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Abstract—The problem of 3D reconstruction has become method fails. We try to overcome such numerical sensitivity
more and more important with the increase in demands from py using square-root covariance which guarantees positive
V|rtual_ reality, V|suaI|zat|o_n, security and b|or_ned|cal industries. definiteness, making the algorithm more robust. We alsoystud
Uncalibrated reconstruction, from a set of images taken fron . e . . .
any ordinary CCD camera, is complicated and difficult due reconstru_ctloln ambiguity arising due to Triangulation noet
to the presence of non-linear constraints on the scene. Any [6]. A projective reconstruction ensures that a recovetets
linear solution suffers from numerical instability or it re quires ture will be a projectivity away from the actual scene. We try
additional scene information and camera information to be to model ambiguity on simulated data and average it over a
provided. Here we present a reconstruction method which wdts large number of iterations. The paper is organized as fatiow

without any additional camera parameters after we obtain the Section 2 di bout th | ¢ d
plane at infinity by using cheiral constraints or scene infomation. ection ISCusses about the general camera geometry an

We also study the ambiguities arising due to various types of the ambiguity in reconstruction. Here we give the general
reconstructions. We show the results using synthetic dataral  stratified reconstruction process. In Section 3, we speaktab

real world data. , , Auto-calibration and Cheirality. In section 4 we introduce
tKety_/wotgs:b_SD_t Reé:rc])n_strlytcnoAn,t Eplﬁgla;_ Geometry, Recon- qoyr algorithm and prove why it will work. We present the
struction Ambiguity, Theirality, Auto-calibration. experimental results in section 5 and conclude in section 6.

|. INTRODUCTION Il. PROJECTIVERECONSTRUCTION ANDCAMERA

The problem of reconstruction of a 3D shape from a set of GEOMETRY
images has been in attention and a subject of study for thie pasA point in a 3D scene is represented by its homogenous co-
two decades. With the development of multimedia and virtuatdinates, i.e. a 4D vectdX, Y, Z, 1] and the 2D projection
reality industry the need for getting a precise 3D model for aas [z, y, 1]7. We consider a pinhole camera model where the
real world object becomes more and more important. Differeimage plane is defined by= f. So under the pinhole camera
applications in computer graphics require that a 3D modelodel a 3D point with the coordinateé = [X,Y, Z, 1|7 is
of the object be created from an array of images taken withapped intox? = [fX/Z, fY/Z, f]*. So the camera can be
various exterior orientations. But the problem of recamstion  represented by a matri® that transforms a set of 3D space
suffers from the problem of projective ambiguity, which begoints to 2D image points, as
stated as, the reconstructed model differs from the origina » _
3D model by a projective transformation [1], [2], [3], [4], X; = PXi i =1,2,.,N 1)
[5]. It has been shown that for metric reconsiruction SoMge Camera matrix contains the information of the camera;
additional scene information is required other than thegenay, i, the internal parameters, namely the zoom, focus, skew
correspondences. This information may be presented in external parameters like rotation and the translatiim w

form of parallelism in the scene, or in form of any informatio yognect to the world coordinate frame. The camera matrix is
about the camera internal parameters. In addition to the&c%iven as

information, presence of noise in the images and errors in P = K[R|Y] @)
correspondences make the procedure numerically unstable,

and in most of the cases a unique solution does not exiatiere, K contains the camera internal paramet@randt are
and hence a least squares approximation is often employerbtation and translation parameters.. The internal patemme

In this paper, we present a robust method for reconstructiare arranged in an upper-triangular matrix,

once the plane at infinityn(,) is first established by cheiral
inequality or through scene information. The method of re-
construction uses ther{,) to obtain the infinite homography,
induced by r.,, for obtaining metric reconstruction. But
such methods are prone to numerical sensitivity as often twberea, andc, represent the focal length in terms of pixel
'Absolute conic’ image is not positive definite and thus thdimension in thexz and y direction respectively;s is the
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camera skew antkg, i) are the coordinates of the principal
point [1]. For most of the cameras the skew parameter, s,
is zero (square pixels). The camera calibration is impaértan
as it determines the Euclidean properties, such as the angle
between two rays, which is important for reconstruction. An
image point back-projects to a ray defined by the point and
the camera center. The calibration gives the direction ef th
projected ray [2]. The Image of the Absolute Conic (IAC) [7]
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is also related to the camera calibration parameters as : ‘ @ |
a
T 7-—1
w=K"K (4) Fig. 1. Epipolar geometry for the case of 3D point reconsimacfrom two
images.
Thus, )
w:22[010203} (5)
Az Qy [15] we obtain the projective camera matrix (corresponding
where, to the image pairs) from the Fundamentgl matrix. Now, the
. ) ) correspondences < PX; and PX; < P X, are equivalent.
Cl = oy, —say, —Toay + yosay] Thus the equationgx;) x (PX;) =0 and(x;) x (P X;) =0
cr [—say, a2+ 5%, a,sro— aZyo — $%Yo) (x refers to cross product between two vectors) can be
' = [—Ioai + Yosay, aysTo — a2yo — $2Yo, rearranged in a form to obtain 3R, as:
azay + azys + (aywo — sy0)’] AiX; =0 (6)

