
 

  Road extraction from satellite images using 
Dominant Singular and Arc-Length Measures  

 

 
 

T.T.Mirnalinee,  Sukhendu Das 
VP Lab, Dept. of Computer Science & Engineering, 

IIT Madras, Chennai-600 036, India. 
mirna@cse.iitm.ernet.in; sdas@iitm.ac.in 

 

and Koshy Varghese 
Dept. of Civil engineering 

IIT Madras, Chennai-600036, India. 
koshy@iitm.ac.in 

 
Abstract—The problem of robust automatic road detection in 
remotely sensed images is complicated due to various factors 
such as, sensor, spatial resolution, acquisition conditions, road 
width, road orientation and road material composition. The 
estimation of image feature orientation is important in many 
areas of image and pattern analysis. A novel technique for 
detecting road pixels in remotely sensed images based on 
orientation or directional information is described. This paper 
addresses the extraction of roads from 1m-resolution satellite 
images. Describing the road features from high resolution 
satellite images becomes difficult in presence of building shadows 
and high trees. In this paper, we present dominant Singular 
Measure (DSM) computed using Principal Component Analysis 
(PCA) to extract the road segments and length discrimination 
criteria as a post processing technique to improve the quality of 
detected road segments. 
 
Index Terms - Road Extraction, High-Resolution Satellite 
Image, PCA, Orientation, Dominant Singular Measure (DSM). 

 

I. INTRODUCTION 
Image local orientation estimation plays an important role in 
many computer vision and image processing tasks such as 
edge detection, image segmentation, and texture analysis. 
Several techniques for local orientation estimation have been 
proposed in the past [1][2]. Most established local orientation 
estimation techniques are based on the analysis of the local 
gradient field of the image. But the local gradients are very 
sensitive to noise, thus making the estimate of local 
orientation from these images unreliable. How to deal with the 
effect of noise is a major problem that all the gradient based 
methods have to face. It is quite clear that over most of the 
area the important information is contained in the orientation 
of the lines, rather than in the brightness values. Knutsson and 
Granlund [3] devised an elegant method for combining the 
outputs of quadrature pairs to extract a measure of orientation. 
Perona [4] extended the idea of anisotropic diffusion to 
orientation maps. Bigun et.al., [5] posed the problem as the  
least-squares fitting of a plane in the Fourier transform 
domain. Another set of techniques is based on steerable filters, 
but they are often limited in precision and generalization. In 
[6], Lyvers et.al examined the accuracy of various local 
differential operators for noiseless as well as in the presence 
of additive Gaussian noise. Zhou et al. [7] estimated the 
orientation by a Gaussian gradient filter. Wilson et al. [8] 
developed a multiscale orientation estimation approach. In [9] 

Jiang proposed an image integration operator which leads to 
unbiased orientation estimation. But our method of combining 
1D canny [10] for gradient map and PCA for orientation 
estimation to extract road segments is novel, more efficient 
and produces more robust results. Almost all the established 
local orientation estimation techniques are based on the 
analysis of the local gradient field of the image. Road 
extraction was interrupted by occluded structures over roads, 
shadows, and vegetation such as trees. This may lead to 
unwanted areas that are parking lots and some large buildings 
wrongly identified as roads. Large size of parking lots has 
sufficient size of area and similarity of spectral characteristics. 
Such kind of unwanted areas pose an problem in road 
extraction because of similarities in spectral characteristics. 
This paper is organized as follows: Section II discusses about 
general PCA. In section II A we speak about computing 
Gradient map using 1D canny. In section II B we discusses 
about PCA for computing Orientation from gradient map and 
computing Dominant Singular Measure. In section IIC we 
discuss the post processing technique of length discrimination. 
We present experimental results in section III and conclude 
the paper in section IV.  

II. PROPOSED METHOD 
 
Natural images are full of discontinuities and local changes. 
This anisotropy can be used to associate directions with 
regions of the image. Much of the preceding research on 
orientation has been concerned with either purely gradient-
based methods, or purely second derivative methods. Oriented 
features were extracted by sampling image patches. We 
propose a method for 2-D orientation estimation, as a process 
of 1D canny for computing gradient map and Principal 
Component analysis (PCA) for computing Orientation. We 
propose an operator that gives orientation estimates that are 
uniform and isotropic. In high resolution satellite images, we 
observe various types of road segments: highways, 
interchanges, main streets with vehicles, small roads between 
houses at various orientations. All these road appears more 
likely as regions than lines. This observation may imply that 
extraction of roads at this resolution is a region related 
problem. For each pixel in the image, we first calculate the 
gradients in its neighboring area, then perform SVD of the 
gradient matrix. This decomposition (PCA) is used for 
orientation estimation. Figure 1 shows the flowchart for the 



 

proposed method. The entire framework for extraction of road 
segments can be logically divided into three phases:  
1) Computing Gradient Map using 1D Canny. 
2) Detection of dominant orientation using PCA. 
3) Road segment refinement using length measure. 
 

The image is first divided into small blocks, and then the 
algorithm is employed to identify the orientation for each 
block. 

