
Refinement in 3D Reconstruction using Cheirality
Constraints

Sunando Sengupta and Sukhendu Das
Visualization and Perception Laboratory

Department of CSE
IIT - Madras, Chennai - 600036, India

Email: sunando@cse.iitm.ernet.in and sdas@iitm.ac.in

Abstract—The problem of 3D reconstruction has become
more and more important with the increase in demands from
virtual reality, visualization, security and biomedical industries.
Uncalibrated reconstruction, from a set of images taken from
any ordinary CCD camera, is complicated and difficult due
to the presence of non-linear constraints on the scene. Any
linear solution suffers from numerical instability or it re quires
additional scene information and camera information to be
provided. Here we present a reconstruction method which works
without any additional camera parameters after we obtain the
plane at infinity by using cheiral constraints or scene information.
We also study the ambiguities arising due to various types of
reconstructions. We show the results using synthetic data and
real world data.

Keywords: 3D Reconstruction, Epipolar Geometry, Recon-
struction Ambiguity, Cheirality, Auto-calibration.

I. I NTRODUCTION

The problem of reconstruction of a 3D shape from a set of
images has been in attention and a subject of study for the past
two decades. With the development of multimedia and virtual
reality industry the need for getting a precise 3D model for any
real world object becomes more and more important. Different
applications in computer graphics require that a 3D model
of the object be created from an array of images taken with
various exterior orientations. But the problem of reconstruction
suffers from the problem of projective ambiguity, which best
stated as, the reconstructed model differs from the original
3D model by a projective transformation [1], [2], [3], [4],
[5]. It has been shown that for metric reconstruction some
additional scene information is required other than the image
correspondences. This information may be presented in the
form of parallelism in the scene, or in form of any information
about the camera internal parameters. In addition to the scene
information, presence of noise in the images and errors in
correspondences make the procedure numerically unstable,
and in most of the cases a unique solution does not exist,
and hence a least squares approximation is often employed.

In this paper, we present a robust method for reconstruction
once the plane at infinity (π∞) is first established by cheiral
inequality or through scene information. The method of re-
construction uses the (π∞) to obtain the infinite homography,
induced by π∞, for obtaining metric reconstruction. But
such methods are prone to numerical sensitivity as often the
’Absolute conic’ image is not positive definite and thus the

method fails. We try to overcome such numerical sensitivity
by using square-root covariance which guarantees positive
definiteness, making the algorithm more robust. We also study
reconstruction ambiguity arising due to Triangulation method
[6]. A projective reconstruction ensures that a recovered struc-
ture will be a projectivity away from the actual scene. We try
to model ambiguity on simulated data and average it over a
large number of iterations. The paper is organized as follows:
Section 2 discusses about the general camera geometry and
the ambiguity in reconstruction. Here we give the general
stratified reconstruction process. In Section 3, we speak about
Auto-calibration and Cheirality. In section 4 we introduce
our algorithm and prove why it will work. We present the
experimental results in section 5 and conclude in section 6.

II. PROJECTIVERECONSTRUCTION ANDCAMERA

GEOMETRY

A point in a 3D scene is represented by its homogenous co-
ordinates, i.e. a 4D vector[X, Y, Z, 1]T and the 2D projection
as [x, y, 1]T . We consider a pinhole camera model where the
image plane is defined byz = f . So under the pinhole camera
model a 3D point with the coordinatesX = [X, Y, Z, 1]T is
mapped intoxp = [fX/Z, fY/Z, f ]T . So the camera can be
represented by a matrixP that transforms a set of 3D space
points to 2D image points, as

xp
i = PXi, i = 1, 2, ..., N (1)

The Camera matrix contains the information of the camera;
both the internal parameters, namely the zoom, focus, skew
and external parameters like rotation and the translation with
respect to the world coordinate frame. The camera matrix is
given as

P = K[R|t] (2)

where, K contains the camera internal parameters,R andt are
rotation and translation parameters.. The internal parameters
are arranged in an upper-triangular matrix,

