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Abstract—Huge amount of video data gets generated every day
which needs to be efficiently processed and effectively presented
to the users for retrieval of relevant information. The focus of
this paper is primarily to explore techniques which can support
IR applications on large scale video databases. Almost 25 times
faster approximation of a widely used color representation is
proposed by using information from the MPEG compressed
domain. A scheme is presented for real time matching of videos in
online video feeds. LSH based indexing is performed for handling
efficient near neighbor queries and support fast clustering. A
video clip can be searched in more than 100 hours of video data
in few seconds. The techniques are verified on large video data
with the help of a specially designed experimental setup. The
proposed techniques are shown to be significantly better than
several existing and state of the art algorithms.

I. INTRODUCTION

Large video repositories are getting into the mainstream
with the advent of information technology. High speed Inter-
net and commoditization of storage hardware catalyzes this
trend. The increasing number of news channels results in
an abundance of data which makes it difficult for the users
to visualize and comprehend the available information. In
India, a typical cable or satellite TV distribution network
daily delivers approximately 200 hours of news in English,
Hindi and regional languages. Users can never afford to
view this entire news broadcast. They are interested to (a)
Avoid watching irrelevant videos like advertisements and other
repetitive content like channel logos, program lead-in and lead-
outs. (b) Search for videos similar to a particular news story.
(c) Watch the most important news stories over a duration,
say a day or week. (d) Keep track of the developments in a
particular news story.

In this paper, we focus on presenting techniques which can
effectively support applications like above. A spotting tech-
nique has been proposed to address (a) which enables real time
recognition of query clips in online video feeds. An LSH based
indexing scheme is presented which supports near neighbor
queries at interactive speeds. This forms a core component for
applications like (b). (c) and (d) can be solved by exploiting the
occurrence of common video clips in different news broadcasts
across channels and time. Relationships can be established
between news stories by clustering such visually similar clips
which leads to importance ranking of news stories based on

cluster size. Developments to news stories can be tracked by
analyzing the growth of clusters and addition of new videos
to them. Significant gains in computation of the clusters can
be achieved by using the LSH index. An overview is provided
in Figure 1.

Video content is often represented using key frames which
reduces the problem of video retrieval to CBIR. Early systems
based on this approach include QBIC [1] and VisualSeek [2].
The general solution for content based image and video
retrieval has traditionally been to build feature descriptions
of the content and then defining distance measures between
these features for matching. Features can typically be grouped
into two categories - low level and high level. Low level
features are compact, mathematical representations of the
physical properties of video data like color atmosphere, tex-
ture, shape, edge information and motion [3]. Popular high
level representations attempt at representing video content in
terms of objects, faces, activities, etc. There exist specialized
techniques developed for addressing specific categories like
sports videos. However, they are not necessarily effective for
general and diverse content like broadcast news. A lot of work
has been done on hierarchical representation of structure for
easy browsing of video content. The main objective of these
methods is to accelerate the process of manual browsing of
videos and thus are suitable only for access of limited video
content (say a movie or a specific news broadcast).

Several algorithms represent video as a sequence of feature
vectors. Each feature vector represents a frame or a group
of frames. The matching is performed by determining the
alignment score between the two sequences by using sequen-
tial correlation [4] dynamic programming based techniques
like Least Common Subsequence (LCS) and Approximate
Subsequence Matching (ASM) with certain constraints [5],
[6]. Such techniques lose on the computational efficiency as
computing the correlation of features per frame gets expensive.
These methods focus on very fine frame level matching and the
efficiency of searching through large collections is neglected
to some extent for the accuracy of matching. Moreover, these
algorithms check for inherent temporal order of frames in the
sequence representation. This further increases the order of
matching. However video clips differing in only the temporal
order of frames are not expected to be found in general
broadcast videos. This motivates us to work with video clips



2

Compressed Domain
Computation in
Efficient Feature

Video Data

Feature Vector
OF STORED VIDEOS
OFFLINE INDEXING

ONLINE VIDEOS
SPOTTING IN Live Video

Query Clip

Similar Video Retrieval, etc.
Thematic Clustering,

Segmentation free Search, etc.
Advertisement Removal,

into Shots
Segmentation

Fast NN Queries
Hash to Support

MATCHING SCENARIOSVIDEO REPRESENTATION IR APPLICATIONS

Fig. 1. An overview of the techniques presented in this paper.

as the fundamental unit and our features represent the entire
clip.

