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In all the experiments, the noise is assumed to be IID Gaussian with zero mean and σ standard deviation. 

Noisy Image Formation 
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Real Image captured from mobile camera 



Performance (Image Quality) 

Measures 
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 Used to compare various image processing algorithms. 

 Most commonly know measures are 

 Root Mean Squared Error (RMSE)/ Mean Squared Error (MSE) 

 Peak Signal to Noise Ratio (PSNR) 

 

 

 

 

 

 

 Very simple in calculation 

 But does not involve the characteristics of the human visual system (HVS) 

Peak Signal to Noise Ratio (PSNR) 
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where I and J are images 

of size MxN 

where L is the dynamic 

range of the image, eg. For 

8bit image, L=255 

• Wang, Z.. & Bovik, A. C., (2009),‘Mean Squared Error: Love it or Leave it?‘, IEEE Signal Processing 

Magazine, pp. 98-117, Jan.2009. 
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 Universal Image Quality Index (Q Index)  

 Let                                   and                                  be the original and the test image 

signals, respectively. The index is defined as  

 

 

 

 The dynamic range of Q is [-1, 1] 

 The best value 1 is achieved iff 

 

 

 

 

 Local quality index can also be define in sliding window fashion 

 

Q-Index 
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1 where M is the total number 

of blocks in image 

• Wang, Z. & Bovik, A. C., (2002), ‘ A Universal Image Quality Index‘, IEEE Signal Processing Letters, vol. 

9(3), pp. 81-84. 
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 Generalization of Universal Quality Index 

 The luminance of the surface of an object being observed is the product of the illumination and 

the reflectance 

 Structures of the objects in the scene are independent of the illumination.  

 Similarity measure should satisfy the following condition 

1. Symmetry: 

2. Boundedness: 

3. Unique Maximum:                iff  

 

Structure Similarity Index Measure (SSIM) 
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• Wang , Z.., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P., (2004), ‘Image Quality Assessment: From 

Error Visibility to Structural Similarity‘, IEEE Trans. On Image Processing, vol. 13(4), pp. 600-612. 
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 Combination of Phase Congruency (PC) and Gradient Magnitude (GM) 

 Computation of overall FSIM index consists of two stages 

 First stage: compute local similarity map 

 Second stage: pool the similarity map into a single similarity score 

Feature Similarity Index Measure (FSIM)  
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• Zhang., L., Zhang. L., Mou, X. & Zhang, D., (2011), ‘FSIM: A Feature Similarity Index for Image Quality 

Assessment‘, IEEE Trans. On Image Processing, vol. 20(8), pp. 2378-2386. 



Some more approaches  

 Method Noise: (Noisy Image – Denoised Image) 

  The residual image (also called “method noise”) – defined as the difference 

between the noisy image and the denoised image – should look like (and 

have all the properties of) a pure noise image. 

 

 A denoising algorithm should transform a pure noise image into another 

noise image (of lower variance). 

 

 A competent denoising algorithm should find for any pixel ‘i’, all and 

only those pixels ‘j’ that have the same model as ‘i’ (i.e. those pixels 

whose intensity would have most likely been the same as that of ‘i’, if 

there were no noise).  
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•  A. Buades, B. Coll and J. M. Morel, A review of denoising algorithms, with a new one, Multiscale Model, 

Simul, Vol. 4, No. 2, pp. 490-530, 2005. 

• Dominique B., Edward R.V. and Zhou W., The use of Residuals in Image Denoising, International 

Conference on Image Analysis and Representation, July 2009. 



Early Age Denoising (Spatial 

Location based Filters) 



Early Age Denoising (Spatial Location based Filters) 

 Simple Averaging  (mean filter) : 

 

 

 Median Filtering:  

 

 

 

 

 Lee Filter: Weighing according to the distance between  

Spatial locations of the pixels: 
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)),(( ),(ˆ yxNmedianyxI  Mean Filter 

Lee Filter 



Diffusion Processes 



Isotropic Diffusion 

 This process smoothes the image in order to remove noise. But 

also blurs out the fine details and edges.  
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Anisotropic Diffusion [Perona-Malik diffusion] 

 Anisotropic Diffusion is  a technique aiming at reducing image 

noise without removing significant parts of the image content, 

typically edges, lines or other details that are important for the 

interpretation of the image . 