K =





αx s x0

αy y0

1



 (3)

whereαx andαx represent the focal length in terms of pixel
dimension in thex and y direction respectively,s is the



camera skew and(x0, y0)
T are the coordinates of the principal

point [1]. For most of the cameras the skew parameter, s,
is zero (square pixels). The camera calibration is important
as it determines the Euclidean properties, such as the angle
between two rays, which is important for reconstruction. An
image point back-projects to a ray defined by the point and
the camera center. The calibration gives the direction of the
projected ray [2]. The Image of the Absolute Conic (IAC) [7]
is also related to the camera calibration parameters as

ω = K−T K−1 (4)

Thus,

ω =
1

α2
xα2

y

[

c1 c2 c3

]

(5)

where,

cT
1

= [α2

y, − sαy, − x0α
2
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cT
3
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2
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xy2

0 + (αyx0 − sy0)
2]

So, once the IAC is known to a scale, the camera parameters
can be determined using Cholesky Factorization [7] and hence
the metric reconstruction can be performed. So restoring the
IAC or its dual image (DIAC, given byω∗ = ω−1 = KKT )
to its canonical position will help in realizing the metric
reconstruction.

Now given two views of the same object, where each
view differs by some amount of rotation and/or translation,
the points in one image can be correlated with another set
of points in the other image. This problem is called the
correspondence problem [8] in stereo. This concept can be
generalized to the three-view correspondence problem [9] or,
in general, the N-view correspondence problem [10]. The
geometry involved with the intersection of the image planes
with the pencil of the planes having the same baseline as axis
(the baseline is the line joining the camera centers) is termed
as epipolar geometry (see Fig 1). As the views of the object
are given relative to each other, the first projective camera
matrix can be written asP0 = K0[I|0] where,K0 contains
the camera internal parameters. The camera axes and origin
are aligned with the world origin and axes respectively. A
rotation of the camera is equivalent to matrix multiplication
of the camera matrixP0 by an appropriate rotation matrixR
and translation vectort. So the camera matrix for the second
camera becomesP1 = K1[R|t]. In a reconstruction problem,
the input is a set of images from which the scene needs to be
reconstructed. Given the images the first task is to compute the
correspondences, which can be done using a standard feature
tracking mechanism like Harris corner or KLT feature tracker
[11], [12]. Now given any image pair, the correspondences
in both the images are related by the Fundamental matrix,
[13], [1], [14], [3] as x

′

iFxi = 0 where xi and x
′

i are the
pair of image correspondences. From epipolar geometry [1],

(a)
Fig. 1. Epipolar geometry for the case of 3D point reconstruction from two
images.

[15] we obtain the projective camera matrix (corresponding
to the image pairs) from the Fundamental matrix. Now, the
correspondencesxi ↔ PXi andPXi ↔ P

′

X
′

i are equivalent.
Thus the equations(xi) × (PXi) = 0 and (x

′

i) × (P
′

Xi) = 0
(× refers to cross product between two vectors) can be
rearranged in a form to obtain 3DXi, as:

AiXi = 0 (6)

The right-null vector ofAi will give the desired 3D point
[1], [6], [2]. But due to the presence of noise and errors in
correspondences the null space cannot be guaranteed to exist.
In such cases, a linear least squares solution can be obtained
via the SVD [16] ofAi. For the case of uncalibrated cameras,
the 3D points are computed only up to an arbitrary projective
transformation in 3D space. For any invertible4 × 4 matrix
H representing the projective transformation of 3D space,
replacing each pointXi by HXi and the camera matricesPi

by PiH
−1, we get the same image points as

xi = PXi = PiH
−1HXi (7)