In the context of applications for present times, the amount
of video data does not remain constant anymore. The data
keeps growing every day and that too at tremendous rates.
Till recently, video matching papers had been concentrating
on issues pertaining to better representation of video properties
and higher matching accuracy. Emergence of large scale video
repositories introduced a new range of issues concerning
faster offline processing and efficient search. Accuracy can
be compromised to certain extent for gains in speed. For
applications that require very fine level accuracy, slower so-
phisticated algorithms can be applied on much smaller datasets
obtained after first level of coarse pruning. We propose a
significantly fast approximation of a popular color feature in
the compressed domain. Our implementation is capable of
indexing 140 hours of video data in a day. The LSH based
indexing scheme can easily search through more than 100
hours of data in few seconds.

II. EFFICIENT INDEXING IN COMPRESSED DOMAIN

The first step in our processing is to segment the broadcast
news videos into shots. A shot is defined as a visually
continuous sequence of successive video frames taken from
one camera. The segmentation of videos is performed by
automatically detecting the shot boundaries. The algorithm
uses block based feature difference with an adaptive threshold,
dynamically calculated over successive frames. Each shot
is then processed and features are extracted for a compact
representation of the shot. The feature extraction process needs
to be computationally fast for handling large amounts of
data. Moreover in situations when online videos need to be
processed in real time, fast feature extraction mechanisms are
desired.

We work in the compressed domain for extracting features.
Video data is almost always found in compressed formats for
efficiency of storage and transmission. Feature extraction is
much more efficient in the compressed domain than that in the
uncompressed domain as the overhead of decoding is removed.
Memory requirements are much less while processing. Some

low level features can be determined from the information
directly available in the compressed domain itself which
removes the overhead to compute it again in the pixel domain.
JPEG and MPEG have been the most explored formats for
compressed domain processing. Figure 2 illustrates the nature
of DCT blocks in a compressed image or video frame. DCT
coefficients and block motion vectors are used for computation
of various low level features. An overview of the popular
features [7] is also provided in Figure 2.

A. Compressed Domain Color Atmosphere

Color (or intensity) information is among the maximum
used in the content based image and video matching literature.
It is usually measured by some sort of refined color histogram
technique. One of the most widely used technique is the color
coherence vector (CCV) [8]. It makes use of spatial coherence
and is thus much more discriminative. Instead of counting only
the number of pixels of a certain color, the CCV additionally
distinguishes between coherent and incoherent pixels within
each color class. This essentially aims at differentiating pixels
belonging to the color classes associated with smooth and ho-
mogeneous regions from those associated with noisy or edgy
regions. Though it provides significant advantage over basic
color histogram in terms of performance, the computational
complexity is a deterrent.

Typically color information is measured in the compressed
domain using DC image sequence and represented with fea-
tures like DC color histograms [7]. We propose an approxi-
mation of CCV by using information from MPEG compressed
domain. This representation retains the benefits of CCV over
a basic color histogram and is still a lot faster as it is
directly computed from information available in the com-
pressed domain. AC coefficients in the 8 × 8 3B DCT blocks
are classified into frequency bands that roughly correspond
to smooth areas, horizontal and vertical edges, and noisy
areas [7]. DCT blocks corresponding to smooth regions have
low frequency and have only very few initial AC coefficients
as non-zero, ideally only the DC coefficient. Whereas, blocks
corresponding to noisy regions have later AC coefficients as
non-zero. This information is used to classify the DC value of
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Fig. 2. (i) shows an 8 × 8 DCT block. Each cell indicates the nature of the region that is represented by the particular DCT coefficient. (ii) provides a
review of common compressed domain features.

