
iitlogo

On large scale 3D reconstruction from images
and videos

Subhashis Banerjee

Computer Science and Engineering
IIT Delhi

NCVPRIPG 2015, IIT Patna
Dec 16, 2015

NCVPRIPG 2015, IIT Patna On large scale 3D reconstruction from images and videos



iitlogo

Build Rome in a day?

Sameer Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz and
Richard Szeliski, 2009. Also, Visual Structure from Motion (Wu,
2013).
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Large datasets

I 2000 to 30000 images.

I Reconstruction examples:
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Applications

I Engineering.

I Dense reconstruction.

I Heritage and tourism.

I Localization and SLAM.

I Mobile and hand-helds?
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What makes it possible?

I Linear perspective. Geometry.

I Rich feature extraction.

I Feature grouping, clustering and data structures.

I Graph algorithms for image clustering.

I Large scale non-linear optimization.

I Global motion averaging.

I Divide and conquer?
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An infinitely strange perspective

I Parallel lines in 3D space converge in images.

I The line of the horizon is formed by ‘infinitely’ distant points
(vanishing points).

I Any pair of parallel lines meet at a point on the horizon
corresponding to their common direction.

I All ‘intersections at infinity’ stay constant as the observer
moves.
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3D reconstruction from pin-hole projections

La Flagellazione di Cristo (1460) Galleria Nazionale delle Marche
by Piero della Francesca (1416-1492) (Robotics Research Group,
Oxford University, 2000)
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Pin-hole camera

I The effects can be modelled mathematically using the ‘linear
perspective’ or a ‘pin-hole camera’ (realized first by Leonardo?)

I If the world coordinates of a point are (X ,Y ,Z ) and the
image coordinates are (x , y), then

x = fX/Z and y = fY /Z

I The model is non-linear.
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Pin-hole camera revisited
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Intrinsic/internal parameters

kuxc = u − u0
kvyc = v0 − v

or  u
v
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External parameters

Xc = RXw + T

or 
Xc

Yc

Zc

1
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Calibrated camera

 u
v
1

 = K [R | T]
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Xw
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1


Image to world correspondences of six points in general position
gives camera calibration.
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Multiple views: epipolar geometry

epipole: The epipole is the image in one camera of the optical
center of the other camera.

epipolar plane: is the plane defined by a 3D point and the optical
centers.

epipolar line: is the line of intersection of the epipolar plane with
the image plane.
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Epipolar constraint

I Any point x′ on this epipolar line satisfies

x′
T
Fx = 0

I F is called the fundamental matrix. It is of rank 2 and can
be computed from 8 point correspondences.

I F = K′TEK−1

I E = [T]×R
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What makes it possible?

I Linear perspective. Geometry.

I Rich feature extraction.

I Feature grouping, clustering and data structures.

I Graph algorithms for image clustering.

I Large scale non-linear optimization.

I Global motion averaging.

I Divide and conquer?
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What to match? : SIFT

Features are scale-space maximas in DOGs.
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Features: SIFT:example

Lowe, 2004; Wu, 2007 (SiftGPU).
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SIFT: matching
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What makes it possible?

I Linear perspective. Geometry.

I Rich feature extraction.

I Feature grouping, clustering and data structures.

I Graph algorithms for image clustering.

I Large scale non-linear optimization.

I Global motion averaging.

I Divide and conquer?
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Vocabulary tree

Nister and Stewenius, 2006.
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Vocabulary tree match graph
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What makes it possible?

I Linear perspective. Geometry.

I Rich feature extraction.

I Feature grouping, clustering and data structures.

I Graph algorithms for image clustering.

I Large scale non-linear optimization.

I Global motion averaging.

I Divide and conquer?
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Sparse bundle adjustment

Simultaneously refine

I 3D coordinates describing the scene geometry

I Parameters of the relative motion.

I Optical characteristics of the camera.

from corresponding image projections of all points. The process
minimizes the reprojection error defined by

min
aj,bi

n∑
i=1

m∑
j=1

vijd(P(aj ,bi ), xij)
2 (1)

where, vij = 1 if point i is visible in image j .
P is the projection matrix, d is the euclidean distance, xij is
projection of athj point on image bi
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Sparse bundle adjustment

I Require projective invariance to choice of basis

I Measure error in the image plane

I Error measure is defined in terms of “reprojection error”

I Measure distance from point to its reprojected image

I Take a least-squares approach

I Lsq justified as MLE given Gaussian noise in image point
location

min
aj,bi

n∑
i=1

m∑
j=1

vijd(P(aj ,bi ), xij)
2 (2)
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Sparse bundle adjustment

I Adjust bundle of rays between each camera centre and 3D
points

I Can tolerate missing data (i.e. matches not visible in some
images)

I Provides a true MLE despite missing data

I d(., .) can be modified to incorporate error covariances

I Minimisation of cost function is a complicated problem

I Use general non-linear least-squares minimisation methods

I Levenberg-Marquardt minimisation is the method of choice

I Works very well in practice

I Needs a good initialisation to avoid getting stuck in local
minima
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Sparse bundle adjustment: nonlinear least squares

I Let the function to be minimised be f (x) = 1
2

∑m
j=1 r

2
j (x),

where x = (x1, . . . , xn), rj : Rn → R and
r(x) = (r1(x), . . . , rm(x)).

