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ABSTRACT

Construction of key poses is one of the most tedious and
time consuming steps in synthesizing a 3D virtual actor.
Recent alternate schemes specify along with a neutral 3D
reference model a more intuitive 2D inputs: sketches, pho-
tographs, or a video frames. Using this, of all the possible
configurations, the “best” 3D virtual actor is posed

In this paper, we provide a solution to this ill-posed
problem. We first give a solution to the camera problem of
finding an approximate view consistent with the 2D sketch.
Elements of this rigid-body solution are novel. Next, we
provide a new solution to the non-rigid process of extend-
ing or retracting limbs to more accurately suit the sketch.
This posing algorithm, is based on a search based scheme
inspired by anthropometric evidence. Lessphysical work
is required by the actor to reach the desired pose from the
base position. We also show that our algorithm needs less
iterations to converge to an acceptable solution compared to
previous methods.

1. INTRODUCTION

Consider the following:

• A cricket coach uses an animation system in correct-
ing the flaws in the strokes of one of his current player
based on proven, vintage stars of the past. He gener-
ates “on the fly” a new three-dimensional (3D) se-
quence rapidly based on the combination of the 3D
model of his current player and past video frames of
the vintage star.

• An occupational therapist takes a scanned picture from
her textbook. She overlays correct posture styles for
the computer hacker hunched up over his laptop.

Animation systems currently used fall well short of pro-
viding the necessary amenities to realize the above. Due
to the highly articulate and complex structure of human 3D
characters and their respective motions,posing them in a
3D world and specifying their motion is by no means a triv-
ial task. Alternative schemes [4] [5] have thus evolved that
computea desired pose from a 2D sketch, a photograph, or
from a video frame. For simplicity, we assume in the rest
of the paper that our inputs are artist drawn sketches, and a

(a) Input Sketch (b) Input 3D Actor

(c) Orientation Recovered (d) Pose matches sketch

Fig. 1. A sketch and a 3D actor (top row) is presented to
our system. It first (bottom left) re-orients the actor rigidly
and then “moves” the limbs to match the sketch. In this
example, the positions of all four limbs are computed and
the knee adjusted.

reference 3D virtual actor modeled as an articulated skele-
ton.

1.1. Problem Statement and Contributions

There are two issues in computing a solution as in Fig. 1.
First, an approximate viewing direction must be found that
orients the 3D actor to match the given sketch. At the end
of this step, the 3D actor has rigidly oriented himself to be
ready to move to the new configuration in the sketch.

Second, the actor changes relative positions of the “bones”



so as to match the sketch.
Note that there are potentially infinite configurations that

match the sketch. Multiple positions may be used to con-
struct an animation sequence based on key intermediate poses.

We provide a partially automated solution to this prob-
lem. In our scheme, the end user specifies a few (five) cor-
respondences between points on the 2D sketch and points
in the 3D reference model. Our system automaticallycon-
structsthe gross orientation. Next, based on this orienta-
tion, the system automatically moves the limbs in a non-
rigid fashion to match the sketch. We list the features of our
work.

1. A more robust (albeit domain-specific) rigid body cam-
era recovery algorithm is presented (see Section 4).

2. For the “most-likely” non-rigid motion, a novel search
based scheme inspired by anthropometric1 evidence
is introduced.

3. The notion of a physically based metric to quantify
the results is introduced. Compared to existing meth-
ods, our scheme requires less physical work to reach
the specified sketched pose from the previous posi-
tion. The application of this to energy efficient robotics
is immediate.

4. Compared with prior iterative solutions, our method
takes less time and can be done at real-time rates.

5. Since the reconstruction from 2D sketches to 3D poses
is not unique, we provide the end user the option to
select from multiple solutions. The solutions are re-
turned in an order of “less movement” to “more move-
ment” on the part of the 3D actor.

6. The sketches provided by the artist are not expected
to be the exact projections of the desired pose.

The rest of the paper is organized as follows. After con-
sidering related work in Section 2 we give a brief overview
of the camera recovery algorithm. We present the concep-
tual and implementation details of our posing algorithm in
Section 4. We analyze our results and perform statistical
comparisons with earlier methods in Section 5. Final re-
marks appear at the end.

2. PREVIOUS WORK

The problem of extracting 3D poses from 2D poses has been
tackled in various domains like robotics, CAD/CAM, com-
puter vision, animation and graphics before. A popular ap-
proach is to use two or more images from different view-
points to resolve ambiguity between multiple valid poses.

