques, cannot be followed. We . .
Eeﬁce use apMAP-MRF framewo(qu to simultaneously estimate from LR stereo observations. This problem can also be looked

the HR d|spar|ty map and the super-resoh/ed (SR) |mage given at fl'0m a stereo VISIOI’] pOInt Of V|eW Of est|mat|ng the h|gh'
low resolution images from a stereo setup. In this framework, resolution disparity from LR stereo observations. The ftgve

both the SR image and HR disparity are modeled as MRF.  of the work lies in the integration of the super-resolutiom a
est'irrl?aegole’ms_swreov super-resolution, MAP-MRF, disparity the gisparity estimation problems in a single framework. We
’ pose the problem as a MAP-MRF estimation which essentially
leads to a energy minimization problem with prior knowledge
We model both the disparity and the image priors as MRF.

Super-resolution techniques exploit either of the variouwspart from allowing a large class of convex and non-convex
visual cues such as motion [1], [2], [3], [4], [5], [6], blurpriors, we show that the MRF modeling of priors also makes
[7], [8], [9], photometry [10] etc or follow a learning basedthe posterior have the ‘locality’ property. Since the eyeis
approach [11], [12]. All of these involve estimating a HRminimized for disparity and image in each iteration, a pcadt
image from multiple LR observations each of which ideallgdvantage of the theorem is that energies can be computed
contains some unique information about the HR image. THiscally rather than on the whole HR grid in each iterationisTh
work falls into the category of motion based super-resofuti drastically reduces the computation complexity of techai
in which the LR observations are relatively shifted and dowtike simulated annealing or ICM which are known to perform
sampled versions of the original HR image. well in super-resolution problems [15].

Motion based super-resolution has progressed from simpleThe paper is organized as follows. The next section dis-
cases of translational motion in planar scenes [1] to maltap cusses the image formation and the necessity of simultaneou
metric motion [3], [4] and optical flow [13], [14]. An impontd  estimation of HR disparity and SR image in a stereo super-
step in motion based super-resolution is the computation resolution problem. Section 3 covers the joint MAP-MRF
registration information in the HR coordinate system. Tégr estimation of HR disparity and SR image. We provide the
istration estimates for planar scenes involving two patameexperimental results in section 4 and conclude in section
translational motion can be computed as a pre-processpg $b. In this paper, we consider a simple case of translational
and then fed into the main super-resolution algorithm. Moamera motion that is used commonly in disparity estimation
sophisticated Bayesian techniques simultaneously carthet problems.
registration parameters along with the super-resolvedyéma Il. | MAGE FORMATION: PIXEL MIGRATION
[3], [4]. However, when the motion is not parametric (e.g. : ) . ) .
scenes with moving objects), the problem of estimating theTyp'Ca"y'. In motion l?ased super-resoluthn we are given
registration information essentially becomes a combitito low resolution observationfyy, ys, ...,yn] of size Ny x Na.
optimization with large number of unknowns. Recently, ot These low resolution observations are modeled to be gekrat

flow super-resolution methods have been proposed thateiter\t%hen a high resolution image of size L x Ly is warped,

over estimating the high-resolution dense optical flow leetmv Llur:(eiand down-sampled; the down-sampling factor being

and the super-resolved image [13], [14]. N X NG The warping i§ due to camera motion, the plurring
In this paper, we concern ourselves with a stereo set due to th_e camera point-spread function (PSF). This can be

to capture the LR images in a static 3d scene. The relati pressed in vector form as,

shift of the pixels, between images, is not global due to the y, =DH,W;x+mn; (1)

I. INTRODUCTION



Here,y; is the lexicographically arranged® LR observation the true HR motion since, the ‘averaging group’ that we
and D, H; and W; are the respectively the down-samplingget at HR by doing this can be grossly different from the
blur and warp matrices that produge from the HR image actual ‘averaging group’ which is getting averaged from the
X. Without loss of generality, for this particular work, weHR image to form the LR observation. Hence due to the
assume the camera to be a pinhole and hencéfthmatrices ‘pixel migration’ phenomenon, a simultaneous estimatién o
are essentially. Hence the above equation can be expresseldR disparity and SR image is inevitable.

