
Efficient Graph-based Image Matching for
Recognition and Retrieval

Praveen Dasigi and C.V.Jawahar
Multimedia Research Laboratory

Center for Visual Information Technology, IIIT Hyderabad
Hyderabad - 500032

Email: {praveend@research.,jawahar@}iiit.net

Abstract—Graphs can be used for effective representation of
images for recognition and retrieval purposes. The problem is
often to find a proper structure that can efficiently describe
an image and can be matched in reasonably low computational
expense. The standard solutions to the graph matching problem
are computationally expensive since the search space involves
all permutations of the nodesets. We compare two graphical
representations called the Nearest-Neighbor Graphs and the
Collocation Trees, for the goodness of fit and the computational
expense involved in matching. Various schemes to index the
graphical structures have also been discussed.

I. INTRODUCTION

Structural pattern recognition tasks in computer vision, such
as classification and object recognition often require that a
candidate image is matched to a model or another candidate.
During matching, representative structures that are built for
each of the images, are compared. In some cases these
structures may contain groups of local features or segmented
regions. When comparing these structures, it will be useful to
encode the spatial arrangement or geometry of the groups of
features. This step will bring better meaning to the matching
process. One very powerful representation to encode structural
properties is a graph. To use graphs for image matching has
two key challenges;

• To find a representation that best discrimantes two graph-
ical structures.

• To design a matching process that efficiently matches
these representations.

Efficient image matching is the key component for a content
based image retrieval(CBIR) system. Usually a CBIR system
extracts structural features from images in a dataset and
indexes them with the said feature vectors. The retrieval
process happens through query by example, where a query
image is given and the images which are semantically similar
to the query image are expected to be retrieved. When images
are represented by graphical structures, the pairwise graph
matching scores between images play a very important role
in retrieval. Thus, accurate and efficient matching of image
graphical structures is a key component in a graph matching
based CBIR system. It affects both the precision and efficiency
for retrieval

Graph based representations have been employed in various
areas such as image analysis, document processing and content

Fig. 1. Figure above depicts the division into parts and the requirement of
the matching problem. The arrangement of parts is same even after distortion
by view change

based image retrieval(CBIR) ([1], [2], [3]). In most cases the
solution will require the image to be represented as a set of
“parts”. The parts are usually segmented regions described
by a local descriptor. The graphical structure encodes the
relationship among the parts in terms of nodes and edges.
Given two such graphs, the matching process will find the best
mapping that maximizes a similarity score. Recent approaches
that have aimed at capturing adjacency information used co-
occurrence patterns and modelled groups of features as visual
phrases [4], or have exploited the invariant properties of the
data [3] and built graphs. In any case the solution should
be able to satisfy the four properties. The representative
structure should be repeatable under considerable distortions
(repeatability). It should not overfit the candidate so that
matching will be hindered (goodness of fit). The matching
process has to be tractable and in most cases, cheap enough
(complexity). It should be robust enough to be able to scale to
larger applications (scalability). In this work we have used a
new representation scheme called the collocation tree that mod-
els only the necessary adjacency information within groups
of features. The matching process tends to be considerably
cheaper than full-graph matching. This is because redundancy
in node-relationships is eliminated by linking each node with
only one nearest node and forming a hierarchical tree. The
computational efficiency and performance of this approach

is compared with an approximate greedy solution to graph
matching in the context of a representation called the nearest-
neighbor graph.

Matching Paradigms
Subgraph
Isomorphism

Exact, highly sensitive to feature repeatability,
NP-complete, approximations exist, gives only
0/1 match, impractical to real images

Maximal Common
Subgraph [5]

Exact, sensitive to feature repeatability, NP-
complete, approximations exist, gives % simi-
larity, but scalability is low

Error-tolerant
matching [6]

Inexact, all partial similarities treated as errors,
decision of cost functions is major issue

Maximum Similar-
ity [7]

Inexact, measures maximum similarity between
graphs, comp. expense manageable for smaller
graphs, not for large ones
Representation schemes

Bag of Words
(03) [8]

Very efficient feature descriptions, groups of
features dealt with, no geometry information
encoded

Visual-phrases
(07) [4]

Best feature co-occurrences learnt by frequent
itemset mining, training needed, dependant on
training data

NN-Graphs Full image structure modelled, redundancies in
relationships since only criterion is neighbor-
hood, complexity high for large nodesets, man-
ageable for small ones, fair scalability

