
 
 

  
Abstract— The Goal Programming (GP) approach is used to 

model problems of Pattern classification. It involves finding the 
separating boundary lines between different classes to get 
minimum misclassification. A theoretical overview of solving 
the problem using GP is discussed and its different variants are 
applied to various datasets to show the effectiveness of the 
algorithm. The datasets considered for experimentation are 
taken to be in 2 – dimensional Euclidean space for better 
visualization of separating boundaries. Finally, the results are 
compared with the K-Nearest Neighbor Classifier. 
 

Index Terms—: Goal Programming, Pattern Classification, K-
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I. INTRODUCTION 

        Pattern Classification is a paradigm, which comes under 
the domain of Pattern Recognition, which aims at classifying 
patterns into predetermined categories/classes in a 
multidimensional space. This classification is based on certain 
attributes/features which are common to all objects. First, the 
features are determined for each object and then certain 
decision rules are formulated and based on these rules, the 
classification of patterns into different classes is obtained. 
Pattern recognition has found enormous number of 
applications in varied number of fields. There are many 
approaches to pattern classification. The algorithm for 
classifying objects/pattern is usually called classifier. A few of 
the widely used classifiers are the Bayesian Classifier, Neural 
networks, Support Vector Machine and the K Nearest 
Neighbor. The details of these are available in [1]. 

       In this paper, an attempt is made to model pattern 
classification problem using Goal Programming technique (GP), 
an extension to linear programming, deals with multiple 
objectives. Unlike linear programming, the objectives can be 
violated up to a certain extent, but the aim is to ensure 
minimum deviation from them. For finding the solution to a 
Goal Programming problem, it is usually converted to a linear 
programming problem (LPP) [2]. 

       The next section deals with mathematical formulation for 
Goal Programming. The proposed methodology is described  

 
 

 

 

 

in Section 3 followed by implementation and results in Section 
4. 

 

II. MATHEMATICAL FORMULATION OF GOAL 
PROGRAMMING 

       In Goal Programming, there can be different types of goals 
to be achieved. Let there be a linear objective function c1

Tx 
whose goal is to remain less than equal to g1  (c1

Tx ≤ g1) .  

Similarly there can be a case where a function c2
Tx must be 

greater than or equal to g2 (c2
Tx ≥ g2). Such kinds of goals are 

called one-sided goals. Also, there can be two sided goals 
such as g3 ≤ c3

Tx ≤ g4. The aim here is to achieve minimum 
deviation from goals under linear constraints if any. 

 The Goal Programming problem can be converted into a 
linear programming minimization problem as follows. 
       
       Let us consider two objective functions c1

Tx and c2
Tx with 

one-sided goals as g 1 and g2 respectively  and a constraint   (Αx 
≥ b). 
                                                        c1

Tx  ≤  g1                                                           (1)                                                                                                                

                                      c2
Tx  ≥ g2                                                           (2)                                                                              

Constraint                      Αx   ≥  b                                                             (3)                                                      

 
        Let there exists one x which satisfies (3).Also, x is such 
that c1

Tx exceeds g1 by d1 and c2
Tx  falls short of g2 by d2, where 

d1 and d2 are absolute deviations from the goals. 

                                   c1
Tx  - d1  = g1                                                     (4) 

                                    c2
Tx + d2 = g2                                        (5)                                                                                          

        Now, the whole objective of goal programming is to 
minimize the deviations from the objective targets. So, the 
whole problem boils down to Linear Programming Problem, 
where 
 

Objective is          Minimize D=α1d1+α2d2                        (6) 
    Subject to  (3),(4) and (5). [3] 
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      Here, α1,α2 are the assigned weights given to the 

deviations if one want to give unequal wieghtages to the two 
given goals. Note that, when  α1 is not equal to  α2  it is called 
as Preemptive Goal Programming. [2] 

 
          If we generalize it for m number of goals then there will be 
‘m’ number of equations each resulting in some amount of 
deviation. 

          In that case objective function will become D= ∑
=

=

mi

i 1

αidi , 

subject to constraints that result into these deviations. Based 
upon the above given mathematical formulation an algorithm is 
proposed to model Pattern Classification using Goal 
Programming. 

III. DESCRIPTION OF PROPOSED METHODOLOGY  

 
       Let us consider a two class problem for which two 

features (X,Y) of each class are given. Figure 1 shows the plot 
of the data points. Our aim is to find a separating hyperplane (a 
straight line in this case) as indicated by H in the figure that 
divides the data points into two classes. The equation of  H is   

 
                            y - mx - c = 0                                     (7)       

where, m and c have their usual meanings. 
 

         Any point (x1,  y1) in class A when substituted in (7) 
should give a positive value. The first goal then becomes    

                               y1 – mx1 -c > 0                                    (8) 

         Similarly, for any point (x2, y2) in class B when substituted 
in (7) should give negative value. Hence, second goal  is           

                              y2 – mx2 -c < 0                                     (9) 

 

 

                                                                                                           

 
 
 
 
 

      

          Fig.1 A hyper plane H separating two classes A and B. 

But due to some misclassifications as indicated in Figure 1, (8), 
(9) may not be satisfied. For a misclassified point (x1', y1') in 
class A, the deviation from the goal would be       

 

                          

 
 

              |y1' – mx1' -c | / (1 + m2)1/2 = α                       (10) 
 

For a misclassified point (x2', y2') in B, the deviation is  

                  |y2' - mx2' – c| / (1 + m2)1/2 = β                        (11)  

Where α and β are the distances of the respective points from 
the separating line.     