in scalar form as, In this work we restrict ourselves to binocular stereo insage
Ly.Lo Ideally, for our experiments, this will super-resolve theage
yi(ny,ms) :Z d(ny,na, 11, 1) -2(01:(11), i (1)) in one direction and in the other direction we shall have

Bayesian interpolation. However, in general, given the- cal
i(ny, no) @) brated stereo_ ima_lges bo&han_dy o_lirections, we can achieve
super-resolution in all the directions without increasiig
where, d(n1,n2,11,12) is the element of theD matrix that complexity. This is because the number of disparity and &nag
maps the(ly,l2)t" pixel in HR imagez(0y;(l1),02:(12)) to unknowns will still remain the samé, L, irrespective of the
the (ny,n2)*" pixel in thei’® LR image. The transformationsnumber of images due to the calibrated nature of the stereo
f1; and fy; are the warping transformations that are encodeetup.
in the matrix ;. Clearly for the reference imagg = 1), m
611(11) = 13 andf; (I3) = 2. For the stereo setup, the above
equation can be rewritten as,

l1,l2=1

. MAP-MRF ESTIMATION

We now express the problem of estimating the HR disparity
map and the SR image using a MAP framework. More
specifically, given the observatiogs, y2, ... y» from a stereo
yi(na,nz) :Z d(ni,nz, b, 1) x(l = 0i(h), 2= 6i(l2)) setup, we wish to solve for the HR disparitiésand the SR

hyla=1 image x. For simplicity of notation, we do away with the
+ni(n1,n2) (3) subscripts ford that are used in the last section. This also

5,(1,) andd;(I) being the disparities in the andy directions suppor_ts the fgcts that the choice of reference dlspgnﬂ;les
respectively. We now justify the necessity for simultareofSSentially arbitrary. Le¥y, Y, ... Yy, be the random fields
estimation of HR disparity and SR image. Thein equation associated with the observatiogs, yz, ... y» and letA, X

(1) is considered to transform the HR image to LR observati&‘? the random f'e"?'s associated with ,the HR d'Spfﬁ'md

by an averaging process of pixels. e.g. for a down-sampli imagex. We wish to compute estimates andx such
factor of 2, 4 pixels in the HR image will be averaged tbhat,

produce 1 pixel in the LR image. In a simple case global

translation (for planar scenes), all the pixels shift by shene 5,% = max PA=6X=x|Y1=y1.Yn=yn) @
amount. A two step approach for motion estimation can be 8%

used in such situations where the translation is estimateRta Now since the SR image is consists of intensity values and
and then multiplied by the resolution factaf. This approach the HR disparity is essentially a function of depth, these tw
is valid in a global translation scenario because when tRge statistically independent. Hence using Bayes rule, and
LR pixels are mapped to their corresponding HR ‘averagi@Posing statistically independence between SR in¥gend
groups’, each pixel in one such group is separated fromHR disparity A, the above equation can be written as,

pixel in another such group by a constant amount which is3 % _ max P(Y1 =y1.. Yo = yn|A =6X =x)

equal toK times the distance between the corresponding LR 9%

pixels. When we have a situation where different pixels at HR P(A=6§)PX=x) (5

move differently, there is no global translation. We termsth o mentioned above, we consider a special case of a stereo

nqn—constant pixel motiop as ‘pixel migrat'ion’. The m_OtiOYbair as observation. Hence in our case, this can be re-writte
(disparity) found at LR will be on av; N, sized grid. First ;¢

of all finding accurate disparities or flow is in itself an ill-

posed problem. Assuming that we are given the exact motiond, X = max P(Y1=y1,Y2 =y2/A=§X=x)

at LR, to map this motion at HR on A; L, sized grid, one ’ P(A = §)P(X = 6

has to interpolate and multiply the flow or disparity Iy. _ _ ( ) ( x) _ ©)
Due to ‘pixel migration’, the distance between the pixels dthe first term in the product on the right hand side of the
HR can change in an arbitrary fashion unlike in the case 8fuation is the likelihood term, that arises from the image
translation in a planar scene. This can result in an aritrsiormation model. From equation (1), assuming a pin hole
formation of the HR ’averaging groups’ in the shifted versio camera and consideringbe AWGN with variancer?