Thus the reconstructed camera matrix and actual camera
matrix differs by a projective transformation [1]. Hence, using
only the image correspondences, the 3D reconstructed points
and the corresponding camera matrices can be obtained only
up to a projective scale [17], [14]. So it is essential to get
some additional information about the scene to compute the
3D structure from a given pair of images. To resolve this
kind of ambiguity a step-wise procedure calledStratified
Reconstruction. [18], [1], [2] is used. In Stratified reconstruc-
tion additional scene information is fused in to refine the
projective model progressively to an Affine transformation
first and finally to a Metric transformation. The most common
method used to resolve this kind of ambiguity, is to identify
vanishing points in the scene and then identify the plane at
infinity π∞. As in case of Affine transformation, the plane at
infinity π∞ is preserved to its canonical position, but not in
projective transformation. Identifying the planeπ∞ can bring
down the uncertainty from projectivity to affinity. A projec-
tive reconstruction transfersπ∞ to some generic positionπ,
resulting in the arrival of the vanishing points. So, given the
plane at infinity in its projective positionπ the projective
transformation H will act on the plane contravariantly such



that H−T π = (0, 0, 0, 1)T . Thus the resulting transformation
restoring to affinity will be

H =

[

I | 0
πT

]

(8)

The refinement from affinity to metric reconstruction can be
performed by identifying the IAC [7], [18]. The Absolute
Conic is equivalent to finding the camera calibration parame-
ters. The Absolute Conic, a planar conic lying on the plane at
infinity, captures the metric properties, which transferred to its
canonical position (x2

1 +x2
2 +x2

3 = 0 on π∞) will restore back
the metric properties [7]. The image of the absolute conic isa
property of the image itself and is related to camera parameters
as given in Eqn. 5. The back-projection of this conic is a cone,
which intersects the plane at infinity at a conic, defining the
absolute conic. The absolute conic is related to the camera
internal parameters as given by Eqn. 4.

In Fig. 2 a simulated data of Rubik’s Cube is reconstructed
from two views differing by a rotation of 45 degrees and a
translationt = [-1, 0, 1] using stratified reconstruction. The
Affine reconstruction is obtained by identifying the vanishing
points in the orthogonal direction. The metric reconstruction
has been done with the knowledge of camera parameters,
obtained beforehand by any standard calibration method using
the calibration objects toolkit [19].

III. A UTO-CALIBRATION AND CHEIRALITY

Auto-calibration is the process of determining the camera
parameters from a set of image sequences of the scene. The
problem with the stratified reconstruction is the dependency of
external scene information (parallel lines in scene for trans-
forming to affinity) or camera parameters (for transformation
to metric). Often these information are not available and
hence it becomes essential to learn these parameters from
the sequence of images of the scene. The prerequisite for
auto-calibration is to have projective reconstruction from the
available image correspondences. For any projective camera,
P i = [Ai|ai], the auto-calibration constraint can be given as

ω∗

i = KiKiT = (Ai−aipT )K1K1T (Ai−aipT )T for i=2,..,m
(9)

wherepT represents the plane at infinity,i represents theith

camera. Form ≥ 3, the parameters can be solved and hence
the reconstruction can be performed. But as the constraints
are highly non-linear arriving at a global solution becomes
a very difficult task, and most of the optimization technique
suffer from local minima or the initialization problem. Linear
solution [1] for estimation of the camera calibration parameters
exists, which needs the knowledge of the plane at infinity. This
again requires either user intervention or the process of a non-
linear optimization. Similar constrains are expressed through
Kruppa equations on the IAC [2], [20].

A. Cheirality

Cheirality constraints arise from the fact that any point that
lies in an image must lie in front of the camera producing that
image [1], [2]. Using this idea, the scene can be determined
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Fig. 2. The synthetic Rubik’s Cube and its reconstruction. (a) The Rubik’s
Cube (b) The actual 3D structure of the Rubik’s Cube and the camera
positions. The camera positions are given by C1 and C2. (c) The images
of the Cube as viewed from the two cameras and their respective vanishing
points (d) Projective reconstruction of the cube from the two images (e) Affine
reconstruction (f) Metric reconstruction for calibrated case.