1Anthropometry: measurement and study of the human body and its
parts and capacities

A technique for reconstructing human body poses from
single images with the aid of anthropological data is dis-
cussed in [14]. In [13], the authors have outlined a tech-
nique that relies on known point correspondences between
predefined landmarks on the human body. Most of these are
learning based schemes. An alternative strategy, useful for
some 3D animation applications, is to use information from
“previous” frame(s) when available. See for example, [3].

Another school of thought is to re-structure the problem
as an optimization problem [11][9]. The hypothesis behind
optimization-based posture prediction is that human motion
concerning different tasks is governed by different perfor-
mance measures. These measures can be aggregated using
multi-objective optimization techniques.

Pose recovery techniques close to our stated goals are
discussed in [4] and [5]. The method proposed in [5] achieves
a good amount of automation but works only with “stick-
figures” as 2D input. Also they require the 2D skeleton to
be an isomorph of the 3D skeleton, which limits the applica-
bility of the method. This assumption, for example, may not
hold true with motion capture tracking data [5]. Our work
is essentially patterned around [4]. We re-work the posing
scheme so as to make it more robust, faster and closer to
actual human motion. Further, our algorithm has the option
of returning multiple solutions.

Our posing algorithm is loosely based on Cyclic Coor-
dinate Descent (CCD) method [16] [15]. An excellent in-
troduction of all of the problems and general approaches to
Inverse Kinematics is provided in [16].

Ever since the introduction of anthropometry to com-
puter graphics by [6], number of researchers have actively
pursued this field [7][12][2][10]. A good compilation of
anthropometric measurements can be found at [1]. An in-
teresting observation that for an efficient transfer of energy
from the shoulder joint to the hand (i.e the end effector) the
participation of the distal joints (wrists) are more prominent
than the proximal joints (shoulders) can be found in [8].

3. RECOVERY OF GROSS ORIENTATION

The key to recover the orientation is to find a “camera” such
that when it looks at the 3D shape in thecorrectorientation,
the projection of the 3D shape matches the input sketch.
Mathematically, the camera is a matrixP3×4

x = PW (1)

whereW4×1 = [ X Y Z 1 ]T is an object point and
x3×1 = [ uw vw w ]T is the corresponding image point.

P can be computed given a set ofuser-clickedpoint
correspondences(xi,Wi), between the image and the ref-
erence actor. Normally, at least six point correspondences
(in general position) are required for the simplest camera
model.
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Fig. 2. Problems with closest point assumption

3.1. Our Method

Instead of finding the camera matrix, and then recovering
the 3D points, our domain-specific method directly com-
putes the required 3D points. The method requires no more
thanfive points such that the clicked points belong to the
same object.

The clicked sketch points,xi, are 2D projections of
the corresponding, currently unknown,3D pointsW

′
i =

[X
′

i Y
′

i Z
′

i 1]. However, the 3D positions, and hence dis-
tances, are known in the reference position. Because the
camera recovery phase is a rigid body transformation, the
distances between joints in the skeleton is preserved. The
unknown pointsW

′
i are computed using this invariant. The

details of this step (keeping in mind issues such as the scal-
ing, origin alignment, and the like) are skipped for brevity.

The unknown transformationT given by W
′

4×1 =
T4×4W4×1 can now be obtained. Finally,T is related
to the camera matrix by the relationP3×4 = K3×4T4×4

whereK3×4 is the projection matrix. This enables us to
find C, the viewing direction, as the right null space of the
camera matrix.

4. NON-RIGID POSING

The non-rigid transformation is the next step. The problem
is set up as an inverse kinematics problem. At this point,
the user clicks corresponding positions of the desired limb,
termed as theend effector. This is the pair(e ,W) on the
sketch and the reference character. The system then back-
projects the2D sketch positione to obtain the target ray in
3D spaceRe = λC + P−1e whereλ is a real number.

As a minimum, only the position of the end effector is
given, and that too in an approximate sense. The true 3D
position, and the intermediate joints are not specified by the
user. Of course, to construct a more accurate pose, the user
may decide to provide the2D positions of the intermediate
joints as well, and the system will use this information when

available. However we have found that this is rarely neces-
sary. A properly constructed model along with our strategy
of returning multiple discrete configurations, as discussed
in section 4.2, yields satisfactory poses in most cases.