 

 

 Here, g(·) is an edge stopping function (Decreasing function of 

gradient magnitude) which is chosen such that the diffusion is 

stopped across edges. 
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• P. Perona and J. Malik, Scale-Space and Edge Detection Using Anisotropic Diffusion, IEEE Trans. On PAMI, Vol. 12, No. 7, 

pp. 629-639, 1990. 

12 

 0;
1

1
)(

22

2 


 
s

sg

Isotropic Filter 

Perona Malik Filter 



Weickert’s Anisotropic Diffusion 

 Anisotropic diffusion inhibits diffusion at edges, hence noise at 

edges cannot be eliminated successfully.  

 Weickert suggested process that allows diffusion along edges 

and inhibits diffusion perpendicular to them. 

 The eigenvalues of the diffusion tenser are chosen as: 

Total Variation (Rudin et. at 1992)  

    1  , 2

2
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• J. Weickert, Theoretical foundations of anisotropic diffusion in image processing, Computing Suppl. 11, 221-236, 1996. 

• L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60:259–268, 1992 
13 

I : Noisy Image 

J : Original Image 

x: Image Space 

Total Variation of J 

Lagrange’s 

Multiplier 

Tikhonov Regularization 



Neighbourhood Filters 



 Yaroslavsky Filter: 

 

 

 

 

Neighbourhood Filters (Intensity value based) 
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• L. P. Yaroslavsky, Digital Picture Processing. An Introduction, Springer-Verlag, Berlin, 1985. 

• L. Yaroslavsky and M. Eden, Fundamentals of Digital Optics, Birkhauser Boston, Boston, MA, 1996. 
15 



Bilateral Filtering 
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 It combines gray levels or colors based on both their geometric closeness and their 

photometric similarity, and prefers near values to distant values in both domain and range. 

 Its non-iterative, local, edge preserving and simple. 

 Two pixels can be close to one another, i.e., occupy nearby spatial location or they can be 

similar possibly in a perceptually meaningful fashion.  
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• Tomasi, C. & Manduchi R., (1998), ‘Bilateral Filtering for Gray and Color Images‘, Proc. Of IEEE ICCV, pp. 

839-846. 

• Paris, S., Kornprobst, P., Tumblin, J. & Durand, F., (2008), ‘Bilateral Filterning: Theory and Applications‘, 

Foundataions and Trends in Computer Graphics and Vision, vol. 4(1), pp. 1-73. 

Geometric 

Closeness 

Photometric 

Similarity 

Bilateral 

Filter 
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Scaled Bilateral Filtering 

• Aswatha, S. M., Mukhopadhyay, J. & Bhowmick, P., (2011), ‘Image Denoising by Scaled Bilateral Filtering‘, 

Proc. 3rd National conference on Computer Vision, Pattern Recognition, Image Processing and Graphics, pp. 
122-125. 
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 Rank Ordered Absolute Differences (ROAD) Statistics 

 Consider a window of size 3x3 at pixel location      with intensity           

 Define        as the absolute difference in intensity of pixels between      and  

 

 Finally, sort these values in increasing order and define 

 

 

 

Trilateral Filtering 

• Garnett., R., Huegerich, T., Chui, C. & He, W., (2005), ‘A Universal Noise Removal Algorithm with an 

Impulse Detector‘, IEEE Trans. On Image Processing, vol. 14(11), pp. 1747-1754. 
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 Trilateral Weights are defined as follows 

 

 

where                      is regularized local signal amplitude of the pixel at    

                 in the homogeneous regions. 

            is the dimensionality of the image 

        measures the similarity of the rank    local structural orientation between the pixels at     and   . 

 

Trilateral Filtering 

• Wong, W. C. K., Chung, A. C. S. & Yu, S. C. H., (2004),  ‘Trilateral Filtering for Biomedical Images‘, Proc. of 

IEEE International Symposium on Biomedical Imaging: Nano to Macro, vol. 1, pp. 820-823. 
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Local structure information is obtained from the 

Eigen value decomposition of orientation tensor. 



Rough Set Theory 
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 Introduced by Z. Pawlak during early 1980s . 

 Another approach to vagueness (Not an alternative to classical set theory like fuzzy set). 

 Imprecision in this approach is expressed by boundary region of the set. 

Inner approximation Upper approximation 

Granules of  knowledge 

The set 

Set of Objects 

Figure 1: Rough Set Theory 

. and let  and system,n informatioan  be ,Let UXABAU 

B-lower Approximation   XxUxXB B  :ˆ

B-upper Approximation    XxUxXB B:
~

Boundary Region XBXB ˆ~


Roughness of X w.r.t. B 

XB

XB
R ~

ˆ

1

• Pawlak, Z. & Skowron, A., (2007), ‘Rudiments of Rough Sets’,  Information Sciences, vol. 177 (1), pp. 3-27. 