The right-null vector ofA; will give the desired 3D point

So, once the IAC is known to a scale, the camera parametelk [6], [2]. But due to the presence of noise and errors in
can be determined using Cholesky Factorization [7] and éerfgorrespondences the null space cannot be guaranteed to exis
the metric reconstruction can be performed. So restorieg th Such cases, a linear least squares solution can be atbtaine
IAC or its dual image (DIAC, given by* = w—! = KK7T) Viathe SVD [16] ofA;. For the case of uncalibrated cameras,

to its canonical position will help in realizing the metricthe 3D points are computed only up to an arbitrary projective
reconstruction. transformation in 3D space. For any invertiblex 4 matrix
Now given two views of the same object, where eacH representing the projective transformation of 3D space,
view differs by some amount of rotation and/or translatiofiéPlacing each poink; by HX; and the camera matriceg
the points in one image can be correlated with another $&t P ", we get the same image points as
of points in the other image. This problem is called the X; = PX; = P,H 'HX, @)
correspondence problem [8] in stereo. This concept can be
generalized to the three-view correspondence problemr[9] ®hus the reconstructed camera matrix and actual camera
in general, the N-view correspondence problem [10]. Thaatrix differs by a projective transformation [1]. Hencsjng
geometry involved with the intersection of the image planemly the image correspondences, the 3D reconstructedspoint
with the pencil of the planes having the same baseline as aaigl the corresponding camera matrices can be obtained only
(the baseline is the line joining the camera centers) ise¢drmup to a projective scale [17], [14]. So it is essential to get
as epipolar geometry (see Fig 1). As the views of the objectsome additional information about the scene to compute the
are given relative to each other, the first projective camed® structure from a given pair of images. To resolve this
matrix can be written a$, = K[I|0] where, K, contains kind of ambiguity a step-wise procedure call&tratified
the camera internal parameters. The camera axes and ori@actonstruction[18], [1], [2] is used. In Stratified reconstruc-
are aligned with the world origin and axes respectively. fion additional scene information is fused in to refine the
rotation of the camera is equivalent to matrix multiplioati projective model progressively to an Affine transformation
of the camera matrix’, by an appropriate rotation matri®  first and finally to a Metric transformation. The most common
and translation vectar. So the camera matrix for the secondanethod used to resolve this kind of ambiguity, is to identify
camera becomeB; = K;[R|t]. In a reconstruction problem, vanishing points in the scene and then identify the plane at
the input is a set of images from which the scene needs toibénity 7.,. As in case of Affine transformation, the plane at
reconstructed. Given the images the first task is to compuete tnfinity 7., is preserved to its canonical position, but not in
correspondences, which can be done using a standard feaguiogective transformation. Identifying the plamg, can bring
tracking mechanism like Harris corner or KLT feature trackadown the uncertainty from projectivity to affinity. A projec
[11], [12]. Now given any image pair, the correspondencdise reconstruction transfers,, to some generic position,
in both the images are related by the Fundamental matriesulting in the arrival of the vanishing points. So, givae t
[13], [1], [14], [3] as x;FxZ- = 0 wherex; and x; are the plane at infinity in its projective positiomr the projective
pair of image correspondences. From epipolar geometry [ffansformation H will act on the plane contravariantly such



that H—77 = (0,0,0,1)”. Thus the resulting transformation Cemeras and 3D structure configuration
restoring to affinity will be
o [ IW|TO } @) :
The refinement from affinity to metric reconstruction can be
performed by identifying the IAC [7], [18]. The Absolute
Conic is equivalent to finding the camera calibration parame
ters. The Absolute Conic, a planar conic lying on the plane a
infinity, captures the metric properties, which transfde its
canonical positiona? + 3 + 2% = 0 on 7. ) will restore back
the metric properties [7]. The image of the absolute coni is R o
property of the image itself and is related to camera pararset M
as given in Egn. 5. The back-projection of this conic is a ¢one
which intersects the plane at infinity at a conic, defining tr-
absolute conic. The absolute conic is related to the camt
internal parameters as given by Eqn. 4. N Vg,
In Fig. 2 a simulated data of Rubik’s Cube is reconstructe v ',’((' NS s
from two views differing by a rotation of 45 degrees and
translationt = [-1, O, 1] using stratified reconstruction. The
Affine reconstruction is obtained by identifying the varigh
points in the orthogonal direction. The metric reconsiorct
has been done with the knowledge of camera parameters MEC)
obtained beforehand by any standard calibration methadjus
the calibration objects toolkit [19].