I Jacobian J(x) =
∂rj
∂xi

, 1 ≤ j ≤ m, 1 ≤ i ≤ n.

I Suppose each rj is linear. Then Jacobian is constant and r is
a hyperplane through space. We can write
f (x) = 1

2‖Jx + r(0)‖2.

I Then ∇f (x) = JT (Jx + r) and ∇2f (x) = JT J.

I Solving for the minimum by setting ∇f (x) = 0, we obtain
xmin = −(JT J)−1JT r which is the solution to the set of
normal equations.
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Sparse bundle adjustment: nonlinear least squares

I In the general non-linear case we have

∇f (x) =
∑m

j=1 rj(x)∇rj(x) = J(x)T r(x)

∇2f (x) = J(x)T J(x) +
∑m

j=1 rj(x)∇2rj(x)

I Given the Jacobian J, we can get the Hessian ∇2f (x) for free
if it is possible to approximate rjs as linear functions (∇2rj(x)
are small), or if the residuals (rj(x)) themselves are small.
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Sparse bundle adjustment

Before we arrive at the Levenberg-Marquardt method,
let’s very quickly review

I Gradient Descent

I Newton algorithm

Then we can see how Levenberg-Marquardt skillfully blends two
different methods while retaining their advantages
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Sparse bundle adjustment

Gradient Descent

I Given a multivariate function F (x)

I Start at a point x0

I Move along the direction of the gradient ∇F (x)

I Update equation x ← x − λ∇F (x)

I Repeat till convergence (hopefully!)

Picture taken from www.wikipedia.org
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Sparse bundle adjustment

Limitations of Gradient Descent

I Gradient Descent is simple and easy to implement

I Many iterations to converge if curvature varies in different
directions

I Figuring out optimal step-size λ is time consuming

I Small λ controls convergence but is slow

I Large λ results in speed-up but can overshoot

I Step-size is not constant but dependent on gradient
magnitude

I Shallow areas result in small steps (bad)

I Conversely, in steep areas one could overshoot

I Consider long valley
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Sparse bundle adjustment

Newton Algorithm

I Can use second order information

I Use curvature along with gradient direction information

I Consider F (x +4x) = F (x) + F
′
(x)

T4x +4xTF
′′

(x)4x
I Minimisation done by solving for 4x
I Update is x ← x −H−1∇F (x)

I H is the Hessian of the function evaluated at current xNCVPRIPG 2015, IIT Patna On large scale 3D reconstruction from images and videos
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Sparse bundle adjustment

Comparison

x ← x −∇F
x ← x −H−1∇F

What does this imply ?

I We approximate F (x) locally as quadratic function

I Can jump to local optimum

I If close to solution, we can guess minimum well

I If approximation is good, we converge faster than steepest
descent
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Sparse bundle adjustment

x ← x − (H + λI )−1∇F

Levenberg’s Algorithm

I Can blend Newton’s method with steepest descent

I For large λ, rule is x ← x − 1
λ∇F (s.d.)

I For small λ, rule is the Newton update

I Start with steepest descent and gradually move towards
quadratic rule

I Control the shift from one regime to another using error
improvement
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Sparse bundle adjustment

x ← x − (H + λI )−1∇F

Steps in Levenberg’s Algorithm

I Carry out an update using rule

I Evaluate error measure at new location and compare with
previous position’s error

I If error increases, go back to previous position and increase λ

I If error decreases, keep update and decrease λ

I Scaling of λ at each step done using a fixed constant, say 10
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Sparse bundle adjustment

x ← x − (H + λI )−1∇F

Justification for Levenberg’s Algorithm

I If error increases after step, quadratic approximation is poor

I Need to move towards steepest descent as likely far from
minima

I Done by increasing λ

I If error decreases, approximation is good

I Can converge well using quadratic approximation

I Move away from steepest descent approach by decreasing λ
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Sparse bundle adjustment

Comparison

x ← x − (H + λI )−1∇F Levenberg

x ← x − (H + λdiag(H))−1∇F Marquardt

What did Marquardt add to this ?