• A. Phophalia. S. K. Mitra, A. Rajwade, A new Denoising filter for brain MR image, In Proc. Of ICVGIP, 2012. 
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Rough Set based Trilateral like Filter 

 The goal is to assign a class label to each pixel of the image. 

 Rough set is used to capture impreciseness present due to noise. 

 The concept of Rough Set based binarization (two class problem) is utilized successively. 

 As an initial step, approximate thresholds (valleys in the histogram) are obtained. 

 In the next step, the approximate thresholds are optimized separately using Rough 

Entropy measure.  

 

 

 

 The image under consideration is binarized for each threshold and a pixel is given a 

symbol either 0 or 1 for each threshold. 

 Thus, a pixel will get K such symbols for K thresholds present in the image. Each pixel 

could then be represented by a binary string of length K. 

Derivation of Class Information 
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• Pal, S. K., Uma Shankar, B. & Mitra, P., (2005), ’Granular Computing, Rough Entropy and Object Extraction’, Pattern 

Recognition Letters, vol. 26, pp. 2509-2517. 
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Proposed Method 

Derivation of Class Information 

Find Threshold from noisy 

image histogram 

Optimize each threshold 

separately using Rough 

Entropy Criteria 

Binarize the image w.r.t 

each optimized thresholds 

Combine assigned symbols 

as binary string of length K 

for each pixel 

Classify all binary string 

and there by pixels 

Figure 2: (a) Flow chart, (b)  Code and Class assignment for  

different number of thresholds. Here K is number of thresholds. 
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Proposed Method 

Derivation of Rough Edge Map (REM) 

 To obtain the cardinality of lower and upper approximation of the object, a granule based 

method is adopted. The minimum granule size could be 1x2, 2x1 or 2x2. 

 This leads to a situation where some granules will not be counted entirely in lower 

approximation or entirely in upper approximation. These granules, thus could be 

considered as thick rough edge of the object. 

 Each optimized threshold will generate a thick (e.g. 2x2 blocks) rough edge map for the 

object under consideration. 

 The union of all such rough edge maps is expected to fetch the rough edge map of the 

entire image. 
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Proposed Method 

Denoising Filter 

 The denoised pixel is given by 










)(

)(

,
),(

),(),(

ˆ

iNj

iNj

ji
ji

jiYji

Y



where Y(i,j) is the noisy image pixel and N(x) 

denotes neighborhood  of x   
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Results 

(a)         (b)                                         (c)                                     (d) 

(e)         (f)                                   (g)                                     (h) 

Figure: (a) Noisy Image, (b) Median filter (3x3), (c) Mean filter (3x3), (d) Bilateral filter, 

(e) Trilateral filter (Garnett et al.), (f) Scaled Bilateral filter, (g) Rough Set based Trilateral 

like filter, (h) Original Image 

• Simulated Brain Database http://mouldy.bic.mni.mcgill.ca/brainweb/  



Transformed Domain Filtering 



Transformed Domain Filtering 

 Noisy image formation model:  

 β be the orthonormal basis, hence the model is transformed as: 

 

 Various transformed domain filters are applied independently to 

every transform coefficient 

 The denoised image is estimated by inverse transform of the 

modified coefficients.  

 Transformation domains:  

 Fourier domain 

 DCT domain 

 Wavelet domain  

 Any other orthonormal basis 
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Global vs. Local 

 In case of Global denoising, whole image is processed at once. 

 Here, global image characteristics may prevail over local ones and 

create spurious periodic patterns. 

 

 

 

 

 

 

 

 To over come this issue, local adaptive filters are used. 

 The noisy image is analyzed in a moving window fashion. Each 

position of the window is processed and modified independently. 

 

   (a) Noisy Image    (b) Denoised image in 

     Fourier Domain 

(c) Example of uniform texture 

spreading all over the image 

28 



Various methods for modifying the coefficients 

 Model of an image in transformed domain:  

 Noisy coefficients Iηβ (α) are modified to a(α) Iηβ (α),  0  ≤ a(α) ≤1. 

