
A Simple Feature Space Partitioning Approach for
Pattern Classification
Hina Shah, Suman K. Mitra, Asim Banerjee

Dhirubhai Ambani Institute of Information and Communication Technology,
Gandhinagar, Gujarat

e-mail: (hina r shah, suman mitra, asim banerjee)[at]daiict[dot]ac[dot]in

Abstract—Classification methods in general use a linear or
piecewise linear boundary to define the separation between the
classes in the feature space. This results into some error when
the classes are not linearly separable from each other. In fact
when one class is surrounded by another class, things become
more complicated. Instead, if a non-linear boundary between the
classes is created or areas where the class lie are marked, then
classification becomes an easier task. The paper here deals with
an approach of feature space partitioning wherein the feature
space is partitioned continuously till some predefined resolution.
At the end of the procedure, an area which a particular class
occupies is defined and these areas are further utilized for
assigning incoming data points to respective classes.

I. INTRODUCTION

Classification is the primary aim of any information system.
There have been supervised and unsupervised classification
methods extensively generated and studied. The supervised
classification methods follow a learning approach, in which
first system learns, from existing training data, the separating
boundaries between the classes in the feature space, and later
a test data set is used for checking the correctness of the clas-
sification method. While unsupervised method requires human
interpretation of the outcome. The supervised classification
methods generally tend to find linear optimum separators
between the classes for a minimum possible error rate of
classification. However, it would be much more desirable to
have non-linear separators between the classes for a better
class separation representation.

The paper here presents a supervised method of classifi-
cation, in which as part of learning process of the training
data set, a continuous partitioning of the feature space is
performed. Hyperboxes are created in the feature space at a
lower resolution and these are continuously divided till a pure
partition is found. Purity of a hyperbox depends on the number
of classes in the hyperbox. Lesser the number of classes in the
hyperbox, purer the hyperbox is.

Feature space partitioning has not been a new concept.
Methods explored in [2] and [3] try to use the classical meth-
ods for classification in a sub-region of the feature space, so
that classification complexity decreases. Hence feature space
partitioning is used to find such subspaces in the feature space,
where the classification procedure becomes extremely simple.
While [2] uses genetic algorithms to perform the classification,
while [3] tries to find boundaries between the two classes that
are present in the feature space. The experimentation and the

development of method in [3] is done for 2 classes, however,
the method can be improved to work on several classes. A
fuzzy classification method by partitioning the feature space
into maybe overlapping hyperboxes and then generate some
if-then rules for classification has been discussed in [4]. The
paper suggests that first the feature space be paritioned into
areas which are homogenous and non-homogenous. Homoge-
nous areas are left as it is, while non-homogenous areas are
the ones which again would be partitioned till some suitable
condition is met. The paper also tries to handle some imprecise
data, which might not be handled if classical methods of
classification are used.

It becomes important to have a complete feature set to
describe the data fully and the work presnted here takes
into assumption that the feature set that has been selected is
complete and so is the training set. However methods can be
found to handle a case where a feature value is missing, in
which case, a fuzzy assignment of the incoming input data
can be done [4].

Rest of the paper is arranged as follows: Section II gives
some mathematical preliminaries, Section III contains descrip-
tion of the method of feature space partitioning for classifica-
tion, Section IV discusses experimental results, and Section V
gives conclusion and scope for future work

II. MATHEMATICAL PRELIMINARIES

Consider the feature space to be consisting of d fea-
tures. Each training data point is represented as xi =
(xi1, xi2, . . . , xid) where 1 ≤ i ≤ N , N is the total number
of data points given in the feature space. Let C be the
total number of classes in the feature space for which the
classification is to be done.

• Hyperbox: Partitioning of the feature space has been
experimented with several topologies [5]. However, a
regular hypercube/hypercuboid division is much more
easier to use and is much more representable and usable,
rather than the other topologies. A generic term of
hyperbox is used here for hypercuboid and hypercube. A
hyperbox in d-dimension can be represented as a vector
of length 2d as hm = (y1, y2, . . . , yd, z1, z2, . . . zd) where
yi 1 ≤ i ≤ d represents the bottom most and left most
point of the hyperbox; while zi, 1 ≤ i ≤ d gives the
length of the hypercube along dimension i.



• Purity: Purity in this paper is a measure of the number
of classes in a hyperox. A hyperbox in a feature space is
said to be completely pure, if the hyperbox contains data
points of only one class. In all other cases, the hyperbox
is impure. However, a hyperbox can be said to be pure
also when its data points are of two or more classes and
the data points are evenly distributed, in the sense that all
the data points of one class are together. Mathematically,
if c is the number of classes in a hyperbox (this number
can easily be obtained from the available data), and l is
the total number of data points in the hyperbox, then the
probability of class k where 1 ≤ k ≤ c in a hyperbox
would be given as:

pk = lk
l

where, lk gives the number of data points in the hyperbox
in class k and

∑c
k=1 lk = l. Hence, a hyperbox is

completely pure, when pk is 1 for any value of k and
is completely impure if all pk are equal.