Shape adjacency
graphs [2]

Sensitive to image distortions, low repeatability,
low robustness, impractical on real datasets

TABLE I
TABLE SHOWING BRIEF TAXONOMY OF THE MATCHING ALGORITHMS AND

THE REPRESENTATION SCHEMES IN VARIOUS APPLICATIONS, THE STATE
OF THE ART

A. Related Work
Table 1 shows a brief taxonomy of literature and the state

of art. The application of graphs to pattern recognition (PR)
tasks have been dealt in two directions. The first one involves
improving the efficiency of the graph matching process to
increase its applicability to PR. The second one deals with
finding better representations to model the feature sets so that
the matching process becomes tractable. In the graph matching
front, polynomial solutions to graph matching problems such
as graph-subgraph isomorphism [9] and maximum common
subgraphs [5] dealt with the problem of finding exact sim-
ilarity. Since exactness would make the algorithm sensitive
to descriptor repeatability, inexact techniques such as error
tolerant search using the graph edit distance [6] have been
proposed. One classic approach formulated the graph matching
problem as a graduated quadratic assignment problem [10].
Another sub-optimal solution is a greedy approach to find
the maximum similarity between labelled graphs and has
been applied to compare CAD diagrams in [7] From the
image retrieval perspective the visual words approach first
proposed in [8] provides a very robust set of features which
can be extended by encoding the geometry information. This
problem has been addressed very recently in [4] where best
co-occurrences between visual words are learned by frequent
itemset mining and are used for retrieval. In our approach there
is no requirement of training data and the CTree proposed
here models the hierarchy of collocations. Modelling spatial

adjacencies hierarchically is a popular concept in database
metric-space literature [11]. The concept has been applied
partially to content based retrieval in [12], where a shape
is made into parts recursively and adjacency between pixel
groups is modelled as a walkthrough.

II. GEOMETRY ENCODING AND MATCHING

Encoding image-geometry in a graphical structure requires
that the ‘parts’ (nodes) and the ‘relationships’ (edges) are
properly defined. Once the geometry is encoded, matching
a pair of graphs is the next challenge. A proper tradeoff
needs to be achieved between encoding and matching, so that
the matching scheme fully exploits the encoded properties.
This section will explore two encoding schemes and their
corresponding matching schemes. The two setups compared
will emphasize various aspects of graph structure and their
effects on the matching scheme. In either case, the parts are
required to be invariant under various transformations and
possible occlusions, such that the representation is repeatable.
Segmenting patches and representation by a descriptor is pro-
posed in [2]. To show invariance to projective distortions we
use the MSER region detector [13], which is highly repeatable
and robust to various transformations. To describe the detected
regions we use the SIFT descriptor which returns a 128-
dimensional vector describing the orientation of gradients in
the detected region [14].

A. Encoding
Nearest-Neighbor Graphs: One graphical structure that

can be used to encode the geometry is the Nearest Neighbor
graphs (NN-Graphs). This is constructed by placing edges
from each node to nodes in a fixed neighborhood threshold τ .
The nodes contain the SIFT descriptor of the interest region
depicted by the node. This configuration has the advantage
that the relationships in the local neighborhood of a feature
will be properly modelled. Even after reasonable projective
transformations the local relationships will be maintained.
The edge placement between two nodes {vi, vj} which is
represented by the entry in the graph adjacency matrix is

Aij = 1 ⇐⇒ dist(vi, vj) < τ

Here τ regulates the sparseness of the graph, dist(vi, vj) is
the euclidean distance between the detected regions. The role
of τ is that for a very large value, edges are placed between
each and every pair of nodes. Since the extra information
about the arrangement is encoded only in the presence or
absence of an edge, an edge between every pair indicates
nothing about edge relationships and thus serves no purpose.
Similar case holds with very low values of τ , resulting in
almost no edges at all(See Fig 2). The most optimal value of
τ is one that models only the necessary and sufficient number
of edges such that the overall representation is discriminative.
For an optimal value of τ , though a reasonable sparseness is
achieved, if there are nodes in a large number of small groups
scattered throughout the image then within these groups, a
fully connected subgraph is formed, which is redundant. The