of the reference HR image. The reg_|strat|on gstlmqte g(gmra P(Y1=y1,Y2=y2/A =§X=x) =

from a two step process of mapping the disparity estimates 9 9

from a NN, grid to the L1 L, grid by interpolation and 1 _ ly: — DWix| 7
multiplication by the K is a very crude approximation of (2mo2) N2 =1 20

Ly,L2



Here W contains the information about the disparities Theorem 1: (i) For observationyg, y2, the posterior prob-
The Prior probabilities for disparitf?’(A = §) and image ability P(A = §,X = x|Y1 = y1, Y2 = y2) has a Gibbs

P(X = x) are both modeled as MRFs. Such a ‘double MRHlistribution with energy function,

modeling in justified because in stereo vision works, it idlwe

known that the disparity varies smoothly [18] and similarly os lys — DW XH 505 <
super-resolution applications, MRF modeling for image\seha ur Z +Z Vel( +Z Ve(
shown good results [1], [15], [8]. Thus, we have, c€Cs c€Cx (10
(#) The conditional posterior probability is Markov and can
P(A =§) = Kexp ( PIRAC ) be expressed as,
ceCs
X - I g PlXpq=Tpq, Dpq = Op,ql Xkt = Tt At = O3
(X =x)=Kexp | = ) VX(x ®) 1< (k1) < LiLs, (k1) # (,q): Y1 = y1, Y32 = y3]
ceCx .
B exp(—UP°%(x,0)) (1)
whereV?(z) and V() are the clique potential functions for Y s exp(=Uos(x,6))
the image and depth respectively. Thus from equations ) an e
(8), we can rewrite equation (6) as, where the conditional posterior energy function is,
lyi — DW x| 5 x 2 . — DWix|]?
(S Igl (Z +Z V +Z V UCPOS(X,é) — Z Z Hyl 5 - lX”
c€Cs c€Cx —1 4 g a
(9) i=1 S-S,
Thus, MAP estimation leads to an energy minimization prob- +Y VI Y VI9) (12)
lem, where the cost within the brackets in the above equation c€C,(p,q)€c c€C,(p,q)€c

is to be minimized. The minimization can be performed in an

iterative fashion where in one iteration the current estingg  (¢é4) The posterior neighbourhood corresponding to §ite)
image is used for estimating the disparity in the next itergt 1S given by,

the current estimate of disparity is fixed to estimate thegena

The type of smoothness functions depend on the exact form s .

of V(x) and V() which include various convex, piecewise Upg = ( X Uw ) U ( U lg,l) (13)
constant, piecewise smooth, discontinuity adaptive fonst (k,1)eS—S;

The minimization of MAP-MRF energy functions as in (9)
has gained a lot of popularity in recent years. Lately effitie v
ﬁ:,‘;hé’:jfdsf;vcg"ﬂgeseg'o?tnf?/‘l?;evsgjle';'”mam‘ﬁit':gmﬁc@the neighbourhood in the HR grid corresponding to the site
energy functions [19], [20]. Although such techniques ha ) in the observationy;, S {(k, 1) : 1 < (k1) < N1No}
been proved to be very successful for regular energy fur@dsS: = {(k,l) t(6,4) € Gl
tions [20], their potential for non-regular functions, fcases Proof: From equations (4) to (8), the posterior probability
where pixel averaging takes place such as super-resalutioan be written as,
deblurring etc, is not yet fully explored [21], [22]. On thther
hand sequential updating methods such as simulated angeal’(A = 0, X = x|Y1 = y1, Y2 = y2) = Kexp(—UP*(x, 9))