Method FPS Amount of data that
can be indexed each day

Pixel Domain CCV 4 6 hours
SIFT based frame 2 3 hours

representation [9], [10]
Our Compressed Domain 150 140 hours
approximation of CCV

TABLE I
COMPARISON OF OUR COMPRESSED DOMAIN FEATURE EXTRACTION WITH

OTHER TECHNIQUES. ALL THE ABOVE NUMBERS ARE REPORTED ON

VIDEOS OF RESOLUTION 320 × 240.

the corresponding block as coherent or incoherent. Two values
are associated with each color bin j:

• αj - The number of DC values corresponding to smooth
DCT blocks of color class j

• βj - The number of DC values corresponding to noisy or
edgy DCT blocks of color class j

The feature vector V is thus defined as the vector

V = 〈(α1, β1), . . . , (αn, βn)〉 (1)

normalized by the number of DCT blocks. n is the number of
color classes. The popular distance measure to compare CCVs
can directly be adapted for our feature:

Dist(V1,V2) =
n∑

j=1

( ∣∣α1
j − α2

j

∣∣
α1

j + α2
j + 1

+

∣∣β1
j − β2

j

∣∣
β1

j + β2
j + 1

)
(2)

The similarity measure between the two vectors is simply the
inverse of the above equation,

Sim(V1,V2) =
1

Dist(V1,V2)
(3)

Table I compares efficiency of our feature computation
method with other well known standard color representations.
We also compare with features used in latest video indexing
schemes [9], [10]. It can be clearly seen from the numbers
that our method of computing the approximate CCV is much
superior to the standard pixel domain technique. In fact, it
even turns out to be marginally faster than the computation of
a basic color histogram in the pixel domain while still retaining
the advantages of CCV to a large extent. Our version of the

CCV is an approximation of the actual CCV and thus cannot
be directly compared. We however conducted experiments
which show that our approximation of the CCV is qualitatively
good. Some of these are reported in Section III.

B. Spotting Clips in Online Videos

For applications like advertisement detection and removal
from online video feeds, we use a segmentation free searching
scheme which employ running window based comparison, on
the lines of the one proposed in [11]. We make it further
efficient by matching in the compressed domain. The feature
vectors are computed incrementally to avoid redundant com-
putation.

Let us denote the online video sequence by L and the small
query video by Q, and the number of frames in them being
F (L) and F (Q) respectively. Q is compared with successive
subsequences of L, where each subsequence consists of frames
i to i + w, where w is the width of the running window
and i varies from 1 to (F (L) − w). Any such subsequences
is hereafter denoted as Li. The width of the window, w is
typically kept comparable to the number of frames in the query
video, fQ. Both the query clip as well as the subsequence
are represented using vector described in equation 1. A single
global vector is built by cumulating information from all the
frames in the clip. The similarity score is computed at every
shift (increment of i) and a peak in these sequences of scores
indicate the position of a possible match. Few frames can be
skipped at every increment for achieving further speed up
without any noticeable degradation in the accuracy. In our
implementation, we shift the window to the next I frame in
the MPEG video.

∀i Sim(VQ,VLi)

For improving the efficiency, we update the feature vector
VLi incrementally at each shift of i. We maintain a vector
for each frame in Li. These are denoted by {v1, . . . , vw}
corresponding to the frames {fi, . . . , fi+w−1} belonging to
the sequence Li. These vectors are initialized from frames
belonging to L1. VLi is the cumulative vector for representing
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Fig. 3. Example of spotting advertisements in live online video. The similarity scores over a running window while matching in the compressed domain are
plotted. A peak is observed when there is a match.