(a) τ = 30 (b) τ = 50 (c) τ = 80 (d) τ = 120

(e) CTree

1. Find best matching nodes V1,V2
2. Evaluate neighbours of the node-pair n(V1) x n(V2)
and find the best mapping of neighbours that produces max-score
3. Eliminate one to many mappings

NN-Graphs C-Trees

1. Find all best matching nodes V1,V2 and scores
2. For every new linkage in both: Find best two pairs out of the four
{V1’,V1’’} X {V2’,V2’’}, based on previous level scores
3. Comparision at every linkage only on 4 nodes always

(f) Matching schemes

Fig. 2. The figure above (a)-(d) show NN-graphs built with different τ value, thus with different densities. (c) is well represented out of the lot but still
there is lot of redundancy (e) shows a CTree built on 20 nodes, (f) shows the matching scheme in detail

complexity of matching these graph configurations to find
the maximum similarity is approximately O((|V i| × |V j |)2).
For graphs with very large number of nodes this complexity
turns out to be a computational bottleneck. This problem is
addressed in the graphical model called the Collocation Tree
as explained below.

Collocation Trees: The collocation tree (CTree) is a
structure which models only the set of necessary relationships
thus eliminating the redundancy seen in a NN-Graph. To do so,
at every level of the CTree, each unit (node) is only linked to
one other unit. Every level groups into pairs, the units formed
in the previous level. This successive grouping is achieved
through an agglomerative clustering over the initially detected
regions. In the first phase of the clustering process pairs of
nodes that are within a distance threshold are grouped together.
In the next level pairs are made out of the initial groups and so
on leaving two groups of nodes in the last-but-one step which
are merged into one finally. This is inspired from the concept
of distance based indexing in metric space literature [11]

The collocation linkage process can be formulated as fol-
lows. Let the total node-set be V consisting N nodes. Assume
level l contains the node set Vl. The level l + 1 is formed by
applying a function link over Vl.

Vl = {vk, . . . , vk+m}

Vl+1 = link(Vl) = {vk+m+1 . . . , vk+m+p}

N

2l−1
≤ m <

N

2l−2
;
N

2l
≤ p <

N

2l−1

Since the regions are grouped hierarchically based on the
nearness, adjacency relationships will be preserved as good
as in NN-Graphs. In addition to that each level of grouping
will provide a different level of granularity from coarse to
fine (See Fig 3). Thus direct region match will only happen at

the lowest level. For each consecutive level, the score will be
guided by the score from the previous level. The number of
comparisons will be greatly reduced thus bringing the expense
similar to a normal set-match. Each level provides a matching
score at a different resolution. The efficiency of this process is
emphasized in the fact that every node will be linked to another
node with minimum redundancy thus the matching process
will only involve one quadratic assignment (i.e., matching one
pair with another) for each linkage instead of trying to match
n nearest neighbors of a pair of nodes ([7], [10]).

B. Matching
Given two general graphical structures G1 and G2, the first

possible method to match them is to find if both the graphs
are isomorphic and output a 0/1 similarity score. This would
be exact graph matching when G1 is a exactly similar to G2

or is exactly a part of G2. In complexity literature this is an
NP complete problem and some approximate solutions have
been found [15] to break the complexity. In this case, exact
graph matching will not be able to solve the problem. Due
to low repeatability of detectors when there is discrepancy in
even one of the nodes, an exact graph matching algorithm will
output a 0. The same problem applies using graph-subgraph
isomorphism as well. The next possible approach is to find the
maximum common subgraph(MCS). Given two graphs G1 and
G2, the MCS is the graph g that is common to both graphs
in terms of node and edge configurations. To find MCS all
possible permutations are to be evaluated . Effective steps
have been proposed to break the complexity of this problem
in [5]. Using MCS will solve the problem to a certain extent
as there is more flexibility to the size of the subgraph and
the graphs could be of any sizes. However the problem of
low repeatability still haunts, as even the parts of the graphs

which are almost similar will be left out. Judging from these
aspects it is imperative that the exactness constraint has to be
relaxed. Thus the requirement is that the algorithm has to find
the best subgraphs in G1 and G2 that are as similar as possible
and a score has to be given that depicts the similarity of
these subgraphs. This is the guiding characterstic employed for
matching both the encodings NN-graphs and CTrees)described
above