image 1 image 2

IIl. AUTO-CALIBRATION AND CHEIRALITY

Auto-calibration is the process of determining the came
parameters from a set of image sequences of the scene.
problem with the stratified reconstruction is the depengeric
external scene information (parallel lines in scene fondra

formmg,to affinity) or Cam_era par?‘meters (for transformml Fig. 2. The synthetic Rubik's Cube and its reconstructi@). The Rubik’s
to metric). Often these information are not available anclive (b) The actual 3D structure of the Rubik's Cube and thmeca
hence it becomes essential to learn these parameters frositions. The camera positions are given by C1 and C2. () ifages

: e e Cube as viewed from the two cameras and their respeesimishing
the sequence of Images of the scene. The prerequisite SEJ)IEIIS (d) Projective reconstruction of the cube from the images (e) Affine

auto-calibration is to have projective reconstructiomfrthe reconstruction (f) Metric reconstruction for calibrateaise.
available image correspondences. For any projective gmer
P* = [A"]a"], the auto-calibration constraint can be given as
. D D . from two views up to a more restricted class of mappings
w;‘ — KszT — (Az_asz)KlKlT(Az_asz)T for i=2,...m . p ; i pp g
) known as quasi-affine transformations, which are precisely

wherep? represents the plane at infinitysepresents the those projectivities that preserve the convex hull of arecbj

of interest. An invariant of quasi-affine transformatioroium
camera. Form > 3, the parameters can be solved and hence 4

the reconstruction can be performed. But as the constraiff sthe Cheiral sequence of a set of points is defined, and it is

are highly non-linear arriving at a global solution becomes how the cheiral sequence may be computed using two

gny 9 giobal Soiu . Uncalibrated views. The depth of a poiXt= [X,Y,Z,T],
a very difficult task, and most of the optimization techniquge. S

e S . with respect to the camer® = [M|m], is given as [21], [1]

suffer from local minima or the initialization problem. lear
solution [1] for estimation of the camera calibration paesens sign(det M )w
exists, which needs the knowledge of the plane at infinitys Th depth(X; P) = T||m3||
again requires either user intervention or the process ofa n

linear optimization. Similar constrains are expressedugh Wwherem? is the last row of M and”X = wx. So, the sign is

Kruppa equations on the IAC [2], [20]. given as
A. Cheirality depth(X; P) = sign(detM )wT (10)
Cheirality constraints arise from the fact that any poimtthwhere = denotes equality of sign. The quantity

lies in an image must lie in front of the camera producing thatgn(depth(X; P)) is known as the cheirality of point
image [1], [2]. Using this idea, the scene can be determinXd with respect to camera P. Thus for any transformation



matrix H, transformingX and P as PH~! and HX, the it unviable for cholesky decomposition. To overcome this
cheirality transforms are problem we follow the following approach.
Let A = UXVT be the Singular value decomposition of
. —1\ - T T —1
depth(HX; PH™") = w(hy X)(hy Cp)det(H™7) (A1) 4 o pmxn The cholesky decomposition of A is given by
whereh is the fourth row ofH andC, is the camera center. A = KK ”. Now for indefinite matrix systems, we define
Thus if 7, is mapped by a projective transformation H and A=UsyT (16)

0 = sign(det(H)), then R
e We useA and undergo its cholesky analysis which is guaran-
: 1y =
depth(HX; PH™") = w(msoX)(7m0Cp)8 (12)  teed to exist as the eigenvalues are replaced by the singular
For the point to be in the front of the camera the abow&lues A. The singular values of A are determined through the
mentioned quantity must be greater than zero. Thus we arrie¥D decomposition of A. This is guaranteed to be positive

at the cheiral inequality [21], [22], [23] definite as
X7, > 0 for all points i=1,..,n A=UsU" = (UVE)(VEU)" = RTR 17)
5C" s > 0 for all cameras j=1,...,p (13) We take positive eigenvalues instead of positive pivotshef t

matrix and prove it to be positive-definite [24], [16]. Let

number of cameras. Thus,, can be computed from theC - AAT’ the eigenvalues o€ are given by columns of
above inequality for each = +1 and hence a quasi-affineU' obtained through SVD ofl. Then

transformation can be attained without any extra input ecen AAT = (UEVT)(UEVT)T

information [15]. Once the quasi-plane is known the camera UsvIvsTy?