(SA) or iterated conditional modes (ICM) have been shown to (14)
perform very well for super-resolution. Since our main ss$re This is nothing but a Gibbs distribution where K is a normaliz
is not on the solution approach but on the novelty of joiring constant and posterior energy functidi®®(x, J) is same
computation philosophy of SR image and HR disparity, was the bracketed term in equation (9) and (10). At this stage,
resort to SA for the energy minimization as given in (9). we note that warping and down-sampling operations depend

The drawback of SA is its computationally complexityon a specific neighbourhood in the HR grid. That is, they have
However, MRF modeling of priors allows the posterior distria finite local support of the order of a few pixels.
bution to have the locality property. i.e. the posteriottritisi- The conditional probability ofX, , and A, ,, given the
tion is also an MRF. This property has a practical signifieanobservations is
that it allows one to immensely reduce the complexity of
sequential methods such as SA. In [15], the authors prove® (X, , = 2p ¢, Ap g =6p ;1 < (p,¢) < L1Lo|Y1 =y1, Y2 =y2
Fhe locality proper}y of ppsterior distrib?tion for mqtidnats;led = P[Xpq = Tpg Dpg = 0p.al Xet = 2rts Mgy = O
L:g\?vge super resolution in presence of space-variant bler. W 1< (k1) < L1 Lo, (k1) # (,q): Y1 = y1, Y2 = ya]

prove the locality property for our case of posterior
distribution in simultaneous estimation of HR disparitydan P[Xk: = Tk, Ak = 0ki;1 < (k1) < Ly Lo, (k1) # (p, q)]
SR image. Y:=y1, Y2 =y (15)

where ¢ . and 1/16 are the original neighbourhood corre-
spondmg to the baS|c MRF in the image and the dlspacrjﬁy



Using equation (14) we have, is much smaller than the image. Applying the above theorem,
B B B e we perform the minimization in (9) by SA, iteratively for the
PlXp.q = @p.as Bpig = Opaq| Xkt = Thty Mkt = Okt SR image and HR disparity. More specifically, in the same
1< (k1) < LiLa, (k1) # (p,q); Y1 =y1, Y2 = y2 metro-polis iteration, for a particular site in the HR griiven
_ exp(—UP°*(x, §)) (16) the current estimate of the HR image we compute the current
Zzp e Iexp( Uros(x,4)) estimate of HR disparity and vice-versa. The parameters for

e SA algorithm are empirically selected.
where the summation in the denominator is over all pOSSIbtP 9 P y

levels ofz, , andd, ,. We now define vectors, IV. EXPERIMENTS AND RESULTS

In our experiments we used the stereo datasets from Mid-
dlebury [16], [18] and CMU [17]. We formed the LR stereo
observations, down-sampled by 2 by averaging groups of 4
) pixels in each image. The averaging had equal weight of

o ( i « 0.25 for each of the four pixels. We note here that the first
UP*(x,4) Z Z (Vk,l)uz Vf(a)+2 Ve (x) term in the bracketed expression in equation (9) is what is

=His(k)SNiN: c€Cs € Cx (1g) Ccommonly known as the data term in MAP-MRF minimization
framework [19], [20]. In equation (9) this data term compute
the squared distance or thie,-norm since we assume the

i~ Ly DWix
v = \/ﬁo_(}’z DWZ ) (17)

Hence, the posterior energy function can be written as,

The above equation can be decomposed as,

os 2 i noise is AWGN. However, more generally we can replace
Ure(x,9) Z Z ‘4 ZZ(”M)Q it with L;-norm or any other sensible distance metric [23].
=15-5 =1 5 We experimented with both.;- and L,-norm (i.e. squared
+ Z V2(8) + Z V2(6) and absolute distance) and with quadratic and linear pfaors
c€Cs,(p,g)€c c€Cs,(p,q)¢c both the image and disparity. We used cliques belonging to