NN-Graphs: Given two graphs G1 : {V1, E1} and
G2 : {V2, E2} each node vi in G1 is associated with a set of
nodes in G2 by the function m(vi) which defines the mapping
to identify the related nodes of vi in G2. Thus each node
will be initially mapped to a set of nodes. The problem is
to evaluate all the mappings of nodes, such that an overall
mapping is found which results in a maximum similarity for
the pairs of nodes within. To find the maximum similarity,
the algorithm builds the set of mappings between the node-
sets of two graphs G1 and G2 . After each of the mappings
are found, the process is to evaluate all the combinations of
mappings for the best overall similarity score such that this can
be used as the maximum similarity between the two graphs.
This would find the global maxima of the scores. However
this process is also NP-complete. This is because, though all
the combinations of all the mappings, will be less than the
entire search space i.e., 2(|Ni|×|Nj |), since the mappings are
for a reduced number of nodes, even then it will be highly
expensive. Thus we adopt an approximate solution by the use
of greedy evaluation of mappings. This is outlined briefly in
the algorithm 1. This is a variant of the algorithm proposed
for comparing CAD diagrams in [7].

To find the maximum similarity, each of the matches and
their neighbors are evaluated. For every new match, the pair
is eliminated from the search. At each level the match with
best score for the node in Gi to the set of remaining nodes
in G2 is evaluated see figII. This greedy approach may not be
able to find the most optimal solution. The matched sets and
the similarity score will be sub optimal. It runs in polynomial
time i.e, O((|N i| × |N j |)2)

CTrees: To match a pair of CTrees only a set of pairs
at each level has to be compared. The cumulative score for
each level is obtained by the individual similarity scores of
the pairs in that level. To efficiently compute the final scores,
an m × n matrix called the guide-matrix G is used. m and
n are the number of nodes in either of the trees. Initially
the k best matches for each of the first tree’s leaf-nodes in
the second tree’s leaf nodes are computed, along with the
matching scores. These are filled in the corresponding entries
in the guide matrix. Whenever a linkage from each of the trees
is to be compared, the comparison process has to find the best
pairs between four nodes say v1i, v1j and v2p, v2q . The four
pairs are evaluated and the best two are picked which result in
a similarity score which is entered into the corresponding entry
of G. For the next level this score is used as a group score
instead of evaluating all similarities within the group. The
algorithm for matching a pair of CTrees is given in algorithm 2.
As mentioned earlier each matching step is a single quadratic

Algorithm 1 Calculate MaxSim from all mappings
simmat ⇐ similarity matrix between all nodes v1 × v2

bestpairs ⇐ 0
for i in all matches m do

for ja, jb in all pairs of match i do
nb1, nb2 ⇐ immediate neighbors of ja, jb {P}hase 1
Find best match bm1, nb1(k) in nb2; retain only global
best
Add {j, bm1} to bestmatches,Eliminate matched pairs
{P}hase 2
Find best match bm2 for nb1(k) in nb2

Add {j, bm2} to bestmatches,Eliminate matched pairs
{P}hase 3
Retain best matched pair out of all repetitions

end for
scr(i) ⇐ avg similarities of pairs in bestmatches

end for
MaxSim ⇐ mean(scr)

Algorithm 2 Calculate Similarity scores of CTrees CT1 and
CT2

Initialize gdmatm×n ⇐ 0 {Guide matrix: 〈m, n〉 ⇐ no of
elements in CT1 and CT2}
for i, j ⇐ 1 : v1, v2 (Level1) do

gdmatv2×v2
⇐ L1− Dist(v1, v2)

end for
for all successive levels l do

for each new node on CT1 and CT2 do
vi12 = link(vi1, vi2) and vj12 = link(vj1, vj2)
gdmat(i12, j12) = greedy −max(〈i1, i2〉 × 〈j1, j2〉)

end for
sim(l) = avg(gdmat(i12, j12))

end for

assignment.
In cases with large number of nodes, where it is not

necessary to link the regions right from the lowest resolution,
a further approximation can be used. Prior to agglomerative
linkage, the regions are clustered by a K-means into small
groups. The cluster centers will be used as initial points in
the linkage process. Performing this step prior to linkage will
prune the bottom few levels of the tree based on the size of the
initial clusters. This step can be used to considerably reduce
the matching time in cases where very intricate level of detail
is not needed.