       So, our aim is to minimize this overall deviation 
(α +β) .Again if we have i=1,2,…p number of misclassifications 
for class A and j=1,2,…q number of misclassifications for class 
B, then the entire problem can be looked upon as  

Minimize         D = ∑
=

=

pi

i 1

αi +∑
=

=

qj

j 1

βj,                                 (12)        

subject to (10) and (11). 

   The above optimization problem is solved to get the values 
of m and c. Note that, the current optimization problem is no 
longer a Linear Programming Problem as equations (10),(11) are 
not linear in nature. We are proposing an approach, which is 
almost like an exhaustive search to find the optimal values of m 
and c, that give the separating boundary. 

IV. DETERMINATION OF SEPERATING BOUNDARY 

  
       The problem now is to find ‘m’ and ‘c’ (or the line y = mx 

+ c) such that (12) is minimized. We assume ‘c’ is bounded in 
[cmin, cmax ], thus for each choice of c, we find the optimum ‘m’. 
The search space for m is also restricted as shown in Figure 2. 
Both classes A and B are bounded by rectangles. The 
intersection of these two rectangles provides the bounded 
search space for m as indicated in Figure 2. The choice of m is 
then restricted within mmin and mmax  where, 
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   (ymax –c )/xmin  mmin = 

c <= ymin   (ymin – c )/xmin 

ymin <c <ymax 

   (ymax –c )/xmax c >=ymax 

        mmax  =   (ymax–c )/xmax ymin <c <ymax 

c <= ymin (ymin –c )/xmax 

(ymin –c )/xmin c >=ymax 



 
 

 
       

 
      Fig.2(a) Enclosing two classes with rectangles. Rectangle DEFG is 
the intersection of these rectangles and (b), (c), (d) show the search 
space for m for a given choice of c. 

       To find optimal c and m, the entire range of c = [cmin, cmax ] 
is searched with a step size (dist/2) where dist = min {d(x1, x2) | 
x1,x2 are two data points} and d is the distance between x1 and 
x2. Similar argument is given in [4]. Also the entire range of m is 
searched with a step size 1/n where n is the number of hyper 
planes that we check for a particular value of c. Though an 
exhaustive search is carried out at present, but a Genetic 
Algorithm based search similar to that given in [4] can also be 
carried out. 
 
      As there can be more than one combination of m and c for 
which deviation D comes out to be minimum, there is a 
possibility of getting more than one separating lines. 

       We are mostly presenting the results for 2 dimensional 
datasets using the present method. The results are also 
compared with the K – Nearest Neighbor classifier. 

V. IMPLEMENTATION AND RESULTS 

 
   The algorithm was implemented on several datasets even 

with more than two classes. Figure 3 shows the simulation 
result of a 3 class artificial data. Each class can be identified by 
a combination of signs [5] of the equation of the two lines  H1 
and H2 as shown in figure  3(a). 
 

           
 

     Fig.3(a) Results obtained for a multi-class dataset where we have 3 
classes. 
 
 

 

 

         

                         (a)                                               (b)                      

      Fig. 4(a) An artificial dataset with two classes where one class is 
within another class (b) Boundary lines separating inner class from 
the outer class.  

      The proposed method is implemented on a non-convex 
dataset as shown in figure 4(a). In this case, we used 
preemptive Goal Programming and assigned more weightage to 
the inner class, as we wanted to separate it from the outer one. 
For every value of c, we choose the value of m which shows 
minimum deviation To get the final separating boundaries, we 
sort the deviations obtained in increasing order. The first value 
in this sorted sequence is selected to get the separating 
boundary corresponding to that deviation. If the resulting line 
does not classify the dataset completely, we consider the next 
line corresponding to the next values of the deviations in the 
sequence and find out the deviations as a result of the 
combination of these lines. The process is repeated until the 
combined deviation tends to stabilize. The final decision 
boundaries are as shown in Figure 4(b). Similar approach was 
used for the dataset shown in the Figure 5(a).  

                                                   

                          (a)                                                 (b) 

                        

                                                (c)                                           

 

 Fig.5 (a) An artificial dataset (b) Simulations using preemptive goal 
programming (c) Boundary lines separating inner class from the outer 
class.               
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H2 



 
 

 

 

  

The classification results obtained by the proposed method are 
compared with the results obtained by K-Nearest Neighbor. 
The results are presented in Table 1. 

 

K – Nearest  Neighbour Dataset Goal 
Progra 
mming 
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Fig 5(a) 
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86.2% 

 
88.3% 

 
86.2% 

 
87.25
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Table 1.   Results of different datasets using different algorithms 

VI. CONCLUSION 

       Goal Programming is used to model problems of pattern 
classification and optimal separating boundaries can be 
achieved using exhaustive search. The algorithm can also be 
extended to Genetic Algorithm based search. This algorithm 
when applied to different datasets, worked satisfactorily as 
compared to the K-Nearest Neighbor classifier. Also, note that, 
while in K-Nearest Neighbor approach, a prior availability of an 
already classified dataset is required [1], there is no such 
requirement in case of Goal Programming.  
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