
Augmented Reality using Over-Segmentation
Visesh Chari, Jag Mohan Singh and P. J. Narayanan

Center for Visual Information Technology,
International Institute of Information Technology,

Gachibowli, Hyderabad 500032 Email:{visesh,jagmohan}@research.iiit.ac.in, pjn@iiit.ac.in

Abstract—Augmenting virtual objects between real objects
of a video poses a challenging problem, primarily because it
necessitates accurate knowledge of the scene’s depth. In this
paper, we propose an approach that generates an approximate
depth for every pixel in the vicinity of the virtual object, which we
show is enough to decide the ordering of objects in every image.
We also draw a similarity between layered segmentation and
augmentation. We argue that augmentation only needs to know
which layers are in front of the object and which are behind it.
Our algorithm makes effective use of object boundaries detected
in an image using image segmentation. The assumption that
these boundaries correspond to depth discontinuities provides a
useful simplification of the problem, sufficient to produce realistic
results. We use a combination of segmentation and feature
detection for sparse depth assignment. Results on challenging
data sets show the effectiveness of our approach.

I. INTRODUCTION

Augmented Reality refers to the class of techniques that
augment videos of real scenes with virtual objects. Such
solutions find a wide variety of uses [1]. The objective is
to place the virtual objects in accordance with the physical
attributes of the real world being captured in the video. The
two basic principles involved in this process are
• Identifying where the virtual object should be placed in

every frame of the video.
• Identifying which object(s) in the real video occlude/are

occluded by the virtual object in every frame of the video.
The first part of the problem requires the estimation of 3D
camera positions, to decide where the object is placed with
respect to each of the cameras. The second part of the problem
requires 3D knowledge of the scene to decide how the real
object(s) is placed with respect to the virtual object(s). The
various scenarios in which augmented reality is needed has
given rise to two types of techniques: marker-based and
marker-less augmented reality. Our work falls in the later
category.

Traditionally, Augmented Reality used markers to augment
virtual objects in real scenes. These markers could be easily
detected in different images and the camera matrix can be
recovered from it. The virtual object could be placed only in
front of the real image, but with correct projection. In contrast,
marker-less augmented reality advocated careful estimation
of parameters like camera motion and scene structure from
image features alone. The camera parameters alone will suffice
if the virtual objects are to be placed in front of the real
ones. Scene structure or depth is required if real objects can
obscure parts of the virtual object. However, this requires

Fig. 1: Top Row: It shows the scene without the virtual object.
Bottom Row: It shows the scene with the virtual object lying
in-between the pillars and bikes, and it moves accurately with
the camera

considerable effort as computing these parameters are complex
for a scene [2]. Thus an augmentation like Figure 1, would
require accurate estimation of the depths of all the points on
the pillar as well as the bikes behind the pillar. However, we
would like to argue that augmented reality is a problem similar
to layered segmentation. Layered segmentation divides a scene
in to layers. Given that in most cases, a discontinuity in depth
is accompanied by a change in color, we argue that a layer
always consists of pixels belonging to the same object, with
similar depth values. Thus for correct augmentation, we only
need to know which layers are in front of the virtual object and
which are behind it. Thus, we need not compute dense depths,
but only an approximate estimation of layers in the scene is
enough. In this paper, we use a potent combination of image
segmentation and SIFT features to estimate the approximate
depth of layers. The depth of each segment in the image is
the average of all the features in it.

Section II presents the various works that bear significant
relation to ours. Section III details our particular solution.
Section IV shows results on some sequences, highlighting the
challenging contributions. Finally, Section V discusses future
extensions, and presents some concluding remarks.

II. RELATED WORK

Traditional Augmented Reality techniques use markers and
place virtual objects in front of real ones using them. The
camera needs to be recovered so that the virtual object moves
correctly as the camera moves. This is done by using markers