 Some of the ways of finding a(α) are: 

 Hard Thresholding: 

 
 

 Soft Thresholding: 

 

 

 
 

 Weiner Filter Update: 

 

 

 

 

 Note – these thresholding rules cannot be applied in the spatial domain directly, as 
neighboring pixels values are strongly correlated.  
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Translation invariance (TI) 

 Usual practice in these local adaptive techniques is of processing all the 

overlapping patches of the image independently. 

 In such cases, a pixel undergoes the denoising process many times. 

 Considering the latest update for a particular pixel may loose some information. 

 Further improvement is achieved by averaging the different results that appear 

at each pixel.  

       Haar Wavelets                     DB2 Wavelets                            DCT 

Without TI 

With TI 

Hard thresholding results on Barbara 
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Non-Local Self Similar Approach 



Non-local Self Similarity 

 The methods discussed so far aim at noise reduction and reconstruction of the 

main geometrical configurations, but not at the preservation of the fine 

structure, details and texture as they are based on the principle of piece-wise 

constant intensity. 

 Such fine details are smoothed out as they behave in all functional aspects as 

noise. 

 In order to overcome this issue, the 

high degree of redundancy present 

in the natural image is exploited. 

 Every small window (patch) in a 

natural image has many similar 

windows in the same image. 

32 



Non-Local Means 
 Non-local means compares entire patches (not individual pixel intensity values) to 

compute weights for denoising pixel intensities. 

 Comparison of entire patches is more robust, i.e. if two patches are similar in a noisy 

image, they will be similar in the underlying clean image with very high probability. 

 

 Here, the weight w(i,j) depends on similarity between the neighborhood window N(i) 

and N(j) of both the pixels respectively. 
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 Due to fast decay of the exponential kernel, large 
Euclidean distances lead to nearly zero weights, 
acting as an automatic threshold. 

 Too-small patch size tends to create fake edges 
and patterns in the constant intensity regions 
whereas too large patch size over smooth the fine 
details.  

 

•  A. Buades, B. Coll and J. M. Morel, A review of denoising algorithms, with a new one, Multiscale Model, 

Simul, Vol. 4, No. 2, pp. 490-530, 2005. 



Non-Local Means Algorithm Results 
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Original Periodic Image Noisy Image (σ=20) Patch Size= 3 x 3  
(PSNR: 26.894, SSIM: 0.9698) 

Patch size= 5 x 5  
(PSNR : 26.35, SSIM: 0.9655) 

Patch size = 8 x 8  

(PSNR: 25.77, SSIM: 0.9600) 



Non-Local Means Algorithm Results 

Patch size = 5 x 5 

 (PSNR: 26.51, SSIM: 0.8091) 
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Original Image Noisy Image (σ=20) Patch size= 3 x 3  
(PSNR : 26.95, SSIM: 0.8194) 

Patch Size= 8 x 8 
 (PSNR: 25.58, SSIM: 0.7739) 

Patch size = 16 x 16  
(PSNR: 25.09, SSIM: 0.7513) 



Gaussian Smoothing:  

 (PSNR: 24.22, SSIM:0.7343) 

Anisotropic Diffusion: 

 (PSNR: 28.06, SSIM: 0.8099) 

Bilateral Filtering:  

(PSNR: 27.47, SSIM: 0.7664) 

Comparison of different denoising methods  

Original Image Noisy Image (σ=20) 

NL-Means:  

(PSNR: 28.08, SSIM: 0.812) 
36 



Gaussian Smoothing:  
 (PSNR: 24.09, SSIM:0.8118) 

Anisotropic Diffusion: 

 (PSNR: 25.27, SSIM: 0.8237) 

Bilateral Filtering:  

(PSNR: 24.67, SSIM: 0.8198) 

Comparison of different denoising methods  

Original Image Noisy Image (σ=20) 

NL-Means:  

(PSNR: 25.98, SSIM: 0.8359) 
37 



Method Noise 

Gaussian Smoothing Anisotropic Diffusion 

Bilateral Filtering 

Original Image 

NL-Means filtering 38 



Method Noise 

Gaussian Smoothing Anisotropic Diffusion 

Bilateral Filtering 

Original Image 

NL-Means filtering 39 



Method Noise 

Gaussian Smoothing Anisotropic Diffusion 

Bilateral Filtering 

Original Image 

NL-Means filtering 40 



Noise to noise 

Filtered Noise: Gaussian 

Smoothing 

Filtered Noise: Anisotropic 

Diffusion 

Filtered Noise: Bilateral 

Filtering 

Noise Sample 

Filtered Noise: NL-Means  Filtered Noise: Wavelet 

Thresholding 41 
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Variants of NLM Method 
 Rotationally Invariant Block Matching (RIBM):  (Zimmer et al. 2008) 

 Estimate the angle of rotation between blocks 

 To each pixel in the first block, find the position of the  

     corresponding pixel in the second block by rotating its 

     vector by estimated angle. 