parameters can be computed from the projective camera ma- N

trices in a linear least-square based solution using theit@fi - [{2 u
homography [1], [7]. The infinite homography induced by the = A (18)
plane at infinity is given by

Wheren is the number of points in the scene apds the

This comes from the fact that” is orthogonal and® is
Hio = A" —a'p” (14) a diagonal matrix of singular values. S@gY exists and
. ~ columns of U are eigenvectors efA”. Now, from spectral
H_, represents the homography from camigt@] and[A'|a’].  theorem every real symmetric matrix can be diagonalized by
So the dual conic in Eqn. 9 is now an orthogonal matrix, i.ed = QAQ ™!, where columns of Q
Wt = H o H T (15) contain a complete set of orthonormal eigenvectors/aiisia
e e diagonal matrix formed from the eigenvalues of A [16]. Power
This can be rearranged as a 6x6 matrix A, composed off any matrix can be obtained from the spectral theorem by
elements offf’_, forming Ac = 0, wherec is composed from powering the eigenvalues a$* = QA*Q~!'. Thus we see
the elements the conig*. A linear least squares solutionthat A is Squared Root Covarianad A. The DIAC, obtained
will yield a solution for c. But the matrix has rank 4, sovia the infinite homography (Eqn. 15), is rectified by Eqn.
m > 2 will give a solution tow* and the metric reconstruction16 to obtainw* before obtaining the final metric rectifying
[7], [15], [21]. But the problem with the least-squares lshsaransformation. The rectified DIAG;*, guarantees robustness
method is that the absolute conic is numerically instablé ato noise and provides numerical stability.
may not be positive definite which is essential for Cholesky So in our algorithm (see Fig. 3), the input is set of input
decomposition [24]. This means that the camera parameteisws of the 3D scene. We compute the point correspondences
cannot be decomposed always from the IAC and hence thsing Harris corner detector [11] and compute the projectiv
metric reconstruction cannot be done. We try to overcon® thieconstruction. From projective reconstruction, we arrat
problem in our proposed algorithm. a Quasi-affine reconstruction by solving the inequalities a
stated in Eqn. 13. The quasi-affine transformation gives us
an approximate plane at infinity that can be used for deter-
The problem with using the plane at infinity, as estimated mination of the metric reconstruction. We obtain the image
from quasi-affine transformation (Eqn. 13) is that whenrgyi of absolute conie*, by linear least-square based estimation
to obtain the DIAC,w*, may not be positive definite. Suchysing SVD [24], [1] from Eqgn. 14. The* is then corrected
class of matrices is known as tiedefinite Systen{24]. by our proposed method described earlier in this section and
The problem with any Symmetric Indefinite Systems is tha@hally metric rectification is done. In the following seatio

the forma” Az can take any positive or negative value. Fromesults are described along with error analysis.
the SVD based linear solution af*(E¢n.15) we obtain an

indefinite system, which may have negative pivot. A symroetri V. EXPERIMENTS AND RESULTS

positive definite matrix has a positive "weighty” diagona#] As we have seen the ambiguity in the projective reconstruc-
(large diagonal entries) making all the eigenvalues pasiti tion process, we explore a of bit detail into that before gnal
For an indefinite system it ceases to be such a case, makimgour proposed algorithm. Using simulated data we compute

IV. PROPOSEDALGORITHM



Obtain images of Compute Image Perform Projective Compute Affine/
Quasi-affine

reconstruction

3D scene Correspondences reconstruction

Compute Metric rectification ]
by Cholesky decomposition Perform DIAC 3 Compute DIAC via
of DIAC correction infinite plane Homography

Fig. 3. Flowchart for our algorithm
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average ambiguity per point as the Euclidean norm betwesurface and surface corresponding to our approach are very
the actual and the reconstructed point. The reconstructid p close and overlapping. Ambiguity surface corresponding to
clouds are normalized such that the centroid is at the origimetric reconstruction is least as expected (see Fig. 4[by.