or tie points, which can be identified both in the reference
image and the new images. The positions of these point are
easily predicted in the new image [3]. However, virtual object
can be placed only with respect to the markers in front [4].
Markerless Augmented Reality with real-time affine region
tracker, divides the image into locally affine invariant regions
and finds correspondences between the views [5]. It then
places animated textures in the desired region. In order to place
the virtual object anywhere in the environment, one needs to
recover structure of the scene. This approach is however very
expensive as in order to compute structure of the scene, camera
needs to be calibrated and structure needs to recovered. This
is done by using feature tracker to establish correspondences
followed by self-calibration of the camera. A bundle adjust-
ment step which refines the estimated camera and structure is
performed normally. Plausible Physics in Augmented Images
[6] first computes SIFT features in the unordered images. This
is followed by bundle adjustment to get 3D positions and
camera parameters. Then the augmented object can be placed
anywhere in the scene. This approach requires scenes which
have enough features, since the correspondences computed
are normally not dense. The depth map computed from this
approach is sparse and is interpolated using thin-plate splines.
Kanade et al. computed the depth map at video rate using
stereo machine [7] and showed z-keying which was same
as merging of virtual and real world in real time. One can
use a model based region-tracker and estimate structure for
that model then the problem can be reduced to that of pose
computation of the object in the scene [8]. This approach can
place the virtual object both in front or back of tracked region
in the real scene, however it is not possible to define models
for all the objects in the scene.

Over-segmentation algorithms [9] have recently gained
popularity in geometry based works as an important pre-
processing step. Automatic Photo popup [10] uses over-
segmentation for single view reconstruction. The main idea
is to first cluster an image into different “super-pixels” and
then to determine the “label” for each super-pixel, which
represents its geometry. Another area where over-segmentation
has been extensively used is stereo [11]. In case of stereo
algorithms, over-segmentation is first used to obtain a coarse
disparity map / depth map for a scene, which may be further
refined to get pixel level correspondences. Other areas where
over-segmentation finds use is image based rendering [12],
structure from motion [13] and layer segmentation based
stereo [14]. Normalized cut treats image segmentation as a
graph partitioning problem and uses the normalized cut for
segmenting the graph. The normalized cut measure increases
total dissimilarity between different groups along with total
similarity within the groups [15].

III. APPROACH

The outline of our approach is illustrated in Figure 2. We
use over-segmentation [9] to obtain segments that typically
belong to one object, the main assumption being that depth
variation is insignificant across a segmented patch. Estimates

of camera motion and feature correspondences are then used
to determine the depth of every over-segmented patch. Finally,
the synthetic object is rendered with the help of these estimated
depths.

a) Camera estimation:: Any Augmented Reality sys-
tem requires accurate calibration of the camera, else the error
would show up as a “jitter” in the augmented object. For
camera motion estimation, we use the method by Pollefeys et
al. [16], because of its robustness to feature correspondence
errors and the two-view intiialization to the reconstruction
process.

Firstly, the essential matrix is computed using feature cor-
respondences and a RANSAC based algorithm by solving the
following equations

x>Fx = 0 (1)
E = K>FK (2)

where F is the Fundamental matrix, E is the Essential matrix
and K is the internal camera calibration. Next, we compute
the camera matrix by decomposing the Essential matrix, using
svd [2]. Once parameters of all key frames are computed,
optimization over the camera parameters for all views is
performed.

E = R× t (3)
P =

[
R t

]
(4)[

P X
]

= arg min
P

(PX − x)2 (5)

where x and X are the 2D image feature and its corresponding
3D point, respectively. Finally, we only compute camera
matrices for keyframes and then interpolate to obtain the
intermediate frames.

R = R1 ∗ α + R2 ∗ (1− α)

t = t1 ∗ α + t2 ∗ (1− α)

where R is not represented as a matrix, but as a 3-vector using
the exponential mapping.

b) Region selection:: Correct augmentation only re-
quires the depths only in the region around the object. The
region can be identified by it’s bounding box which is by
projecting the virtual object’s 3D model onto the image after
recovering the cameras. A region of interest around the object
is identified for each image, and segments overlapping this
area are considered for depth recovery and the final rendering
of the object. Subsequent steps are done only in the region of
interest.

c) Over-segmentation:: Over-segmentation algorithms
produce a segmentation that obeys the color boundaries of the
scene. This means that each segment belongs to one object
in the scene, although many segments might belong to the
same object. We use the algorithm of [9], where a graph
based approach is proposed. The nodes represent the various
layers in the image and edges represent spatial neighborhood
information. The weights of each edge represent the similarity
of color / texture / edge information between the two nodes