 

 Moment Invariant based Measure  (Zimmer et al. 2011) 

 7 Moment Invariants proposed by Hu using Theory of Algebraic Invariants in 1962. 

 Grewenig et al. used Zernike Moments as features of each block and used it in block matching to 

classical framework of NL Means method. 

 

 SSIM based NLM method  (Rahman et al. 2011) 

 Patches are compared using SSIM measure (As discussed earlier) 

 It provides an inherent advantage of comparing structurally similar patches. 

 

 

 

 

• Zimmer, Sebastian, Stephan Didas, and Joachim Weickert. "A rotationally invariant block matching strategy improving image 

denoising with non-local means." Proc. 2008 International Workshop on Local and Non-Local Approximation in Image 

Processing. 2008. 

• Grewenig, Sven, Sebastian Zimmer, and Joachim Weickert. "Rotationally invariant similarity measures for nonlocal image 

denoising." Journal of Visual Communication and Image Representation 22.2 (2011): 117-130. 

• Rehman, Abdul, and Zhou Wang. "SSIM-based non-local means image denoising." Image Processing (ICIP), 2011 18th IEEE 

International Conference on. IEEE, 2011. 



Combination of NL Principle and 

Transform Domain Approaches 



Non-Local PCA and its variants  

 So far, fixed orthonormal basis are used for the transformed domain approaches for 

denoising. 

 New transform bases can be learnt by using the non-local similarity of the patches.  

 The most basic transform learnt is Principle Component Analysis (PCA). 

 Similar patches xis are grouped together in the data matrix :  

44 

] ............  [ 21 MxxxX 

fromat.in vector  patches are   , .... , , 21 mxxx

 Normalize the data to have zero mean. 

 

 

 Calculate  the Covariance matrix: 
 

 Basis matrix W can be found by solving the eigenvalue problem: 

 
 

 Coefficients of patches in the transformed (PCA) domain are: 

 

 





M

i

ix
M

X
1

1
XXA  where, 

TAAC 

XWY T

] ...........  [ 21 kwwwW  . ofr eigenvecto  theis each  where, Cwi

WCW 



Non-Local PCA and its variants  
 Adaptive PCA [Muresan et. al.]: The bases are learnt for each patch from the collection of 

similar patches for that particular patch. 

  The patches are considered to be similar if their squared distance is less than or equal to 

3nσ2. (n : patch size, σ: standard deviation of noise) 

 The coefficients of patch in the transformed PCA space are manipulated using soft or hard 

thresholding or wiener filter update. 

 Inverse the transformation, repeat the procedure for each patch and reconstruct the image.  

 LPG-PCA[Zhang et. al.] works in 2-stages. Local Pixel Grouping (LPG) refers to finding 

similar patches to the reference patch. 

 Denoised image using first stage is again denoised in the same way after estimating the 

noise level:   

• Muresan and Parks, Adaptive principal components for image denoising, ICIP , Vol. 1. pp. 101-104, 2003. 

• L. Zhang, W. Dong, D. Zhang, and G. Shi. Two-stage image denoising by principal component analysis with local pixel grouping. 

Pattern Recognition, 43(4):1531–1549, Apr. 2010. 
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Non-Local PCA and its variants  
 From Gaussian Mixture Models to Structured Sparsity [Yu et. Al.]: The approach uses 

Gaussian Mixture Models to perform image denoising. MAP-EM algorithm is used to 

estimate original image x from the degraded image y is: 

 E-step: Assuming the estimates of                    - Gaussian parameters are known, 

calculate MAP estimate for each patch xi with all the gaussians and select the best 

Gaussian model ki to obtain the estimate of the patch. 

 M-step: Update the Gaussian parameters using the information obtained in the previous 

step. 

46 
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1

,

 Each of the K component will have a covariance matrix which can be defined in terms of 

PCA basis,                . Here, Wk is the PCA basis and Sk is the diagonal matrix consisting of 

the eigenvalues of the covariance matrix. For each component, these basis are linear in 

nature.   

 The patch xi can be transformed to the PCA basis                       . So if the PCA coefficients ai ‘s 

are known,                . 