III. INDEXING GRAPH-BASED STRUCTURES

Pairwise matching scores within pairs of graphs will be able
to classify the different classes of images represented by the
graphs. However in the retrieval scenario, naively matching
the graph built from the query image to all the graphs in
the dataset will be computationally expensive and cannot be
used in online retrieval. Thus the graph dataset has to be
efficiently ordered with an index structure such that retrieval

Query Image
CTree Q

First
Result Set

Refined
Result Set

Still Refined
Result Set

Ranked Results

PSfrag replacements

W1

WN

Wk

C1

CN1

Ck

CC1

CCN2

CCk

Fig. 3. The figure above depicts a schematic of the CTree indexing process as described in III. For the first level the result set arises from the words in the
lowest level of CTree Q. For each new level, words are the collocations of units in previous levels. The refined set is formed from the collocations of that
level in Q and the retrieved units from previous level. Finally the results are ranked.

happens with the same expense for any number of images in
the dataset. This is essential for the scalability aspect of the
system. To efficiently index a dataset of graphical structures
D, there are two possibilities. One possibility arises from the
concept of best describing feature vector for a class of graphs.
The assumption for this approach is that, from the pairwise
matching scores within the dataset, it is possible to distinctly
cluster the graphs into separate classes. For each cluster, there
is a possibility to extract a feature vector that best represents
the cluster. The requirement of this feature vector is that it
should be a precise representative of the set of graphs and
it should be discriminative enough to discriminate between
two clusters of graphs. The feature vector extracted from the
query image-graph will be matched to the feature vectors of
the clusters. This method will extract the best matching cluster
that corresponds to the query image.

The field of spectral graph theory offers possible solutions
to extract representative feature vector for a cluster of graphs.
Based on the method described for 3D object recognition in
[16] a possible approach is to extract spectral vectors for a
cluster of similar graphs. In this method, the spectral vector
is the representative feature vector. For a query graph that is
isomorphic with any of the clusters will have the same spectral
vector. The advantage with this approach is that it is elegant
and will provide an efficient representation to index well-
defined clusters. However there are some drawbacks which
make the approach implausible for large scale retrieval. One
major complaint in the spectral approaches is that they are too
rigid to be used in situations where there are inexact similarity
metrics in play. In cases where the cluster of graphs are not
exactly isomorphic to each other(and thus contain different
number of nodes), the permutation matrix cannot be built as is.
To do so, the graphs have to be padded with zeros to normalize
the size to the cluster. Doing so, the spectral vector will not be

the best descriptive representation. Another complaint is that
the representation is rigid and will not support the retrieval
of partly similar graphs, since it will be indexing only well
defined clusters.

The second approach is motivated from the bag of words
based retrieval [17] and can be used to index the collocation-
tree. The bag of visual words approach forms distinct visual-
codewords from the dataset by clustering the sift descriptors
into a fixed number of bins. The C-tree can be built from
the visual words that are detected in the image and their
spatial collocation information. In the classic bag of words
based retrieval, the images are indexed with the visual-words.
Given a query image with a set of visual words, all the images
that are indexed by this set of words are retrieved and the
results are ranked by performing a logical-AND operation.
The collocation tree, has the set of visual words present in
the image at the lowest level. For each higher level, the
collocations form something similar to bigrams of the words in
the lower level. Except here in this case only one bigram will
be chosen for each word. The set of existing bigrams for the
dataset will be greater in number than the words, yet finite.
Thus the solution is to index the each level of collocations
separately, and refine the retrieval result hierarchically over
levels.

To do so for the first level, the documents will be indexed
by the total number of visual words in the dataset. Let the
set of words be W = {w1, . . . , wp} and the documents in the
dataset be D = {d1, . . . , dq}. For the first level in the index,
each word wk will have a set of documents Dwk

indexed. For
the second level, the dataset is indexed again with the visual-
word-collocations in the dataset. At the second level each entry
will have significantly lesser number of documents than at the
first level since the number of collocations are higher than the
set of words. This process can be continued to approximately

half of the tree height. When the level of the collocations
increase after a level, most index entries will have only one
document indexed. At this point the indexing hierarchy can be
truncated.