Input Video Individual Frames Key Frames

CorrespondencesSIFT
Camera Estimation

Projecing 3D model

Segmentation around ROI Depth maps around ROI Augmented scene

Fig. 2: Overall algorithm. Input images were taken from the
Leuven Castle dataset (http://www.cs.unc.edu/∼marc)

connected by an edge. Initially, each pixel corresponds to a
node. Edges are collapsed when their weights are low (below
a threshold), merging the clusters connected by them into
one. Since the threshold for segmentation is a parameter to
the algorithm, different segmentations result from different
values of this parameter.The over-segmentation needed by our
algorithm will vary from scene to scene. In scenes with less
texture, it is desirable to have large segments since finding
point correspondences between segments recovered from two
images becomes a harder problem. On the other hand, its
damaging to have the segmentation cross object boundaries.
In scenes with sufficient texture information, small segments
are preferable. Setting the threshold to such a low value might,
however, cause noise in the image to be highlighted. Thus, al-
though we choose the threshold value manually, automatically
determining its value is of importance.

d) Growing Correspondences:: Feature correspon-
dence algorithms like SIFT [17], give a sparse set of accurate
correspondences even across widely separated views. Such
features are thus extremely useful for robust camera motion
estimation. However, the sparseness of these correspondences
makes it likely for a segment to not have any feature point
within it. Since depths need to be assigned to every segment,
at least one feature correspondence needs to be computed per
segment. We follow a slightly modified version of the approach
presented in [18], and “grow” correspondence around SIFT
features. Initially, Harris points are detected in the vicinity
of every SIFT feature. These points are then “transferred”
to every other image, in a manner that preserves their dis-
tance from the corresponding SIFT feature in every image.
Once transferred, a correspondence for every Harris point is
searched in the surrounding texture patch by maximizing the
normalized cross correlation function 6.

Since we detect Harris points and use normalized cross
correlation for matching, spurious matches may be detected at
edge boundaries with insufficient texture information due to

(a) SIFT (b) SIFT+Harris

Fig. 3: (a) Correspondence estimation with SIFT [17] (red
points). (b) After growing correspondences using Harris
points [18] (blue points). Notice how the textured part of the
scene has been nicely sampled.

the aperture problem. Also, such correspondences are much
less accurate than their SIFT counterparts. The correspon-
dences are refined by fitting a quantity like the Fundamental
Matrix, after removing outliers [19]. Figure 3 shows depth
maps computed with and without growing correspondences.

γ(u, v) =
Σx,y

[
I1(x, y)− Ī1

] [
I2(x− u, y − v)− Ī2

]
√{

Σx,y

[
I1(x, y)− Ī1

]2 Σx,y

[
I2(x− u, y − v)− Ī2

]2}

e) Assigning Depths:: Since the algorithm for growing
correspondences works well for textured scenes, areas in an
image without texture are problematic. At this point, one
can choose to incorporate algorithms from the stereo litera-
ture [14], [11], in order to assign depths to such pixels. We
need to know depth labeling only in region which lie inside
the bounding box of the virtual object. This label indicates
whether the segment is in front or behind the virtual object. In
order to assign these labels we need depth of these segments,
if they already have depth values then it is used. If the segment
does not have depth value we assign it a depth value by
interpolating it from it’s neighbours and then assign a depth
label to it. The depth labeling for segments lying outside the
bounding box of the virtual object is done in the following
manner it is maximum for regions lying beyond the virtual
object and minimum for regions lying nearer.

f) Rendering:: We have depth labeling for each segment
inside the bounding box of the virtual object at a finer level and
coarse depth labeling for other regions. We copy the image and
depth to the frame buffer first. Then render the virtual object
with lighting.

IV. RESULTS

The virtual object is interactively placed in the real se-
quence. This is done for the first frame of the video. The
bounding box of the virtual object is computed and used
for post-processing. Alternatively, the user can specify the
coordinates of the bounding box of the object which is used
for augmentation.

The first scenario is the famous “Leuven castle” sequence. It
consists of 12 cameras. The structure of the same is recovered
and there are no occluding parts in the same. Figure 4 shows
the scene with and without the virtual object. The computation



Fig. 4: Top Row: It shows the Leueven Castle sequence
without the virtual object. Bottom Row: It shows the scene
with the virtual object placed in the scene in front of the castle
and moves accurately with the camera

Fig. 5: Top Row: It shows the sequence from Stanford Light
field dataset without the virtual object. Bottom Row: It shows
the virtual object placed in between the plants and other
objects. Note the accurate placement of the virtual object
between the CD and the poster and it is occluded by leaves
in the front.

time for the given sequence is around 50 minutes for camera-
generation and segmentation and depth-labeling takes around
10 minutes.