 
 

 For each patch, only one of the ai’s is active which makes the selection of the basis very 

sparse in nature. 
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• Yu, Guoshen, Guillermo Sapiro, and Stéphane Mallat. "Solving inverse problems with piecewise linear estimators: from 

Gaussian mixture models to structured sparsity." Image Processing, IEEE Transactions on, vol 21, no. 5 (2012): 2481-2499. 



Non-Local PCA and its variants  
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 Clustering based Sparse Representation (CSR) : The work performs a clustering operation on 

the noisy patches, learns separate PCA bases W for each cluster, and then minimizes a criterion 

for the proximity of the coefficients of patches belonging to any given cluster.  

 Any patch of the image can be represented as            , where α represents the coefficients of the 

patch.   

 

 

 

 

 

 

 

Wx 

Left to right: Image of regular texture. Distribution 

of coefficients corresponding to 6th basis vector. 

• Observation of these coefficients 

suggests that they are not randomly 

distributed and their location uncertainty is 

related to non-local self similarity of the 

image, which implies the possibility of 

achieving higher sparsity by exploiting 

such location related constraint. 

• The coefficients are updated using the 

following optimization problem: 
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 The shrinkage solution of the above problem is found iteratively. 

 

 

• Dong, Weisheng, et al. "Sparsity-based image denoising via dictionary learning and structural clustering." Computer Vision and 

Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011. 



 BM3D is the state of the art method today which again is based on the idea of non-

local similarity at the patch-level and works in two-stages. 

 

 

 

 

 

 

 

 Given a reference patch in the noisy image, this method again collects similar patches. 

 But this time, the similar patches and the reference patch are arranged in the form of a 

3D stack (of say some K patches in all). 

 The stack is projected onto 3D transform bases (typically 3D DCT, or tensor product 

of 2D DCT and 1D Haar wavelets). 

 The 3D transform coefficients are manipulated – usually by hard thresholding.                     

 All the patches in the entire stack are reconstructed using an inverse 3D transform. 

 This is repeated for every patch in the image. The multiple answers appearing at any 

pixel are averaged. 

 

Non-local collaborative filtering: Block Matching in 3D (BM3D) 

• K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising by sparse 3d transform domain collaborative filtering, IEEE 

Trans on Image Processing, 16(8), 2080-2095, 2007.  
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 In the second stage, the output image of the first step is used to compute patch 

similarities (this will be more robust than computing the similarities in the noisy 

image). 

 Patches from the first-stage image are then appropriately assembled into a stack. 

 Corresponding patches from the noisy image are assembled into a second stack. 

 3D transform coefficients of both the stacks are computed. 

 The second stack is denoised using Wiener filtering as follows: 

 

 

 
 

 This is again repeated in sliding-window fashion with averaging. 

 

Non-local collaborative filtering: BM3D – second stage 
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 Orthogonal Locality Preserving Projection finds an embedding that preserves local 

information, and obtains a subspace that best detects the essential data manifold 

structure. 

 Objective function of LPP is                                  , to obtain orthonormal basis, 

constraint wTw =I is imposed.  

 where Weight Matrix S is: 

 

 

 

 

 

 

 The objective function with this choice of symmetric weights incurs a heavy penalty 

if neighbouring points are mapped far apart. 

 The minimization problem now reduces to XLX Tw =λw where w contains the 

orthogonal basis vectors. 

Image denoising using New Orthogonal Locality Preserving 

Projection 
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• X. He and P. Niyogi, Locality Preserving Projections, Proc. Conf. Advances in Neural Information Processing Systems, 2003. 

• G. Shikkenawis, S.K. Mitra, and A. Rajwade,A New Orthogonalization of Locality Preserving Projection and Applications, LNCS 

8251, PReMI 2013. 
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 A new application of OLPP has been explored for Image Denoising, here the procedure 

of removing noise is carried out in the projection domain of New OLPP (NOLPP). 

 Given the noisy image, it is divided into overlapping patches, and a set of global basis is 

learnt for the whole image/window.  

 Each noisy patch is then projected on the corresponding NOLPP basis, and the 

coefficients are modified using Weiner filter update as follows: 

 

 
 

 Modified patches in the NOLPP domain are transformed back to the spatial domain.  