While retrieval, when a query graph is given, the set of
documents that have the maximum number of visual words can
be retrieved by the standard retrieval process of performing a
logical AND between result sets for each word. After a set
of potential candidates are extracted by this method, for the
next level, the subset of collocations that correspond to the
candidate words in the first level are extracted and only the
documents that are indexed with the reduced subset of entries
are used for comparison. This process continues till the last
level. The major advantage with this method of indexing is that
there will be an increase in the precision of retrieved results,
without actually having to match the query CTrees with the
entire dataset. With the method of hierarchical indexing only
a small part of the index will be used at each level to refine
the retrieved set.

IV. DISCUSSION

The complexity for matching CTrees is considerably lower
than for matching NN-graphs since the search space will be
very directed. Where the NN-graph matching has to solve
the quadratic assignment problem for a node pair and all
its neighbors at each step, the CTree has to solve it only
for a pair of node pairs. This aspect will greatly reduce
the overall cost of matching. The complexity will be ap-
proximately O(|V1 × V2|log(|V1 × V2|)). Thus for a pair of
graphs with, say, 30 nodes each, NN-graphs approach needs
to perform a maximum of 810000 operations where as the
CTree will need perform a maximum of only 2670 operations.
The results will be discussed in detail in the next section.
The NN-graph representation tries to encode a larger set of
relationships consistently for a proper value of τ . The problem
with this approach, as discussed above, is that there is lot
of redundancy in this scheme in terms of the number of
relationships modelled. Though the CTree aims at improving
it by only modelling the right set of relationships, there is
a small disadvantage in the latter scheme. One problem is
that the collocation linkage process imposes a sort of rigidity
on the nodes that are grouped together. If we think of the
collocation linkage process as bigrams, the bigrams that are
captured are controlled by the collocation process. This aspect
will affect the matching process wherein an error in the match
at the lowest level will be carried forward to higher levels.
This problem can be corrected by employing a priority based
linkage scheme where the best neighboring node to be linked
to a node will be found out by a weighted priority that is
calculated by the most linked neighbors from the rest of the
dataset.

V. RESULTS

For the experiments the dataset used is a subset of the
University of Kentucky’s ukbench database. We have used
400 images (100 classes x 4 instances) to run the matching

experiments. The dataset contains images of scenes taken
with small projective distortions within them. The dataset is
processed and the MSER detector is run on it and the regions
detected are given descriptions with the SIFT 128-dimensional
vector. The two approaches explained in the previous section
are applied in different settings of sparseness constraints.

A. NN-Graphs
The images chosen for the experiments, subjected to the

MSER detector, output around 40 to 600 interest regions. Thus
the graphs constructed on these configurations are quite varied
in terms of densities and the time taken to match. There are
mainly two variables that affect the computational time when
it comes to the NN-graphs. The size of the node-set and the
sparseness of the graph. To measure the effect of either of
these factors on the matching time, graphs are constructed on
all images with number of features ranging from 40 to 600 and
is matched with graphs built on images of the same class. For
each configuration the density was also varied by increasing τ
the edge placement threshold distance. In figure 5 and table 2
time taken for NN-Graph matching at different node-set sizes
are given. At 200 nodes the matching time is 5 seconds, but at
500 nodes, the time taken goes close to 2.5 minutes. The table
shows the time taken for different values of the threshold τ
it can be seen that at τ = 150 and a nodeset size of 500 the
matching takes close to 20 minutes.

Fig. 4. The left figure shows top-3 retrieval results with a query image. The
first set shows results with NN-graphs with a low τ value which retrieves a
false result due to a considerable overlap with the descriptor set. The second
set of results are the same as retrieved by NN-graph with τ = 50 and by the
CTree approach. Bar graph showing retrieval accuracy at different node-set
sizes for different values of sparseness of the NN-graph and CTree with and
without initial K-Means

Fig. 5. Figure above the first plot shows the computational time taken for different nodeset sizes with the NN-graph approach, the second plot shows time
taken without and with initial clustering in the CTree approach. Notice NN-graph takes 160 seconds at 500 nodes whereas CTree takes close to a second, see
V-D