I Insight that incorporated local curvature information

I When λ is high, doing gradient descent

I Can do better than Levenberg by using Hessian information

I Move further in the direction where gradient is small

I Improves convergence in this process

I Combination known as Levenberg-Marquardt algorithm
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Sparse bundle adjustment

Issues with Bundle Adjustment

I Too many points
I Do not include all views or all points at the same time

I Interleave Speed-up
I Alternately adjust structure and motion
I Reduces size of Hessian to be inverted to max of 11× 11

I Sparse Methods
I Effectively exploit the sparsity of the Jacobian involved
I Jacobian form is used to approximate the Hessian

I Approximation of form (JTJ)
−1

JT
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Sparse bundle adjustment

Exploiting Sparse Structure

I Jacobian has a sparse structure

I Separates out relationship between point structure and
cameras

I Can exploit this in solving the normal equations

I Results in significant speed-up

I Makes bundle adjustment quite attractive
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Iterative bundle adjustment

1. Initially choose two cameras having most inliers using
fundamental matrix

2. Obtain structure and motion by minimization using LM.

3. Remove the points and correspondences with large
reprojection errors

4. Remove points which violate the cheirality condition

5. Add images that are more consistent with the already
recovered cameras.

6. Apply DLT to initialise the new camera internal and external
calibration.

7. Go to 2
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Sparse bundle adjustment
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Global bundle adjustment

I Triangulate all points using camera parameters obtained using
rotation and translation averaging.

I Discard 3D points with too low or too high apical angles.

I Remove cameras which have very few points visible. Remove
those 3D points as well.

I Run Sparse bundle adjustment (PBA).

I For each camera check the re-projection errors. Remove a 3D
point as outlier from the camera if the re-projection error is
large.

I Check for cameras which have very few 3D points after
removal. Remove those cameras.

I Repeat till “no more outliers” or max iteration reached.
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What makes it possible?

I Linear perspective. Geometry.

I Rich feature extraction.

I Feature grouping, clustering and data structures.

I Graph algorithms for image clustering.

I Large scale non-linear optimization.

I Global motion averaging.

I Divide and conquer?
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Global motion averaging: rotation

I Compute tij and Rij from the pairwise epipolar geometry of
edges of the matchgraph.

I Let (Ri ,Ci ) and (Rj ,Cj) are absolute rotation and position of
i and j in global frame of reference. Then the rotations are
related as RjR

T
i = Rij .

I Let Rglobal = {R1, ...,RN}. Compute the rotations in the
global frame as

argmin
Rglobal

∑
(i ,j)∈E

d2(RjR
T
i − Rij)

where

d(R1,R2) =
1√
2
|| log(R2R

−1
1 )||F

is the intrinsic bivariate distance on SO(3).

Chatterjee and Govindu, 2013.
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Global motion averaging: translation

I

tij ∝ Rj(Ci − Cj)⇒ RT
j tij ∝ (Ci − Cj)⇒ Cij ∝ (Ci − Cj)

I Remove ourliers if

1. The epipolar estimate of an edge in a match graph is not
reliable.

2. The errors in estimated pairwise rotations after averaging is
greater than threshold.

I Minimize ∑
(i ,j)∈E

dist(Cij ,
Cj − Ci

||Cj − Ci ||
)

Wilson and Snavely, 2014.
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What makes it possible?

I Linear perspective. Geometry.

I Rich feature extraction.

I Feature grouping, clustering and data structures.

I Graph algorithms for image clustering.

I Large scale non-linear optimization.

I Global motion averaging.

I Divide and conquer?
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Divide and conquer: Efficient large scale SFM using graph
paritioning (ACCV, 2014)

Use multiway Normalised Cut (Shi and Malik, 2000):

Ncut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)

assoc(B,V )

where

cut(A,B) =
∑

u∈A,v∈B
w(u, v)

assoc(A,V ) =
∑

u∈A,t∈V
w(u, t)
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Component-wise reconstruction and registration

I Incremental bundle adjustment for reconstruction of each
component.

I Estimation of epipolar geometry, rotation and translation of
cut edges.

I Global motion averaging and registration.
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Segmentation and reconstruction example
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Reconstruction examples
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Alternative: agglomerative clustering

I Create a reduced match-graph from the vocabulary tree.

I Associate with each edge a score of robustness of epipolar
computation.

I Grow a dendritic tree bottom up using

DAB =
1

nAnB

nA∑
i=1

nB∑
j=1

w(xAi , xBj)

I Cluster by moving bottom up, stopping at internal nodes
which satisfy a size constraint.