 As opposed to the methods discussed before, the basis learnt here are global. 
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Image denoising using New Orthogonal Locality Preserving 

Projection 
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LPG-PCA 

(PSNR: 24.70, SSIM: 0.68) 

CSR 

(PSNR: 26.15, SSIM:  0.75) 

BM3D 

(PSNR: 25.15, SSIM:  0.71) 

NOLPP 

(PSNR: 26.16, SSIM:  0.78) 

Original Image Noisy Image (σ=30) 
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LPG-PCA 

(PSNR: 24.08, SSIM: 0.69) 

CSR 

(PSNR:24.23, SSIM: 0.72) 

BM3D 

(PSNR: 24.17, SSIM: 0.72) 

NOLPP 

(PSNR: 24.43 , SSIM: 0.71) 

Original Image Noisy Image (σ=30) 
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Special Mention to Other State-of-the-art Method 
 

 BLS-GSM: Bayes Least Square Gaussian Scale Mixture 

 

 Mean Shift Method 

 

 K-SVD 

 

 HOSVD: High Order Singular Value Decomposition 

 

 



Beyond Gaussianity 
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Beyond Gaussianity 

)()()( xIxxI n

Additive 

Noise 

What if these 

assumption does 

not hold??? 

• Multiplicative Noise 

• Signal Dependent Noise 

• Spatially Correlated Noise 

• Poisson PDF 

• Rice PDF 

• Binomial and Other PDF 
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Beyond Gaussianity 

• Multiplicative Noise 

 

• Denoising use Log function to make it Additive 

 

 

• Variance Stabilization Method (Anacombe’s Transformation) 

• Transform data into approximately standard Gaussian distributed data. 

• For Poisson Noise 

 

 

 

• For Rician Noise (Foi 2011) 

 

 

 

• Signal Dependent Noise 

• Poisson PDF 

)()()( xxIxIn 

)(log)(log)(log xxIxIn 

• Anscombe, Francis J. "The transformation of Poisson, binomial and negative-binomial data." Biometrika 

35.3/4 (1948): 246-254. 

• Foi, Alessandro. "Noise estimation and removal in MR imaging: the variance-stabilization 

approach." Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on. IEEE, 2011. 



Medical Image Denoising  
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Rice Distribution 

If the real and imaginary data, with mean values AR and AI, respectively, are corrupted by 

Gaussian, zero mean, stationary noise with standard deviation σ, the magnitude data will 

be Rician distributed with PDF 

 

 

 

 

 

I0 is the modified zeroth order Bessel function of the first kind, Mi denotes the ith data 

point of the magnitude image. The unit step function u is used to indicate that the 

expression  for the PDF of Mi is valid for nonnegative values of Mi only. 

 

Furthermore, A is given by 

 

 

An unbiased estimator of A2 is given by  

 i
i

AM

i
i Mu

AM
Ie

M
AMp

i























 


20

2

2

2

22

),(




22

IR AAA 

222 2ˆ  MA



60 

Rician Noise Generation 

 The Rician noise was built from white Gaussian noise in the complex domain. First, two 

images are computed 

 

 

 where I0 is the “ground truth” and σ is the standard deviation of the added white Gaussian 

noise.  

  

 Then, the noisy image is computed as 
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The convention of 3% Rician noise defines the Gaussian noise used in complex domain 

is equivalent to N(0,υ(3/100)), where υ is the value of the brightest tissue in the image. 

For a same level of noise, the Rician noise is stronger than the Gaussian noise. 
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Rician Noise- Bias Correction  

The bias correction is defined as  

  
)0,2ˆmax(ˆ 2

00  IIUnbiased

Figure: (a) Synthetic image of size 64x64 with three intensity level, 0, 35 and 150, (b) 

Corrupted image with Gaussian Noise, N(0, 5), (c) Corrupted with Rician with sd=5 of white 

Gaussian Noise 



Multimodel Image Denoising  
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Multi Modal Imaging 

Flash Image  No Flash Image  

T1 Image  T2 Image  
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Multi Modal Imaging 

• Cross/ Joint Bilateral Filter 

• Decouple the notion of edges to preserve from the image to smooth. 

 

 

 

 

 

• Dual Bilateral Filter 

• Consider any edge visible in either of  the images. 

 

• E. Eisemann and F. Durand, “Flash photography enhancement via intrinsic relighting,” ACM Transactions on Graphics, 

vol. 23, no. 3, pp. 673–678, Proceedings of the ACM SIGGRAPH conference, July, 2004. 