B. Collocation Trees
In similar settings as described for the NN-graphs, the

collocation trees are built on the MSER detected regions. For
the experiments we have used two different configurations of
CTrees. The first configuration is to link all the co-occurrences
right from the lowest resolution. Thus the height of the tree
will be log(N) if the size of the nodeset is N. One other
experiment that has been performed is when the initial nodeset
is clustered using a K-means clustering algorithm with the
clustersize set such that approximately a preset number of
nodes are clustered into each bin. Now the whole cluster can
be used as a patch in situations where there is a bottleneck in
terms of computational time owing to the very large number
of nodes. In such cases the height of the tree will be log(C)
where C is the number of clusters that are formed by K-means.
In the plot shown in Fig 5 the time taken for different sizes
of the nodeset are given. The two curves show the times with
and without clustering the initial node configurations. Table 2
shows the comparison between the time taken for the matching
with different edge densities for the NN graphs and the two
cases where the initial set of the CTree is linked with and
without initial clustering. Observe that matching a pair of
CTrees take less than a second for 500 nodes where it takes
close to 160 seconds for matching NN-Graphs

C. Indexing
The indexing method described in Section III and as de-

picted in Fig.III has been employed to index the CTrees con-
structed from the dataset. The total number of MSER interest
regions and and so the SIFT-descriptors in the dataset are
around 26450. These descriptors are clustered using kmeans
into 200 bins, which are used as visual words. Thus while
indexing the total number of visual words i.e., 200 will be the
number of entries in the first level of the index. The second
level of the index contained about 800 entries which depict
the total set of collocations of the words(first order). The
second level contained about 1300 entries. The hierarchical
index was constructed till 2 levels and has been stopped there
since about 80% of the entries contained 1 or 2 collocations

indexed. Proceeding any further would result in only one
collocation indexed with every entry for almost all of the
entries. The time taken to retrieve the set of results for the
first level in the index was on the order of 0.2 seconds which
is essentially the computational time taken for the classical
bag of words based retrieval. The total time taken to traverse
all the levels in the index is approximately 2.5 secs. This
is compared with the naive matching based retrieval where
the query CTree is compared with all the CTrees in the
dataset and the results are ranked according to the matching
scores. This process took an average of 13 secs. However, it
is to be noted that as the dataset size increases, retrieval by
traversing a hierarchical index would yield much faster results
as the number of operations will not increase directly with
the number of Ctrees to compare, which is true in the naive
matching based retrieval.

D. Analysis
The experiments have been implemented in Matlab and

run on a 1.8GHz machine on 64-Bit platform. For retrieval
performance, the top-5 images have been retrieved and the
precision at 5 images is calculated. The various settings at
which this is tested involved changing the node-set sizes and
also the τ value which regulates the sparseness. For lower τ
values, edges will be placed between very few pairs. Thus the
geometry wont be encoded properly, so is the case for larger
τ values. For CTrees at large node-set sizes, the precision
is higher when there is initial clustering. For smaller node-
set sizes initial clustering reduces the precision as the level
of detail at lower resolutions is lost. For every nodeset size,
CTrees show similar or better precision than NN-graphs.This
is also reflected in the search results shown in the figure.
The computational complexities of matching the structures are
shown in Fig 5 and Table 2

For NN-graphs as noted earlier, when size increases above
200 nodes the time goes above 5 seconds to match two graphs
(see fig 5). At 500 nodes it takes about 2.5 minutes. This
presents a scalability issue. However in most cases with large
nodesets, most of the nodes are generated by background clut-

τ = 5 τ = 20 τ = 50 τ = 80 τ = 150 CTree CTree+K-means
NS = 40 < 10−4 0.0001 0.002 0.15 0.9 0.0049 0.009

NS = 80 < 10−4 0.02 0.09 1.12 4.14 0.0139 0.0022

NS = 150 0.0001 0.15 0.53 3.6 8.2 0.056 0.0071

NS = 200 0.0015 1.263 3.29 9.256 26.5 0.171 0.0117

NS = 300 0.0027 3.231 20.736 46.29 102 0.356 0.0246

NS = 400 0.0059 11.29 65.53 180 416 0.476 0.0429

NS = 500 0.009 25 160 420 1209 0.772 0.0546

TABLE II
TABLE SHOWING TIMES IN SECONDS TAKEN FOR MATCHING NN-GRAPHS AND CTREES AT DIFFERENT SETTINGS OF τ AND NODESET SIZES NS

ter. MSER is a very robust detector and unlike other detectors
would return very repeatable results. In most practical cases the
node-set size would be at a maximum of 200 nodes. Thus NN-
Graph approach is not very impractical. When there is very
high background clutter like fine detailed patterns, the detector
outputs most regions in that area and such areas are mostly
useless background clutter. Thus if a method were there to
discount these areas beforehand then NN-graph approach can
be used to good advantage