• Resolution: Resolution is a very important concept for
the feature space partitionin presented in this paper. It
represents the number of divisions that are imposed on
each dimension in the feature space. These divisions
generate boundaries for hyperboxes in d-dimension which
are checked for purity.

III. PROPOSED METHODOLOGY

Following sections discuss the algorithm for partitioning the
feature space on the basis of purity. At each resolution, the
feature space is partitioned into hyperboxes which are tested
for their purity. The hyperboxes that are pure are stored as the
indicators of area of a particular class.

A. Algorithm

Each data point in the d−dimensional feature space is
represented by a vector of d feature values. It is assumed
that the feature selection is complete, and hence the training
set is able to represent the data fully. The basic idea here is
to divide each dimension into some regions, hence getting
the hyperboxes. Purity of these hyperboxes is checked. If
the number of classes in a hyperbox is found to be one,
the description of the hyperbox is stored. If any hyperbox
is found to be totally contained in a hpyerbox stored at a
lower resolution, the hyperbox is discarded. The approach
is quite simple and results show that for complex systems
also, accuracy of classification increases. The division of
hyperboxes can occur till a point where one gets a hyperbox
of unit dimension, i.e. length of a side of hyperbox in each
dimension is one.

The algorithm runs as follows:
1) First minimum and maximum points along each di-

mension are calculated to form a bounding box for
the feature space which contains the training data.
Let the minimum data point be called xmin =
(min1,min2, . . . ,mind) where mini, 1 ≤ i ≤ d
is the minimum value of all the data points in ith

dimension. Let a maximum data point be called xmax =

Fig. 1. Plot of Kidney Data

(max1,max2, . . . ,maxd) where maxi, 1 ≤ i ≤ d is
the maximum value of all the data points in ith dimen-
sion. The xmin and xmax would define the bounding
hyperbox of the available data points. Using these, a
range vector R = xmax − xmin is calculated which
helps in deciding the division length.

2) Let r = 2 where r gives the resolution. This means that
lengths along each dimension of the bounding box of
all the data will have 2 partitions.

3) Each hyperbox at a resolution r will have its zi = Ri

r
where 1 ≤ i ≤ d while the yi = m ∗ zi + 1 where
0 ≤ m ≤ r − 1 and 1 ≤ i ≤ d. Using the yi values and
zi a bounding hyperbox at a resolution r is obtained.

4) For each such hyperbox calculated above, find all the
data points xi such that ∀l, yl ≤ xil ≤ yl + zl where
1 ≤ l ≤ d and 1 ≤ i ≤ N where N is the total number
of data points available for the training set.

- If the hyperbox under observation lies within the
limits of the already stored hyperbox descriptions
(which are of lower resolutions), then proceed to
the next hyperbox. This hyperbox can be ignored,
since it has already been marked as pure at a lower
resolution.

- If data points in the hyperbox come from one class,
i.e. pk = 1 for some k, 1 ≤ k ≤ c where c is the
number of classes in the hyperbox, then hyperbox
description and the class number for which it is
pure are stored. Proceed to the next hyperbox at
the current resolution.

5) When all the hyperboxes at the current resolution have
been checked, next higher resolution is taken into con-
sideration. Hence, r = r+1 and above step is performed.

6) The procedure would end when a predefined resolution
has been reached.

Figure 1 gives a sample plot of data. The data has 2-classes
and the featuer space is of 2-dimensions. The plot consists of
181 points. Figure 2 shows the divisions in the feature space



Fig. 2. Kidney Data with r=2 and r=3; black lines division for r=2; gray
lines division for r=3

at resolution of 2 and 3. At r = 2, as can be seen from
Figure 2, there is one pure box (top right) whose description
wil be stored. At r = 3 there are 6 boxes which are pure.
However one of these boxes lies completely within the pure
box obtained at r = 2. So the description of the other 5 boxes
would stored. This way at subsequent resolutions, the number
of pure boxes increases whose description is stored.

Above procedure generates a list of hyperboxes with their
two extreme corners and the class which it contains.

B. Classification

Once above training or learning has been done, the clas-
sification problem now becomes a find-and-assign problem.
An incoming input data point say in = (in1, in2, . . . , ind) is
assigned to a class k if the hyperbox to which it belongs has
an assignment to class k. The belongingness to a hyperbox
is satisfied if ∀i, yi ≤ ini ≤ yi + zi where 1 ≤ i ≤ d for
a hyperbox in the list generated in the algorithm for feature
space partitioning.