from two views up to a more restricted class of mappings
known as quasi-affine transformations, which are precisely
those projectivities that preserve the convex hull of an object
of interest. An invariant of quasi-affine transformation known
as the Cheiral sequence of a set of points is defined, and it is
shown how the cheiral sequence may be computed using two
uncalibrated views. The depth of a pointX = [X, Y, Z, T ],
with respect to the cameraP = [M |m], is given as [21], [1]

depth(X; P ) =
sign(detM)w

T||m3||

wherem3 is the last row of M andPX = wx. So, the sign is
given as

depth(X; P )
.
= sign(detM)wT (10)

where
.
= denotes equality of sign. The quantity

sign(depth(X; P )) is known as the cheirality of point
X with respect to camera P. Thus for any transformation



matrix H, transformingX and P as PH−1 and HX, the
cheirality transforms are

depth(HX; PH−1)
.
= w(hT

4
X)(hT

4
Cp)det(H−1) (11)

wherehT
4

is the fourth row ofH andCp is the camera center.
Thus if π∞ is mapped by a projective transformation H and
δ = sign(det(H)), then

depth(HX; PH−1)
.
= w(π∞X)(π∞Cp)δ (12)

For the point to be in the front of the camera the above
mentioned quantity must be greater than zero. Thus we arrive
at the cheiral inequality [21], [22], [23]

XT
i π∞ > 0 for all points i=1,..,n

δCjT π∞ > 0 for all cameras j=1,...,p (13)

Wheren is the number of points in the scene andp is the
number of cameras. Thusπ∞ can be computed from the
above inequality for eachδ = ±1 and hence a quasi-affine
transformation can be attained without any extra input scene
information [15]. Once the quasi-plane is known the camera
parameters can be computed from the projective camera ma-
trices in a linear least-square based solution using the infinite
homography [1], [7]. The infinite homography induced by the
plane at infinity is given by

Hi
∞

= Ai − aipT (14)

Hi
∞

represents the homography from camera[I|0] and[Ai|ai].
So the dual conic in Eqn. 9 is now

ω∗ = Hi
∞

ω∗Hi
∞

T
(15)

This can be rearranged as a 6x6 matrix A, composed of
elements ofHi

∞
, forming Ac = 0, wherec is composed from

the elements the conicω∗. A linear least squares solution
will yield a solution for c. But the matrix has rank 4, so
m ≥ 2 will give a solution toω∗ and the metric reconstruction
[7], [15], [21]. But the problem with the least-squares based
method is that the absolute conic is numerically instable and
may not be positive definite which is essential for Cholesky
decomposition [24]. This means that the camera parameters
cannot be decomposed always from the IAC and hence the
metric reconstruction cannot be done. We try to overcome this
problem in our proposed algorithm.

IV. PROPOSEDALGORITHM

The problem with using the plane at infinity,π, as estimated
from quasi-affine transformation (Eqn. 13) is that when trying
to obtain the DIAC,ω∗, may not be positive definite. Such
class of matrices is known as theIndefinite System[24].

The problem with any Symmetric Indefinite Systems is that
the formxT Ax can take any positive or negative value. From
the SVD based linear solution ofω∗(Eqn.15) we obtain an
indefinite system, which may have negative pivot. A symmetric
positive definite matrix has a positive ”weighty” diagonal [24]
(large diagonal entries) making all the eigenvalues positive.
For an indefinite system it ceases to be such a case, making

it unviable for cholesky decomposition. To overcome this
problem we follow the following approach.

Let A = UΣV T be the Singular value decomposition of
A ∈ ℜm×n. The cholesky decomposition of A is given by
A = KKT . Now for indefinite matrix systems, we define

Â = UΣUT (16)

We useÂ and undergo its cholesky analysis which is guaran-
teed to exist as the eigenvalues are replaced by the singular
values A. The singular values of A are determined through the
SVD decomposition of A. This is guaranteed to be positive
definite as

Â = UΣUT = (U
√

Σ)(
√

ΣU)T = RT R (17)

We take positive eigenvalues instead of positive pivots of the
matrix and prove it to be positive-definite [24], [16]. Let
C = AAT , the eigenvalues ofC are given by columns of
U , obtained through SVD ofA. Then