and average distance from origin to each poin/& that is, error surface is obtained by taking the average ambiguigéy ov
the average point is at locatiai, 1,1). This is due to the a large number of iterations varying the viewing direction i
fact that the reconstructed point clouds can be determiped each direction. As we go into more constrained reconstrocti

to a similarity transform. We obtaidmbiguity Surfacesfor we see that the average ambiguity also reduces. The upper
projective reconstruction, affine, metric, quasi-affined @ur surface is the ambiguity for the projective reconstruction
proposed algorithm (Fig. 4). We see in Figs. 4(a) and (b), tAde ambiguity is plotted for different focal length for aliet
ambiguity is large for small focal length and rotation betwe reconstructions as shown in Fig 5.

the appearances. It settles down with increase in rotatioh a Now we describe the experimentation for the proposed
focal length. The Fig. 4(c) shows the regions (in rotationdl  ajgorithm as described in section IV. We use synthetic 3D
length domain) where the corresponding ambiguity is higihta and also natural images. For the synthetic case, we
using a colormap. As expected, the projective reconstmictisimylate 3D Rubik’s Cube and a house [2] and view it from
is most ambiguous, followed by quasi-affine surface. Affingifferent positions. The various views are taken as the &sag
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which are used for further processing. The output of project see that for simulated data it is close to the actual metric
reconstruction (Eqn. 6) is used to compute the structure f@construction obtained through the knowledge of internal
Quasi-Affine transformation and affine transformation. Wparameters. For real data we propose an approach of off-
show both the cases when plane at infinity, is determined line learning of scene information where a chequered box is
using knowledge of parallel lines in the scene as well astated at equal intervals of five degrees. This data is used

through cheiral inequalities (Eqn. 13). Then we proceed ftw learn (approximately) the parallel lines in the scenesgiv
metric reconstruction for both the cases (see Figs. 6 aiit) 7)the rotation information. This information is used to ge¢ th
through auto-calibration via the plane at infinity deteredin approximate plane at infinity. The information of plane at

through both scene parallel lines and cheiral inequality(ai)

infinity is subsequently used for our proposed auto-cdiitna

metric reconstruction with known internal camera paramsetemethod. Our algorithm is robust to image noises and numerica
via the plane at infinity (again determined through both saseinstability and it applies to a wide variety of common real
The projective reconstruction from the images is shown gsFiworld situations, such as a fixed camera with rotating object
6(a) and 7(a). Then we obtain a Affine/Quasi-affine transfoor vice-versa.

mation which is shown in Figs 6(b), 7(b). Our modified auto-
calibrated approach is shown in Figs 6(c) and 7(c), and finall
we arrive at metric reconstruction (Figs 6(d), 7(d)). Thenae 1]
reconstruction is done with the knowledge of camera inlerné
parameters from affine/quasi-affine reconstruction. Welsate [2]
without the knowledge of the camera internal parameter[%]
reconstruction is close to metric rectification (which ases [,
knowledge of camera internal parameters). For real data we
take images from IGOIL database [25], where images are
taken on a turn-table sequence with an interval of 5 degree[g
We have also taken chequered box images at intervals og
five degrees, which we have used for training to obtain th&]
approximate vanishing points. We compute the approximatﬁ]
vanishing points off-line and use it during the reconsiorct
for other objects. The projective reconstruction is otediby  [8]
the Eight-point algorithm [26]. The affine transformatia i (0]
obtained through Eqn. 8, followed by modifying the DIAC
as in Eqgn. 16. Figure 8 shows the reconstruction of a bo¢ik]
taken from the IGOIL database. The images are taken with a
rotation angle oR20° between the views. We see in the final
reconstruction that all the points do lie in a plane (evideiiti]
from the fact that all the points approximately can be views[gz]
to lie on a line at some viewing angle). Similarly in the seto
example (Fig 9) we try to reconstruct points of a basket. \Wes]
see the final point cloud form an approximate curved surface.
In both the cases we can see that it is an improvement over
affine transformation (with respect to Figs 8(e) and 9(e)). [14]

[15]

VI. CONCLUSION

We present a method of metric reconstruction through tl%l@g%
Auto-calibration method via the plane at infinity,,. We
show results using both the simulated case as well as fof'8
real image. The plane at infinity., is obtained using the
information of parallel lines from the 3D scene or approxii9]
mated by Quasi-affine transformation. The main contributi 20]
lies in approximating the DIAC by square-root covariance,
guaranteeing its positive definiteness. Thus the DIAC can [2¢]
decomposed to a cholesky factorization to get a satisfactd?]
metric reconstruction. This method removes the necessity f,3,
knowing the internal camera parameters and is robust. We
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