4.1. Basic Idea

Where on this ray will the actual point lie? This is an impor-
tant question which drives the quality of the solution. Two
choices are considered

• The method proposed in [4] uses theclosest pointon
this ray to thecurrentend-effector position as the tar-
get position and applies traditional inverse kinemat-
ics. However the closest point may be unreachable as
seen, for example, in Fig. 2(a) or may lead to unnatu-
ral poses as in Fig. 2(b).

• Alternatively, blind Jacobian based inverse kinemat-
ics may be used where the first satisfying end point is
automatically computed. However, the 3-D reference
character has to perform more physical work (Sec-
tion 5). Besides this method needs more iterations to
converge to a solution.

The intuition behind our scheme comes from the way
human limbs operate. The human limb motion compro-
mises on various factors like the effort required in planning
the motion, the energy expended in executing the motion
and stability of the resultant posture. As a result, limb mo-
tion occurs by an overall gradual rotation towards the goal
along with simultaneous extension or retraction to span the
required distance [8].

We mimic the above behavior by using a search based
scheme. We use a recursive bi-directional search for the best
configuration to reach the target ray starting from the small-
est sub-chain. At each step of the recursion, letcurrent root
be the joint at the base of the current sub-chain. We call
the vector from the current root to the end-effector avirtual
bone. The algorithm orients the current virtual bone by ro-
tating the current root so that the end-effector is closest to
the target ray. The algorithm then extends or retracts the
chain to try and reach the ray. To do this, it recurses with a
smaller sub-chain to search for a suitable configuration that
places the end-effector on the ray. If successful, the algo-
rithm returns. If we are unsuccessful, but this step reduces
the posing error, the resulting configuration is saved before
proceeding further. Finally if instead it increases the pos-
ing error, the rotation applied tocurrent rootis undone and
the chain is restored to the last saved state2. The process is

2The desired orientation of the current virtual bonePQ, whereP is
the current root andQ is the current end-effector, is computed by drawing
a sphere centered at the current root and radius equal to the length of the
current virtual bone. The closest point to the ray beS. The rotationR is
the one which alignsPQ, alongPS.
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shown in Fig. 3 and the algorithm is given in Algorithm 1.
Finally longer sub-chains are considered in Algorithm 2.

Algorithm 1 PoseChain(IN : start, IN : end, IN :
ray, IN : thresh, IN/OUT : error) : Success, Partial

1: if error < thresh then
2: returnSuccess
3: else
4: if start == end then
5: returnPartial
6: end if
7: end if
8: virtBone← (curRoot, end)
9: Compute rotation(s) forvirtBone

10: Select best rotationbestRot
11: Save the current value ofcurRoot
12: Apply bestRot to virtBone
13: Compute current posing errorlocError
14: if PoseChain(start.child, end, ray, locError) ==

Success then
15: return Success
16: end if
17: if locErr < error then
18: error = locErr
19: else
20: Restore the saved value ofcurRoot in step 11
21: end if
22: returnPartial

SincePoseChainTop considers increasingly longer
chains, the time complexity of the algorithm,T (n) in terms
of chain lengthn can be computed by the recurrence

T (n) =
ı=n∑
ı=1

T1(ı) (2)

Algorithm 2 PoseChainTop(IN : start, IN : end, IN :
ray, IN : thresh) : Success, Partial

1: error ←∞
2: for curRoot = end.parent to start do
3: if PoseChain(curRoot, end, ray, thresh, error) ==

Success then
4: returnSuccess
5: end if
6: end for
7: returnPartial

whereT1 is the time complexity of the recursive algorithm
PoseChain . Consider the call to algorithmPoseChain
with chain sizem. To computeT1(m) we note that it con-
sists of a single recursive call of sizem − 1 in step 14. All
other steps can be done in constant time. Therefore the al-
gorithmPoseChainTop is quadratic.

This is much better than a Jacobian based scheme, where
at every step a6×n, matrix must be computed and inverted.
Further, in our case the “steps” taken by the IK chain are
much larger than the Jacobian scheme. Thus our algorithm
executes much faster than the traditional scheme.