AAT = (UΣV T )(UΣV T )T

= UΣV T V ΣT UT

= UΣ2UT

= Â2 (18)

This comes from the fact thatV is orthogonal andΣ is
a diagonal matrix of singular values. So

√
Σ exists and

columns of U are eigenvectors ofAAT . Now, from spectral
theorem every real symmetric matrix can be diagonalized by
an orthogonal matrix, i.e.A = QΛQ−1, where columns of Q
contain a complete set of orthonormal eigenvectors andΛ is a
diagonal matrix formed from the eigenvalues of A [16]. Power
of any matrix can be obtained from the spectral theorem by
powering the eigenvalues asAk = QΛkQ−1. Thus we see
that Â is Squared Root Covarianceof A. The DIAC, obtained
via the infinite homography (Eqn. 15), is rectified by Eqn.
16 to obtainω̂∗ before obtaining the final metric rectifying
transformation. The rectified DIAC,̂ω∗, guarantees robustness
to noise and provides numerical stability.

So in our algorithm (see Fig. 3), the input is set of input
views of the 3D scene. We compute the point correspondences
using Harris corner detector [11] and compute the projective
reconstruction. From projective reconstruction, we arrive at
a Quasi-affine reconstruction by solving the inequalities as
stated in Eqn. 13. The quasi-affine transformation gives us
an approximate plane at infinity that can be used for deter-
mination of the metric reconstruction. We obtain the image
of absolute conicω∗, by linear least-square based estimation
using SVD [24], [1] from Eqn. 14. Theω∗ is then corrected
by our proposed method described earlier in this section and
finally metric rectification is done. In the following section
results are described along with error analysis.

V. EXPERIMENTS AND RESULTS

As we have seen the ambiguity in the projective reconstruc-
tion process, we explore a of bit detail into that before analyz-
ing our proposed algorithm. Using simulated data we compute



3D scene

Obtain images of 

Correspondences

Compute Image 

reconstruction
Perform Projective 

reconstruction
Quasi−affine

Compute Affine/

Compute DIAC via

 infinite plane Homographycorrection
Perform DIAC

of DIAC

by Cholesky decomposition
Compute Metric rectification

Fig. 3. Flowchart for our algorithm
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Fig. 4. Ambiguity Surface (a) Projective reconstruction (b) Quasi-affine reconstruction (c) Ambiguity surfaces for different reconstruction after data
normalization.
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Fig. 5. Ambiguity plot at various focal length for Projective, Quasi-affine, Affine, our approach and Metric where f= (a) 500 (b) 750 (c) 1000 (d) 1250.

average ambiguity per point as the Euclidean norm between
the actual and the reconstructed point. The reconstructed point
clouds are normalized such that the centroid is at the origin
and average distance from origin to each point is

√
3, that is,

the average point is at location(1, 1, 1)T . This is due to the
fact that the reconstructed point clouds can be determined up
to a similarity transform. We obtainAmbiguity Surfacesfor
projective reconstruction, affine, metric, quasi-affine, and our
proposed algorithm (Fig. 4). We see in Figs. 4(a) and (b), the
ambiguity is large for small focal length and rotation between
the appearances. It settles down with increase in rotation and
focal length. The Fig. 4(c) shows the regions (in rotation-focal
length domain) where the corresponding ambiguity is high
using a colormap. As expected, the projective reconstruction
is most ambiguous, followed by quasi-affine surface. Affine

surface and surface corresponding to our approach are very
close and overlapping. Ambiguity surface corresponding to
metric reconstruction is least as expected (see Fig. 4(c)).The
error surface is obtained by taking the average ambiguity over
a large number of iterations varying the viewing direction in
each direction. As we go into more constrained reconstruction
we see that the average ambiguity also reduces. The upper
surface is the ambiguity for the projective reconstruction.
The ambiguity is plotted for different focal length for all the
reconstructions as shown in Fig 5.