• G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, M. Cohen, and K. Toyama, “Digital photography with flash and no-

flash image pairs,” ACM Transactions on Graphics, vol. 23, no. 3, pp. 664–672, Proceedings of the ACM SIGGRAPH 

Conference, 2004. 
• E. P. Bennett, J. L. Mason, and L. McMillan, “Multispectral bilateral video fusion,” IEEE Transactions on Image 

Processing, vol. 16, no. 5, pp. 1185–1194, May 2007. 



• Multicomponent NLM in Medical Images ( Manjon et al. 2009) 
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Multi Modal Imaging with NLM 

• Manjón, J. V., Thacker, N. A., Lull, J. J., Garcia-Martí, G., Martí-Bonmatí, L., & Robles, M. (2009). Multicomponent MR 

image denoising. Journal of Biomedical Imaging, 2009, 18. 

• Buades, T., Lou, Y., Morel, J. M., & Tang, Z. (2009, August). A note on multi-image denoising. In Local and Non-Local 

Approximation in Image Processing, 2009. LNLA 2009. International Workshop on (pp. 1-15). IEEE. 

• Issues: 

• All images are registered??? 

 

• All images are having same noise model??? 

 

• All images are having same noise quantity??? 

 

• How to transfer information from one component to 

another??? 



Image Statistics & Understanding 
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Image Statistics & Understanding 

Patch 

Comparison 

& Number 

of Patches 

Required 

• Kumar, Neeraj, Li Zhang, and Shree Nayar. "What is a good nearest 

neighbors algorithm for finding similar patches in images?." Computer 

Vision–ECCV 2008. Springer Berlin Heidelberg, 2008. 364-378. 

• Barnes, C., Shechtman, E., Goldman, D. B., & Finkelstein, A. (2010). The 

generalized patchmatch correspondence algorithm. In Computer Vision–

ECCV 2010 (pp. 29-43). Springer Berlin Heidelberg. 

• Sureka, Harshit, and P. J. Narayanan. "Mixed-resolution patch-matching." 

Computer Vision–ECCV 2012. Springer Berlin Heidelberg, 2012. 187-198. 

• Deledalle, Charles-Alban, Loïc Denis, and Florence Tupin. "How to 

compare noisy patches? Patch similarity beyond Gaussian noise." 

International journal of computer vision 99.1 (2012): 86-102. 
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Image 

Statistics 

Optimal 

Bound for 

Performance 

Image Statistics & Understanding 

• P. Chatterjee and P. Milanfar, “Is denoising dead?” IEEE Trans. on Image 

Proc., vol. 19, no. 4, pp. 895–911, April 2010 

• P. Chatterjee and P. Milanfar, “Practical bounds on image denoising: From 

estimation to information,” IEEE Trans. On Image Proc., vol. 20, no. 5, pp. 

1221–1233, May 2011. 

• P. Chatterjee and P. Milanfar, “Patch-based near-optimal denoising,” IEEE 

Trans. on Image Proc., vol. 21, no. 4, pp. 1635–1649, April 2012 

• A. Levin, B. Nadler, F. Durand, and W. T. Freeman, “Patch complexity, 

finite pixel correlations and optimal denoising,” ECCV, October 2012 

• H. Talebi, X. Xhu P. Milanfar, "How to SAIF-ly Boost Denoising 

Performance", IEEE Transactions on Image Processing, vol 22, No. 4, pp. 

1470-1485, April 2013. 

 

• Zoran, Daniel, and Yair Weiss. "Scale invariance and noise in natural 

images."Computer Vision, 2009 IEEE 12th International Conference on. 

IEEE, 2009. 

• Zontak, Maria, and Michal Irani. "Internal statistics of a single natural 

image."Computer Vision and Pattern Recognition (CVPR), 2011 IEEE 

Conference on. IEEE, 2011. 
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Image Statistics & Understanding 

Hard 
Thresholding 

(GTBWT)-1 

Noisy image 

Reconstructed 
image 

 GTBWT 

• Ram, Idan, Michael Elad, and Israel Cohen. "Image Processing using Smooth Ordering of its Patches.“, IEEE Transaction 

on Image Processing, vol. 22, no. 7, pp. 2767-2774, 2013. 
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3D Transform  & 

threshold 

3D Transform  & 

threshold 

BM3D    Our scheme 

            GTBWT, 

and threshold 

Reorder,  

In a nut-shell, while BM3D searches for patch 
neighbors and process them locally, our 

approach seeks one path through all the patches 
(each gets its own neighbors as a consequence), 

and the eventual processing is done globally. 

• Note: Slide is taken from Michael Elad presented in Workshop SIGMA 2012. 

Image Statistics & Understanding 
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