The second plot in figure 5 shows the time taken for various
node-sets using the CTree approach. The two curves show the
times without and with initial clustering by K-means. Initial
clustering implies that the nodeset is clustered by K-means to
form small patches with some nodes. The number of clusters
were one-tenths the size of the nodeset or ten nodes whichever
is high. This constraint of a maximum of 10 nodes is laid
since for very large nodesets due to clutter, clustering into
one tenth clusters will prove useless and affect precision of
match. When the initial clustersize is 10 approximately the
bottom two levels of the tree are removed thus resulting in a
faster access. Even without initial clustering, the time taken is
less than 1 second even for 500 nodes. This makes the CTree
method better suitable for large-scale operations for large node-
sets.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have discussed a representation-scheme for
efficiently modelling parts based representations and matching
them. Though the matching process will be sub-optimal it
can be used to large-scale applications without concern to the
bottleneck of computational time. For future work, the next
logical extension is to index a large database of graphs and
employ this technique in large-scale image retrieval.

REFERENCES

[1] F. Chevalier, J. P. Domenger, J. Benois-Pineau, and M. Delest, “Retrieval
of objects in video by similarity based on graph matching,” Pattern
Recogn. Lett., vol. 28, no. 8, pp. 939–949, 2007.

[2] A. Hlaoui and S. Wang, “A new algorithm for graph matching with
application to content-based image retrieval,” in SSPR/SPR, 2002, pp.
291–300.

[3] R. A. Baeza-Yates and G. Valiente, “An image similarity measure based
on graph matching,” in SPIRE, 2000, pp. 28–38.

[4] J. Yuan, Y. Wu, and M. Yang, “Discovery of collocation patterns: from
visual words to visual phrases,” in Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, 2007, pp. 1–8.

[5] H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone, and M. Vento, “A
comparison of algorithms for maximum common subgraph on randomly
connected graphs,” in Proceedings of the Joint IAPR International
Workshop on Structural, Syntactic, and Statistical Pattern Recognition.
London, UK: Springer-Verlag, 2002, pp. 123–132.

[6] M. Neuhaus and H. Bunke, “A probabilistic approach to learning costs
for graph edit distance,” in ICPR ’04: Proceedings of the Pattern
Recognition, 17th International Conference on (ICPR’04) Volume 3.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 389–393.

[7] Pierre-Antoine and C. Christine, “Measuring the similarity of labeled
graphs,” in Proc. of International Conference on Case-Based Reasoning,
2003, pp. 80–95.

[8] J. Sivic and A. Zisserman., “Video google: A text retrieval approach to
object matching in videos,” in Proc. of the International Conference on
Computer Vision, October 2003, pp. II:1470–1477.

[9] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (Sub)Graph
Isomorphism Algorithm for Matching Large Graphs,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 26(10), pp. 1367–1372,
2004.

[10] S. Gold and A. Rangarajan, “A graduated assignment algorithm for graph
matching,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 4, pp.
377–388, 1996.

[11] T. Bozkaya and M. Ozsoyoglu, “Indexing large metric spaces for
similarity search queries,” ACM Trans. Database Syst., vol. 24, no. 3,
pp. 361–404, 1999.

[12] S. Berretti, G. D’Amico, and A. D. Bimbo, “Shape representation by
spatial partitioning for content based retrieval applications,” in ICME,
2004, pp. 791–794.

[13] K. Mikolajczyk and C. Schmid, “Scale and Affine Invariant Interest
Point Detectors,” International Journal of Computer Vision, vol. 60,
no. 1, pp. 63–86, 2004.

[14] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proc. of the International Conference on Computer Vision ICCV, Corfu,
1999, pp. 1150–1157.

[15] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years of graph
matching in pattern recognition,” in Proc. of the Intl. Jnl. of Pattern
Reconition and Artificial Intelligence IJPRAI, 2004, pp. 265–298.

[16] R. C. Wilson, E. R. Hancock, and B. Luo, “Pattern Vectors from
Algebraic Graph Theory,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27(7), pp. 1112–1124, 2005.

[17] J. Sivic, F. Schaffalitzky, and A. Zisserman., “Efficient object retrieval
from videos,” in Proc. of the 12th European Signal Processing Confer-
ence EUSIPCO 04, Vienna, Austria,, September 2004.