Now we describe the experimentation for the proposed
algorithm as described in section IV. We use synthetic 3D
data and also natural images. For the synthetic case, we
simulate 3D Rubik’s Cube and a house [2] and view it from
different positions. The various views are taken as the images,
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Fig. 6. Simulated Data (Rubik) (a) These are the images and the corresponding projective reconstruction achieved from the images. (b) Affine and Quasi-affine
reconstruction respectively (c) Metric reconstruction through auto-calibration for both Affine and Quasi-affine (d)Metric reconstruction via known internal
parameters for both Affine and Quasi-affine
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Fig. 7. Simulated Data (House) (a) These are the images and the corresponding projective reconstruction achieved from the images. (b) Affine and Quasi-affine
reconstruction respectively (c) Metric reconstruction through auto-calibration for both Affine and Quasi-affine (d)Metric reconstruction via known internal
parameters for both Affine and Quasi-affine



which are used for further processing. The output of projective
reconstruction (Eqn. 6) is used to compute the structure for
Quasi-Affine transformation and affine transformation. We
show both the cases when plane at infinityπ∞ is determined
using knowledge of parallel lines in the scene as well as
through cheiral inequalities (Eqn. 13). Then we proceed for
metric reconstruction for both the cases (see Figs. 6 and 7):(i)
through auto-calibration via the plane at infinity determined
through both scene parallel lines and cheiral inequality and (ii)
metric reconstruction with known internal camera parameters
via the plane at infinity (again determined through both cases).
The projective reconstruction from the images is shown in Figs
6(a) and 7(a). Then we obtain a Affine/Quasi-affine transfor-
mation which is shown in Figs 6(b), 7(b). Our modified auto-
calibrated approach is shown in Figs 6(c) and 7(c), and finally
we arrive at metric reconstruction (Figs 6(d), 7(d)). The metric
reconstruction is done with the knowledge of camera internal
parameters from affine/quasi-affine reconstruction. We seethat
without the knowledge of the camera internal parameters
reconstruction is close to metric rectification (which assumes
knowledge of camera internal parameters). For real data we
take images from IGOIL database [25], where images are
taken on a turn-table sequence with an interval of 5 degrees.
We have also taken chequered box images at intervals of
five degrees, which we have used for training to obtain the
approximate vanishing points. We compute the approximate
vanishing points off-line and use it during the reconstruction
for other objects. The projective reconstruction is obtained by
the Eight-point algorithm [26]. The affine transformation is
obtained through Eqn. 8, followed by modifying the DIAC
as in Eqn. 16. Figure 8 shows the reconstruction of a book
taken from the IGOIL database. The images are taken with a
rotation angle of20◦ between the views. We see in the final
reconstruction that all the points do lie in a plane (evident
from the fact that all the points approximately can be viewed
to lie on a line at some viewing angle). Similarly in the second
example (Fig 9) we try to reconstruct points of a basket. We
see the final point cloud form an approximate curved surface.
In both the cases we can see that it is an improvement over
affine transformation (with respect to Figs 8(e) and 9(e)).

VI. CONCLUSION

We present a method of metric reconstruction through the
Auto-calibration method via the plane at infinityπ∞. We
show results using both the simulated case as well as for a
real image. The plane at infinityπ∞ is obtained using the
information of parallel lines from the 3D scene or approxi-
mated by Quasi-affine transformation. The main contribution
lies in approximating the DIAC by square-root covariance,
guaranteeing its positive definiteness. Thus the DIAC can be
decomposed to a cholesky factorization to get a satisfactory
metric reconstruction. This method removes the necessity for
knowing the internal camera parameters and is robust. We

see that for simulated data it is close to the actual metric
reconstruction obtained through the knowledge of internal
parameters. For real data we propose an approach of off-
line learning of scene information where a chequered box is
rotated at equal intervals of five degrees. This data is used
to learn (approximately) the parallel lines in the scene given
the rotation information. This information is used to get the
approximate plane at infinity. The information of plane at
infinity is subsequently used for our proposed auto-calibration
method. Our algorithm is robust to image noises and numerical
instability and it applies to a wide variety of common real
world situations, such as a fixed camera with rotating object
or vice-versa.
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