PoseChainTop is loosely based on CCD. In fact, the
for loop in PoseChainTop is a conceptual implementa-
tion of CCD. CCD is a linear time algorithm. However the
length of an IK chain seldom exceeds 10, hence the execu-
tion time of PoseChainTop is real time. Further, basic
CCD suffers from the problem of excessive folding since
the search proceeds in only one direction, from the end-
effector towards the root of the chain. Once a bone is ro-
tated, the sub-chain rooted at that bone is never considered
again. In contrast, our method reconsiders the sub-chain via
the recursive call at the end of algorithm 1, thus correcting
for the excessive rotation that happens with standard CCD.
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Fig. 4. Generating multiple solutions

This also takes care of convergence issues in the presence
of joint-constraints3. Another advantage we have over CCD
is the ability to generate multiple discrete configurations as
discussed in section 4.2 below.

4.2. Generating multiple configurations

Using a search-based approach allows us to generate mul-
tiple discrete configurations using the following strategy.
In general, at the point in the search tree where the algo-
rithm returns successfully, the corresponding virtual bone
will have two possible orientations—see step 9 ofPoseChain .
In the basic scheme, we select the “best” and discard the
other. In the modified version, we cache the second ori-
entation in algorithm 2, subject to joint constraints, before
returning. This represents the node in the search tree from
which the search must be restarted for other solutions. Now
when the user requests another solution, we do an inorder
search starting from this node, returning one “next” solution
for every request. The modified scheme is shown illustrated
in Fig. 4. Example output showing two poses generated by
this method is shown in Fig. 5. Note that the input sketch
given in the figure can correspond to two possible actions.
One is during theback-lift of the bat for a righthanded bats-
man before the stroke is made and other thefollow-through
after the stroke for a left handed batsman. Observe that
Fig. 5(b) is a valid representation of the follow-through pose
and Fig. 5(c) that of the back-lift pose. Details of the algo-
rithm are skipped in this version.

5. EXPERIMENTS AND RESULTS

A sample posing result for our scheme is shown in Fig. 1.
We also implemented the Jacobian based method mentioned
in Section 4. By and large, based on our discussions with
kinesiological experts, our method looks more natural.

For quantitative comparisons, we compared thephysical
work done against the force of gravity to bring an IK chain

3In our system, joint constraints are modeled in the form ofconstraint
cones, enclosing the joint in its parent coordinate frame (see Fig.6)
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Fig. 5. Returning multiple solutions
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from initial position to final position, along with theposing
error using each method. The posing error was computed as
the perpendicular distance squared of the final end-effector
position from the target ray. The work done on linkı was
taken aswı = mghı whereh is the vertical displacement
of the center of mass of the link. The total work done in
posing a chain was obtained by summing the contribution
from each link.

About 250 experiments in different configurations were
performed. A method was deemed successful if the error
between the goal position and the end-effector was less than
a threshold.

As seen in Fig. 7 we observe that our method records
success with far lesser computation time than the previous
method. Also, in general our method constructs poses that
require lessphysical workon the part of the character (Ta-
ble 5). We compared our method with two methods: a Ja-
cobian based blind IK method that attempts to minimize the
distance with the target ray, and recent IK method[4] that
targets the closest point on the target ray. Though the posing
accuracy of blind IK method is comparable to our method,
the average work done by our method (267.345 units) was
much lower than that of blind IK method (445.333 units).



Fig. 7. Error versus computation time

Iterations

Work
Our Method Closest Point Method

Avg Std. Dev Avg Std. Dev
1 266.582 228.558 283.615 183.318
10 267.345 224.562 309.519 193.881
50 267.345 224.562 266.733 218.662
100 267.345 224.562 289.526 189.122
150 267.345 224.562 375.785 294.253
200 267.345 224.562 366.357 288.29
250 267.345 224.562 380.243 261.434

Table 1. Average work for success cases

6. CONCLUSION AND FUTURE WORK

In this work, we have implemented a scheme for construct-
ing 3D poses from 2D sketches, photographs, and video
frames. We have demonstrated that our method robustly
constructs poses that look natural, and can be constructed at
interactive rates. An energy efficiency paradigm has been
introduced and multiple solutions are provided and in these
senses too our method performs well. There are a few areas
that we would like to explore further.

1. A more complete actor model that has twist and pole
vector rotations. While this is a matter of detail in the
forward graphics problem, it will handle issues such
as head rotation in Fig 1.

2. In many applications, it may be possible to compute
a homomorphismbetween the2D and3D skeletons,
thus eliminating the need for the user to manually
click corresponding end-effectors. This has several
interesting issues like

• Efficient computation of the homomorphism

• Handling the symmetries in the structure of a
character
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