E F 

D C B A 

 𝛀 

…
 …

 

…
 …
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Hierarchical reconstruction pipeline

(a) Unorganised set of images
(b) Match graph created using vo-

cabulary tree and epipolar geometry

(c) A binary tree created using

agglomerative clustering from the

matching information

(d) Base clusters of 40 to 140 images

identified from the agglomerative tree
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Hierarchical reconstruction pipeline

(e) SfM is solved within each base

cluster using motion averaging and

triangulation

(f) Pairwise registration of recon-

structed clusters using inter-cluster

epipolar relationships

(g) Selective batch bundle adjust-

ment of registered clusters
(h) Final solution
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Some reconstructions
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One order of magnitude speed-up

Dataset Match graph Total reconstruction BBA Total Pairwise Reconstruction by Total
creation using and registration time refinement time by matching by VSFM time

vocabulary tree, for all using PBA our method (mins) by VSFM (mins) by VSFM
epipolar pruning and clusters (mins) and re-section (mins) (mins) (mins)

clustering (mins)

Central Rome 1358 312 35 1705 N/A N/A N/A
Vitthala Temple 592 80 5 677 9522 59 9581

St. Peter’s Basilica 108 28 1 137 1385 10 1395
Art’s Quad 874 156 11 1041 N/A N/A N/A
Colosseum 102 21 1 124 1231 29 1260

Piazza Bra [NEW] 30 2 1 33 110 5 115
San Giacomo 24 2 1 27 101 5 106
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Dense reconstruction: Hampi pillar
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Simultaneous Localisation And Mapping

LSD-SLAM: Large-Scale Direct Monocular SLAM
Jakob Engel, Thomas Schöps and Daniel Cremers

ECCV 2014
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LSD-SLAM: Overview

I Monocular, video based.

I Works directly on intensities. Not feature based.

I Locally tracks the motion of the camera, but allows to build
consistent, large-scale maps of the environments.

I Filtering-based estimation of semi-dense depth maps.

I The world is represented as a number of keyframes connected
by pose-pose constraints.

I Pose graph optimization.

I Accounts for scale drifts.
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LSD-SLAM: Pose representations

I 3D Rigid Body Transformations. G ∈ SE (3) is defined as

G =

(
R t
0 1

)
with R ∈ SO(3) and t ∈ R3.

I ξ ∈ se(3) is the corresponding element in the associated
Lie-algebra. (ξ ∈ R3).

I Exponential map and inverse: G = expse(3)(ξ) and
ξ = logSE(3)(G).

I Pose concatenation: ◦ : se(3)× se(3)→ se(3) is given as:

ξki := ξkj ◦ ξji := logSE(3)

(
expse(3)(ξkj) · expse(3)(ξkj)

)
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LSD-SLAM: Pose representations

I Define a 3D projective warp function ω which projects image
point p with inverse depth d into a ξ transformed frame

ω(p, d , ξ) :=

 x ′/z ′

y ′/z ′

1

with


x ′

y ′

z ′

1

 := expse(3)(ξ)


px/d
py/d
1/d

1


I Finally, a 3D similarity transformation S ∈ Sim(3) is defined as

S =

(
sR t
0 1

)
with R ∈ SO(3), t ∈ R3 and s ∈ R+.
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LSD-SLAM: Gauss-Newton Optimisation on Lie-Manifolds

I Two images are aligned by Gauss-Newton minimisation of the
photometric error

E (ξ) =
∑
i

(Iref (pi)− I (ω(pi,Dref (pi), ξ)))2︸ ︷︷ ︸
=:r2i (ξ)

I Starting with an initial estimate ξ(0), in each iteration an
increment δξ(n) is computed by solving for the minimum of a
Gauss-Newton second-order approximation of E

δξ(n) = −(JTJ)−1JT r(ξ(n)) with J =
∂r(ε ◦ ξ(n))

∂ε

∣∣∣∣
ε=0

I ξ(n+1) = δξ(n) ◦ ξ(n)
I Iteratively re-weighted least-squares is possible and

recommended for robustness.
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LSD-SLAM: Overall scheme

I For every new image the tracking component estimates the
new image pose ξ ∈ se(3) with respect to the current
key-frame, using the pose of the previous frame as
initialization.

I The depth map estimation component estimates and
refines the depth of the current key-frame over many
per-pixel, small baseline stereo comparisons with interleaved
spatial regularization.

I If the camera has moved too far, a new key-frame is initialized.
I Once a key-frame is replaced, it is incorporated into the global

map by a map optimization component.
I To detect loop closures and scale-drift, a similarity transform
ξ ∈ sim(3) to close-by existing keyframes (including its direct
predecessor) is estimated using scale-aware, direct
sim(3)-image alignment.
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