Li which is essentially a summation of vectors {v1, . . . , vw},

VLi =
w∑

k=1

vk

After each increment of i, the new VLi is computed from
VLi−1 by subtracting the contribution of the outgoing frame
and adding the contribution due to the newly added frame into
the sequence.

tout = vi%w

vi%w = v(fi+w)
VLi = VLi−1 − tout + vi%w

where v(fi+w) is the vector representation for the frame f i+w

and tout is a temporary vector.
Figure 3 shows the results for the spotting scheme. The sim-

ilarity score increases forming a distinct peak at the position of
occurrence of the query video. Such peaks are detected using
standard adaptive threshold mechanisms.

C. LSH based indexing for Efficient Near Neighbor Queries
and Fast Clustering

The need for an efficient indexing mechanism for searching
through video data is quite obvious. The naive approach
of sequential search is typically too inefficient to handle
large databases. The spatial data structures which have been
extensively used are helpful in the context, however suffer
from the so-called “curse of dimensionality” in handling high
dimensional data points. As the number of dimensions grow
sufficiently large, most algorithms and techniques perform not
significantly better than a simple brute force linear search.

Locality Sensitive Hashing (LSH) is known to handle high
dimensional data with greater efficiency. It is a relatively
new scheme for approximate similarity search based on hash-
ing [12]. Its developed for efficiently answering approximate
near neighbor queries. The key idea is to hash the data points
using several hash functions so as to ensure that, for each
function, the probability of collision is much higher for objects
which are close to each other than for those which are far apart.
Then, one can determine near neighbors by hashing the query
point and retrieving elements stored in buckets containing that
point. The potential applications for earlier versions of LSH
were narrow in scope as LSH functions were suggested for

data with solely binary features. The most recent work [12] is
extended to use data in Euclidean space.

A video shot is represented by a feature vector. Feature
vectors corresponding to all the shots in the video collection
are hashed using LSH. As LSH is designed for euclidean
distance computation, we separate the coherent and incoherent
parts of the feature vector and concatenate the two to form a
single feature vector V = 〈α1, . . . , αn, β1, . . . , βn〉 to make
it suitable for euclidean distance computation. A random set of
vectors α are generated from a p-stable distribution of the same
dimension as the feature vectors. These act as hash functions
and map the d dimensional feature vector onto a real line. The
real line is divided into equi-width segments of appropriate
size r and vectors are assigned hash values based on which
segment they project onto. Formally, the hash function is given
by

ha,b(v) =
⌊
a.v + b

r

⌋
(4)

where b is a real number chosen randomly from the range
[0, r]. If appropriate r is chosen, then intuitively two points
which are nearby in the space will hash in the same bin. To
avoid boundary effects, several hash functions are used. The
time complexity for querying every hash table is constant and
this returns a set of candidate points. Further pruning can be
performed on this set by explicitly computing the distance.

Clustering is made a lot faster by employing the near
neighbor queries from LSH based index. In typical clustering,
O(n2) comparisons are required to arrive at clusters as each
point needs to be compared with all the other points. We
directly query for near neighbors of a query point from
the hash which provides significant computational gains for
clustering.

III. EXPERIMENTAL RESULTS ON A LARGE SCALE VIDEO

INDEXING SYSTEM

A. The System used for Experiments

We have built a system [13] that is specifically designed
for the information retrieval applications on broadcast news
videos. The system is directly useful to an end user for
easy access to the news stories of interest. It also acts as a
platform for convenient deployment and experimentation of
various video analysis and indexing techniques on real data,
and on a large scale. The system is built upon a layered
architecture with certain software design choices that makes
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Fig. 4. Top retrieved results from near neighbor queries performed on the LSH index are shown.

the system highly scalable, extensible and modular. Lack of a
specialized platform for the deployment and experimentation
often becomes a roadblock in the development of robust and
scalable algorithms. Our system works as an end to end
framework for the researchers wherein they can plug in their
specific algorithms and get to test them with real data and
other supporting mechanisms.