+ VE(x) + VX (x 19) the first order neighborhood in the prior terms for both image
Z () Z - (%) (19) and disparity.

o _ _ ) _ Figure 1 shows the results for the 'parking meter’ stereo
Substituting equation (19) in equation (16) and canceh:%ir_ This is the case of a predominantly slanting surfaeeest

common terms in_numerator and denominator, we obtain agery. For this example thé,-norm was used as a data
conditional posterior as, term. The prior termd/% () and V*(x) are linear functions,
V3(8) =1.5[0,4 — 6rs| andV®(z) = 0.1 |z, , — 7, | Where
(p,q) and(r, s) are pixels belonging to the clique Starting
with any arbitrary initialization for the HR disparity antiet
SR image, we minimize the cost function of (10) by SA,

c€Cx,(p,q)€c c€Cx,(p,q)¢c

PlXpg=Tpq,0pq = Opg| Xkt = Th1, 01 = Ok 15
1< (k1) < LiLay, (k1) # (p,q); Y1 = y1, Y2 = y2| (20)
exp(—UP(x,9))

Dty 6. EXP(=UP(x,6)) where the SR image label and the disparity label is updated
where iteratively for each pointp, ¢) on the HR grid. While updating
5 the disparity, the SR image is fixed at its current estimate an
Ueros(x, 6) Z Z )2+ Z VI(8)+ Z VX(x) vice-versa._ The energy in (13) for each pojptq) _is updated
o1 o=, ceOnma)ee ccOa(pa)ce locally, taking the advantage of Theorem 1. Fig 1(a) shows

(21) the low resolution observation. Fig 1(b) shows the bilinear

It is important to note that in the first term, the inner sum iiterpolation output. Our SR image result is shown in Fig
over a small ared — S; as opposed to the complete image iA(C), whereas the HR disparity can be seen in Fig 1(d).
equation (18). The sef — S; consists of all pixelgk, 1) in y; The fronto-parallel scene of the ’tsukuba’ stereo pair is
such thatS — S; = (k,1) : (p,q) € gyv This means that eachshown in Fig 2. Here, we choose absolute distance data term
(k,1) in the LR imagey; has a small nelghbourho@(g inthe and linear priors both for image and disparity, except fa th
HR image. Hence, the posterior neighbourhood correspgndifl""hange in the weights of the priors. The prior terms used

to site (p,q) is given by, were V. (8) = |0p,q — s and V¥ (x) = 0.05 |z, — 27,6
This scene contains more details than the previous one, Also
pos _ ( UW )O U i 22) the surfaces are mainly fronto-parallel as opposed to the
—\"pa P.q kl previous example. Hence, the weights on both the prior terms
=1 Ak DES=S: is reduced to avoid oversmoothing. One can clearly make
as required in equation (13). B out the difference between the interpolated image and SR

The theorem implies that, in sequential methods, as oresult especially around the face region. Also at well teedu
updates one pixel at a time in one iteration, the update fiegions, the HR disparity estimates are good. However, at
energy due to that pixel is computed only by using a sma#xtureless regions (such as the bottom of the desk), the
neighbourhood of that pixel rather than the whole images Thilisparity results tend to be oversmoothed by the nearbgbett
reduces the computation drastically, since this neighimanst textured regions.



(b) (c) (d)

Fig. 1. Parking meter stereo pair (a) LR observation (b) Baininterpolated image (c) Super-resolved image (d) HR digpar

(d)

Fig. 3. Sawtooth stereo pair (a) LR observation (b) Bilineserpolated image (c) Super-resolved image (d) HR disparity

Fig 3 shows the 'sawtooth’ stereo pair from the Middleresolution framework are some future prospects of this work
bury stereo database [16]. In this experiment we used tlesummary, we look at this this work as a step towards taking
squared distance data term and quadratic priors (also knosuper-resolution research in the 3d domain.
as Gaussian MRF)V2(6) = (6,,— 6,.)° and V¥ (z) =
(Tp,g — xT,S)Z. This is especially a good example for showing REFERENCES
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