IV. EXPERIMENTAL RESULTS

Feature Space Partitioning was performed on 3 types of
data. One of the data was generated synthetically to test
the feature space partitioning algorithm on a data where the
boundary between the two classes is not that simple to find.
This data is plotted in Figure 1 and we call it kidney data.

Figures 3 and 4 show the feature space partitioning method
as given by the above algorithm till resolutions of 6 and 15
partitions respectively. As can be seen tll r = 6 there is some
area between the two classs which is left blank since no pure
hyperboxes were encountered here. However, till r = 15 this
blank area is covered, and the separation between the two
regions is complete and a defined area is seen in terms of
hyperboxes (limits have not been drawn here).

Other data on which experiments of classification were
performed is the vowel data. This is a 3-feature and 6-class
data. The feature space was partitioned till a resolution of 13

Fig. 3. Result of feature space partitioning till r = 6

Fig. 4. Result of feature space partitioning till r = 15

and 32. 570 points were used for training (i.e. feature space
partitioning)and some 300 points were used for testing. Out of
the 871 points, 570 points are selected randomly for training
and the other 300 points are used for testing. Classification
with different sets of random points each time give results
which have been tabulated in Table I. As is seen the number
of misclassified points and the unclassified points would result
into only 10% of the testing data set. However, at resolution
32, the error is much less than that at 13. Table I shows
results for 4 separate runs on the vowel data set at 2 different
resolutions.

Another data which was experimented on is plotted in
Figure 5. As can be seen, one class (class 1) is completely
covered by another class (class 2). Feature space partitioning
starting from r = 2 would generate an area which is inside the
other class. This is not wrong. However this also results into
an inclusion of those areas which are not part of class 1 at all!
For demonstrating the thing, we have done the following setup:
357 points are used for training while other 220 points are used



TABLE I
CLASSIFICATION STATISTICS FOR CLASSIFICATION ON VOWEL DATA BY

APPLYING FEATURE SPACE PARTITIONING TILL r = 13 AND r = 32. EACH
RUN HAS A RANDOMLY SELECTED TRAINING AND TESTING SET

till r = 13 Run 1 Run 2 Run 3 Run 4

Misclassified Points (out of 300) 19 13 14 13

Unclassified Points (out of 300) 23 18 9 20

Total error points: 42 31 23 33

Percentage Correct classification 86 89.67 92.33 89

till r = 32 Run 1 Run 2 Run 3 Run 4

Misclassified Points (out of 300) 16 17 15 13

Unclassified Points (out of 300) 9 11 6 11

Total error points: 25 28 21 24

Percentage Correct classification 91.67 90.67 93 92

TABLE II
CLASSIFICATION STATISTICS FOR CLASSIFICATION ON SYNTHETIC DATA
IN FIGURE 5 BY APPLYING FEATURE SPACE PARTITIONING FROM r = 12

TO r = 14 AND r = 12 TO r = 17. EACH RUN HAS A RANDOMLY
SELECTED TRAINING AND TESTING SET

r = 12 to r = 14 Run 1 Run 2 Run 3 Run 4

Misclassified Points (out of 220) 0 0 0 0

Unclassified Points (out of 220) 3 2 0 3

Total error points: 3 2 0 3

Percentage Correct classification 98.64 99.09 100 98.64

r = 12 to r = 17 Run 1 Run 2 Run 3 Run 4

Misclassified Points (out of 220) 0 0 0 0

Unclassified Points (out of 220) 2 0 0 0

Total error points: 2 0 0 0

Percentage Correct classification 99.09 100 100 100

TABLE III
CLASSIFICATION STATISTICS FOR CLASSIFICATION ON IRIS DATA BY

APPLYING FEATURE SPACE PARTITIONING TILL r = 10 AND TILL r = 15.
EACH RUN HAS A RANDOMLY SELECTED TRAINING AND TESTING SET

till r = 10 Run 1 Run 2 Run 3 Run 4

Misclassified Points (out of 45) 0 0 1 0

Unclassified Points (out of 45) 1 5 1 2

Total error points: 1 5 2 2

Percentage Correct classification 97.77 88.89 95.56 95.56

till r = 15 Run 1 Run 2 Run 3 Run 4

Misclassified Points (out of 45) 1 0 0 2

Unclassified Points (out of 45) 0 1 1 1

Total error points: 1 1 1 3

Percentage Correct classification 97.77 97.77 97.77 93.33

for testing. Feature space partitioning is done using these 357
points. Figure 6 shows the boundaries of all the hyperboxes
created during the feature space partitioning starting from
r = 2 to r = 4. All other hyperboxes at a higer resolution
would definitely fall into these boundaries. The classification
turns out to be all correct (because class 2 is completely
surrounded by class 1). However, the two partitions in class
1 itself have now been merged which is undesirable. Hence
if the feature space patitioning is started with some higher
resolution and end up at a suitable higher resolution then the