 

 
 

Figure 1. Framework of the proposed method 
 

A. Gradient Map using 1D canny 
 

Gradient operators are based on local derivatives of the image 
function. Since the speckles appearing in the aerial images can 
degrade the performance, we first need to reduce them. For 
this procedure we use one-dimensional processing for 
extracting gradient map from the input image [10]. 1-D 
Gaussian function is used for smoothing the image along 
horizontal (or vertical) scan lines to reduce noise. First 
derivative of 1-D Gaussian function is then applied along the 
orthogonal scan lines to find grey level transitions. So, 1-D 
smoothing provides a significant advantage to reduce noise. 
Gradient of image f(x, y) at point  is denoted by : ) ,( kx yx
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The 1-D canny operator for computing derivative is given by:  
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where,  is the spatial spread of the Gaussian. The method of 
1-D processing differs from the traditional approaches based 
on 2-D operators, in the sense that smoothing is done along 
one direction, and the differential operator is applied along the 
orthogonal direction. The traditional 2-D operators smooth the 
image in all directions, thus resulting in loss of some edge 
information. Advantages of using 1-D processing for 
computing gradient map are: 

σ

This method (i) gives better results in images with complex 
structures, (ii) provides better continuity and (iii) requires 
lesser computational time.  
 
B. PCA Analysis for image orientation 
 

Analysis of local orientation is performed using Principal 
Components Analysis by computing the dominant vectors 
representing a given data set, which provides an optimal basis 
for minimum mean-squared reconstruction of the given data. 
It is also sometimes referred to as the Karhunen-Loeve 
Transform [11]. The computational basis of PCA is the 
calculation of the Singular Value Decomposition (SVD) [15] 
of the data matrix, or equivalently the eigen decomposition of 
the data covariance matrix. Gradient vectors are orthogonal to 
the dominant orientation of the image pattern. Let us assume 
that in the image of interest f(x,y), the orientation field is 
piecewise constant. Under this assumption, the gradient 
vectors in an image block should on average be orthogonal to 
the dominant orientation of the image pattern. So orientation 
estimation can be formulated as the task of finding a unit 

vector a ,, to maximize the average of angles iθ   between a  

and gradient vectors [12] .,...,2,1),,( niyxfg iii =∂=  
 
PCA is a well-known metric method that produces the base 

axes of a distribution of data. Given an ideal straight line in 
two-dimension, it will produce principal components derived 
from the eigenvectors and eigenvalues of the scatter matrix. 
The dominant direction of scatter of the pixels from gradient 
map depends on the eigenvector corresponding to the largest 
eigenvalue. More than one non-zero eigenvalue means the 
derivatives are scattered in more than one direction. In the 
case of ideal straight line, the second eigenvalue should be 
zero. However, a digital line is represented stepwise, so that 
the second eigenvalue of the line is non-zero. In order to get 
the local orientation estimate, we rearrange the gradient 
vectors into a 2 X N matrix with a window size of 3 for each 
pixel as shown below:   

         (3) 
where, N,...,2,1i,)i(f T =∂  is given by eqn 1. We then 
compute the SVD of the gradient matrix for each pixel (using 
a window of size ’3*3’). SVD of gradient map is computed as. 

A = USV T          (4) 

 

where, U is a orthogonal 2X 2 matrix, in which the first 
column represents the dominant orientation of the gradient 
field. By rotating it by 90 degrees, we have the dominant 
orientation in the image block. S is a 2 X N matrix, 
representing the energy in the dominant direction and V is 
orthogonal matrix of size N X N. If both the eigenvalues are 



 

zero, the local neighborhood has constant values. If one 
eigenvalue is non-zero, the local neighborhood is a simple 
neighborhood with ideal orientation. If both eigenvalues are 
not equal to zero the gray values change in all directions. The 
eigenvector corresponding to the maximum eigenvalue gives 
the orientation of the local neighborhood. When we fail to 
observe an oriented structure in a neighborhood, then either 
gray value vary randomly or distributed orientations are 
encountered. The two singular values (s1 and s2) can be used 
as a measure of accuracy or dominance of the estimate. 
 
1) Dominant Singular Measure: Dominant singular Measure 
(DSM) is computed as the ratio between the singular value of 
the major axis and the sum of the singular values. This 
measure approaches one for an elongated shape. 

2s1s
1sDSM

+
=  , s1 ≥ s2                                 (5) 

 
where, s1 is the largest singular value. When all the gradient 
components have the same direction, only one singular value 
is non-zero, which in turn makes the DSM value 1. If both the 
singular values are equal and non-zero, the DSM value gives 
0.5. Range of the values of DSM is in the range [0.5- 1]. We 
can use this DSM to distinguish between scattered or 
disoriented image patterns and an image region with an 
orientation pattern. For any given image block, we can 
perform the PCA-based orientation estimation and compute 
DSM. If the DSM is less than a threshold TD, it is very likely 
that the corresponding image block is noisy and contains no 
dominant orientation and is hence considered as background. 
The result of this orientation detection process is robust, and 
performs well on both synthetic and natural image. The results 
of DSM has therefore included the orientation information 
about streets/roads, rivers and other linear structures. 
However, if additional information and knowledge are 
available, non-road structures may be masked [13]. 