The system has been in use for 20 months and and has
consistently been evolving to come to its current form. Almost
50 hours of broadcast news video data from 8 different
channels in 3 different languages (English, Hindi and Telugu)
gets recorded and processed each day by the system. Almost
70Tb of videos have been processed in all by the system
till date. There are 1000 valid users which have password
protected access to the processed content over our university’s
LAN. The video is encoded in MPEG-1 format which is kept
as the standard format throughout the system. Two processing
servers with an AMD Athlon 3200+ processor and 1G of RAM
each are in use. 1500GB of total storage spread over 5 storage
nodes is in use.

The captured broadcasts are automatically segmented into
shots and stories by analyzing the structure. All the video data
gets processed and features gets indexed along with the source
specific metadata. Broadly, following sets of operations are
supported on the input videos:

1) Video Processing: The standard pre-processing and
video processing operations such as noise removal, shot
detection and advertisement removal.

2) Content Extraction: Various feature extraction and con-
tent analysis algorithms are supported. These include
key frames, color histograms, motion vectors and face
videos.

3) Indexing: Efficient indexing schemes are supported to
build index structures of all the metadata extracted.
There can be multiple indices for different metadata in-
formation. These indices are used by the IR and Delivery
modules for providing quick content based access to the
users looking for some specific information.

The system supports various types of metadata for the videos:

1) Source information about the videos like channel, broad-
cast date and time, resolution, frame rate and language.

2) Low level features like color, motion, compressed do-
main features and audio stream information.

3) Object level annotation information like locations, faces,
activities and events.

4) Direct and indirect user feedback for the videos.

Various IR modules deliver the processed content to the
users over web. Users can see the latest news stories on
the top and can browse through the archives too. A user
friendly interface enables easy browsing for the users. An
effective and intuitive way of visualizing the videos is designed
such that the user gets a feel of the content without actually
needing to stream the videos and see them. Users are typically
presented news broadcasts automatically segmented into indi-
vidual stories. These stories are of few minutes duration each.
Browsing this by playing the video requires significant time.
We extract the critical frames called key frames and form a
visual summary which is presented in an innovative manner
along with the metadata as show in Figure 6. It allows users
to know the relevant meta information (eg. language, channel,
time of news, importance, etc.) associated with each story. The
key frames from the story are arranged left to right and move
in a slide show. Any keyframe zooms out on mouse hover by
the user. This enables the user to study the content in detail.

Figure 4 show results of qualitative experiments performed
on the videos indexed by the system. Two examples of
near neighbor queries executed on the data indexed by LSH
are shown. Clips are matched even after differences in the
appearance due to the channel logos, text captions, minor
pose and illumination changes, etc. While simple features like
color will not do matching at a very fine level (differentiation
between cricket videos from two different matches), it can still
be useful in retrieving related clips from all the news videos
of a day or week which is enough for the kind of applications
we are targeting. Near neighbor queries executed on an LSH
index of around 100 hours of video data typically takes a few
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seconds.
This shows that the proposed scheme is suitable both in

terms of efficiency and matching performance for building
information retrieval applications discussed in Section I.

IV. CONCLUSIONS AND FUTURE WORK

We have presented an efficient method for approximate
computation of a popular color feature in compressed domain.
The superiority of the method in terms of speed over state of
the art methods is clearly depicted through experiments. Fast
matching techniques for two probable scenarios in information
retrieval applications are proposed. The techniques are shown
to be achieving significant gains in computational time over
existing methods.

The immediate extension of the work is applying these
techniques for clustering visually similar video clips. Analysis
mechanisms will be established for these clusters for address-
ing various applications described in Section I. Later, hyper
links can be established between related news stories. We
presently detect all the faces appearing in the news videos.
These can be clustered to establish a list of most cited
personalities in news over a duration. We capture the direct and
indirect user feedback as well as the user activity log which
can be used for automatic personalization and recommendation
based on user’s history. The visualization of videos can extend
in future to the use of mosaics and 3D walkthroughs.
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