Fig. 5. Plot of data where one class lies within the other

Fig. 6. Plot of boundaries of feature space partitioning on plot of Figure 5,
with r = 2 to r = 4. o is for class 1 and + is for class 2

two partitions in class 1 would be retained and so would be
the boundary of class 2. This is illustrated in Figure 7, where
resolution has been taken from r = 12 to r = 14. For this
particular run, out of 220 points, only 2 could not be classified.
For another randomly selected set of points, Figure 8 shows the
boundaries of the hyperboxes created at resolutions r = 13 to
r = 15. Classification statistics for synthetic have been shown
in Table II. Hence actually, the classification in this type of
data results into a success rate of above 90% if the partitioning
is done at the correct resolutions. Note that none of the points
here are misclassified but there are points which could not
be assigned to any class since there are no hyperboxes listed
which could contain them.

Experiments were also done on the standard Iris data. The
data is a 4 feature, 3 class data. Here one class is completely
separate from the other two classes and the remaining classes
are slightly overlapped in the feature space. Performing feature
space partitioning on Iris data gives classification rates as
shown in Table III.



Fig. 7. Plot of boundaries of feature space partitioning on plot of Figure 5,
with r = 12 to r = 14. Black dots are for class 1 and gray ones for class 2

Fig. 8. Plot of boundaries of feature space partitioning on plot of Figure 5,
with r = 13 to r = 15. Black dots are for class 1 and gray ones for class 2

V. CONCLUSION AND FUTURE WORK

The classification procedure discussed here is able to create
a non-linear boundary between the classes in the feature space
allowing for a classification with accuracy of almost above
90%. For completely exclusive classes, the method works quite
well even if the structures of the classes are complicated.
The only disadvantage of the algorithm can be considered
in terms of the high number of hyperboxes generated and
the complexity. But this problem can be easily curbed down
since the list generates a number of hyperboxes which are
overlapping over two or more hyperboxes together.

As discussed in the Results section. an initial resolution can
be calculated as in [4] so that unnecessary calculations are
removed for lower resolutions, if the data seems to be better
representable at a higher resolution. A final resolution where
the procedure would end can also be found out. Moreover,
such an initial resolution would also be desirable in the cases
like the 3rd data set, where one class lies compeletely within

another class.
The list of hyperboxes has the chances of having hyperboxes

which actually lie completely in areas of two hyperboxes,
i.e. some part of the hyperbox lies completely within one
hyperbox and some part completely within the other one. The
hyperbox in such a condition has to be ignored, since it is
already pure and its boundaries stored at a lower resolutions.
The algorithm above does not ignore such hyperboxes and
hence many unnecessary hyperboxes are created in the list.

The algorithm also lists down all the hyperboxes and
the corresponding classes. However, a non-linear separating
boundary can be represented easily using those hyperboxes
which lie at the edges of the class area keeping in mind how
the class distribution falls in the feature space.

Hence the feature space patitioning algorithm discussed here
is an effective way of training the data set and hence generating
areas of classes resulting into classification successes of as
high as 95% accuracy. The way the algorithm works and its
pros and cons have been discussed here with explanations
given on 3 data set which actually can represent any type
of data. With proper improvements in the algorithm, there
still exists a possiblity of reducing the number of hyperboxes
selected without affecting the overall area finally defined by
the method.

ACKNOWLEDGEMENT

Authors acknowledge Dr. Sanghamitra Bandyopadhyay of
Indian Statistical Institute, Calcutta for sharing the vowel data
used in this work.

REFERENCES

[1] R. O. Duda,P. E. Hart and D. G. Stork, Pattern Classification, Second
Edition John Wiley (2000)

[2] J. K. Kishore and L. M. Patnaik and V. Mani and V. K. Agrawal Genetic
programming based pattern classification with feature space partitioning,
Information Science 2001, Vol. 131, pp. 65-86, Publisher: Elsevier Inc.

[3] Yinghua He, Bo Zhang and Jianmin Li, A new multiresolution classifi-
cation model based on partitioning of feature space, Proceedings for
2005 IEEE International Conference on Granular Computing 25-27 July
2005, Vol 2 pp. 462-467(6)

[4] D. P. Mandal, Partitioning of Feature Space for Pattern Classification,
Pattern Recognition, December 1997, Vol 30 no. 12, pp. 1971-1990(20)
Publisher: Elsevier Science Ltd.

[5] S. Singh, PRISM - A novel framework for pattern recognition, Pattern
Analysis and Application Springer London June 2003, Vol 6. no. 2,
pp.134-149 (16)