 
C. Road segment refinement 
 
From the output of DSM based processing, the arc-length of 
each segment is used for further evaluation. In the case of 
satellite images, undesired or noisy structures will be wrongly 
clustered as road segments. To further eliminate those 
segments, we use connected component labeling algorithm 
[14] to extract the disjoint segments from the output of the 
previous stage of DSM-based processing. Then we compute 
the length (perimeter) of each extracted segment. Segments 
which are less than particular threshold TL are deleted.  

We applied additive Gaussian white noise on the test 
images in Fig. 2(a) and observed the performance of our 
algorithm on the noisy simulated images. Fig. 3 illustrates the 
algorithm applied to synthetic images with noise. As seen 
from Fig. 3(b), some noisy structures are also identified as 
dominant structures. From Fig. 3(c) it can be seen that almost 
all the short and isolated segments have been eliminated by 
the post-processing technique. 

 
     
Figure 2. The results of our approach on synthetic images. (a) 

First column shows the input images. (b) second column 
shows corresponding DSM. 

 
III. EXPERIMENTAL RESULTS & DISCUSSION 
 
We now describe the experiments performed on synthetic and 
real world images using the algorithm as described above. As 
an application of image orientation, we use it to extract road 
segments from satellite images. The orientation homogeneity 
of roads is more dominant in local area. This characteristic can 
be used to find a start point or region for road tracing. Roads 
generally show some properties of same directions. The road 
networks can be recovered using this information. It is 
demonstrated that in high resolution images, regions provide a 



 

natural and computationally effective framework for 
extracting road network from satellite images. Looking at a 
main road, the boundaries of road, vehicles, markings, and 
pavements compose a set of parallel line segments in a local 
area. Edge pixels of these segments have approximately 
identical gradient orientations. So, in an appropriately sized 
patch including main roads, there must be a major part of edge 
pixels with identical gradient orientation. A real image is 
noisy and corrupted by occlusions, camera distortions, surface 
markings, varying surface reflectance, quantization, etc. The 
net result is that many of the lines extracted do not correspond 
to object boundaries, and those that correspond to object 
boundaries can be fragmented. 

 
The accuracy of the orientation angle strongly depends on 

the implementation of derivative filter. The error can be 
significantly suppressed if better derivative filters are used. 
Consider the images in Fig. 2 and Fig. 4. It is quite clear that 
over most of the area of this picture the important information 
is contained in the orientation of the lines, rather than in the 
brightness values. We use both synthetic images with and 
without noise and real images to validate our algorithm. Fig. 2 
shows the orientation filter applied to some synthetic images 
without noise. First column of Fig. 2 shows synthetic images 
with various oriented structures used to test our approach. The 
second column of Fig. 2 shows the DSM. When both the 
gradient components are varying constantly, only one singular 
value has non-zero value, which in turn dictates the value of 
DSM to 1 as shown in Fig. 2. If both the singular values are 
equal and non-zero, the DSM value gives 0.5. If both the 
singular values are zero, then there is no gradient change in 
that particular image block. In such cases,   DSM value is set 
to 0. We show the performance of the proposed method on 
real images in Fig. 4. First column of Fig. 4 shows the real-
world satellite images. Second column of Fig. 4 shows the 
corresponding DSM values computed by our approach. Third 
column of Fig. 4 shows the results of road segment extraction 
from high-resolution satellite images after applying the post-
processing techniques to the intermediate results in the second 
column of Fig. 4. 
 

When the change in curvature is less, only one dominant 
direction exists, causing the first singular value to dominate 
and the second one is close to zero. When the curvature starts 
to increase both the singular values contribute to the DSM 
measure and corresponding DSM value decreases.  
 
 

IV. CONCLUSION 
 
A novel and efficient method for automatically generating 
low-level representations of roads directly from satellite 
images based on Dominant Singular Measure has been 
introduced and demonstrated. The proposed algorithm is 
simple, and recognizes the most likely predominant 
orientation for any linear patterns. Although the proposed 
algorithm was developed for road orientation recognition in 
remotely sensed imagery, the algorithm itself has potential 

applications in other areas. We tested our methods on both 
real and synthetic images. The measured orientations and 
strengths accurately reflect the oriented structures of the input 
image. Our method will fail in case of junctions, certain 
textures, and transparent or overlapping objects, which may 
contain more than one local orientation. Future work will 
address techniques for connecting disconnected curve 
segments so that road map clutter can be further reduced. 
Work is currently in progress to establish the optimal 
framework to overcome this problem and to achieve better 
noise robustness. 
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Figure 3. The results of our approach on synthetic image with noise. (a). First column shows the input images with Gaussian 

noise. (b). Second column shows corresponding DSM. (c). Third column shows the results after post processing.



 

 
 
Figure 4. The results of our approach on real-world images. (a). First column shows the input images. (b). Second column shows 

corresponding DSM. (c). Third column shows the results after post processing.
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