The second scenario shows results on a sequence taken from
Stanford Light Field Database and shows several occluding
objects. The sequence consists of 104 scenes and the structure
for same is recovered nicely. Figure 5 shows the virtual object
is placed between the real objects. The computation time for
this sequence is less as we have the camera-matrices for the
same and it is 2 minutes for depth labeling generation given
the segmented images. The time for segmentation is around 5
minutes.

The third scenario shows results on a sequence taken from
an outdoor environment and shows several cluttered objects
with occlusions. A virtual object is placed hugging the pillar
in the front (Figure 1). This sequence now consists of three
layers, the object’s exterior, the pillar and the bikes placed
behind them. The figures show correct placement of the object.
The time for 20 minutes for camera-generation and 5 minutes
for segmentation and depth labeling generation.

V. DISCUSSION

In this paper, we presented an approach to augmented reality
that relies on over-segmentation of images. The main insight
is that augmented reality requires only nearly accurate depths
and that over-segmentation algorithms produce segments that
obey object boundaries and so are suitable for reconstruc-
tion. Results show that our approach can handle complex
scenarios with visually acceptable results. Extensions to this
approach would include a closer inspection at the process of
segmentation and correspondence estimation for texture-less
areas, and algorithms to automatically determine the optimal
segmentation of a scene.

REFERENCES

[1] O. Bimber and R. Raskar, Spatial Augmented Reality, Merging Real and
Virtual Worlds. A K Peters LTD, 2005.

[2] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge University Press, 2004.

[3] K. N. Kutulakos and J. R. Vallino, “Calibration-free augmented reality,”
IEEE Transactions on Visualization and Computer Graphics, vol. 4,
no. 1, pp. 1–20, 1998.

[4] M. Billinghurst, H. Kato, and I. Poupyrev, “The magicbook: A transi-
tional ar interface,” Computers and Graphics, pp. 745–753, November
2001.

[5] V. Ferrari, T. Tuytelaars, and L. V. Gool, “Markerless augmented reality
with a real-time affine region tracker,” Procs. of the IEEE and ACM Intl.
Symposium on Augmented Reality, vol. I, pp. 87–96, October 2001.

[6] M. Leotta and K. Boyle, “Plausible physics in augmented images,”
SIGGRAPH ’05 : Poster, 2005.

[7] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka, “A stereo
machine for video-rate dense depth mapping and its new applications,”
Proceedings of the 15th Computer Vision and Pattern Recognition
Conference (CVPR ’96), pp. 196–202, June 1996.

[8] A. I. Comport, E. Marchand, and F. Chaumette, “A real-time tracker
for markerless augmented reality,” ISMAR ’03: Proceedings of the The
2nd IEEE and ACM International Symposium on Mixed and Augmented
Reality, p. 36, 2003.

[9] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” International Journal of Computer Vision, vol. 59, no. 2,
September 2004.

[10] D. Hoiem, A. A. Efros, and M. Hebert, “Geometric context from a single
image,” International Conference of Computer Vision (ICCV), vol. 1, pp.
654 – 661, October 2005.

[11] M. Bleyer and M. Gelautz, “Graph-cut-based stereo matching using
image segmentation with symmetrical treatment of occlusions,” Image
Commun., vol. 22, no. 2, pp. 127–143, 2007.

[12] C. L. Zitnick and S. B. Kang, “Stereo for image-based rendering using
image over-segmentation,” International Journal of Computer Vision,
2007.

[13] F. Ernst, P. Wilinski, and K. van Overveld, “Dense structure from
motion: An approach based on segment matching,” ECCV ’02. 2002
European Conference on Computer Vision, pp. 552–554, 2002.

[14] M. Bleyer and M. Gelautz, “A layered stereo algorithm using image
segmentation and global visibility constraints,” ICIP ’04. 2004 Interna-
tional Conference on Image Processing, vol. 5, pp. 2997–3000, 2004.

[15] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, 2000.

[16] M. Pollefeys, L. V. Gool, M. Vergauwen, F. Verbiest, K. Cornelis,
J. Tops, and R. Koch, “Visual modeling with a hand-held camera,”
International Journal on Computer Vision, pp. 207–232, 2004.

[17] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[18] M. Lhuillier, “A quasi-dense approach to surface reconstruction from
uncalibrated images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 3, pp. 418–433, 2005.

[19] P. H. S. Torr, A. W. Fitzgibbon, and A. Zisserman, “Robust computation
and parametrization of multiview relations,” ICCV ’98. 1998 Interna-
tional Conference on Computer Vision, pp. 485–491, 1998.


