
1

Fast image transforms using Diophantine methods
Sharat Chandran

A. K. Potty
M. Sohoni

Department of Computer Science & Engineering
Indian Institute of Technology,

Powai, Mumbai - 400 076. INDIA.
{sharat,apkp,sohoni}@cse.iitb.ac.in

Abstract—
Many image transformations in computer vision and graphics

involve a pipeline when an initial integer image is processed with
floating point computations for purposes of symbolic information.
Traditionally, in the interests of time, the floating point compu-
tation is approximated by integer computations where the inte-
gerization process requires a guess of a integer. Examples of this
phenomenon include the discretization interval ofρ and θ in the
accumulator array in classical Hough transform, and in geometric
manipulation of images (e.g. rotation, where a new grid is overlaid
on the image).

The result of incorrect discretization is a poor quality visual im-
age, or worse, hampers measurements of critical parameters such
as density or length in high fidelity machine vision. Correction
techniques include, at best, anti-aliasing methods, or more com-
monly, a “kludge” to cleanup. In this paper, we present a method
that uses the theory of basis reduction in Diophantine approxima-
tions; the method outperforms prior integer based computation
without sacrificing accuracy (subject to machine epsilon).

I. I NTRODUCTION

A large number of problems in computer vision involve float-
ing point computations in image manipulation. Typically, the
input image is a quantized version of the original analog sig-
nal and, therefore, stored as a byte image. Atransformation
is applied to process the image; this process may result in in-
termediatefloating point numbers. However, the final image
displayed or analyzed is similar to the input image — stored as
a byte image. As an example, consider the following problem
which we use as a motivation.

A. An example

A 3-dimensional image is available to us as an integer matrix
image[−N..N][−N..N][−N..N]. The locationimage[i][j][k]
stores, for example, the grey value at the pointi~x + j~y + k~z,
where~x, ~y, ~z are orthogonal unit vectors in 3-dimensional space
parallel to thex, y, andz Cartesian axes respectively.

Now consider a rotation (characterized by the matrixMrot)
such that the orthonormal basis[x, y, z] goes to the new basis
[~xx, ~yy, ~zz]. The new basis, in terms of the old basis is given as

[
~xx ~yy ~zz

]
= Mrot

[
~x ~y ~z

]

If, as assumed here,~x = [1, 0, 0]T , then ~xx is obtained from
the first column of the rotation matrixMrot.

The formulation in this paper is somewhat general. It may be
applied when we perform animation, and we have repeated use
of the rotation matrix in which case the right hand side repre-
sents an arbitrary vector instead of one parallel to the Cartesian
axes. The formulation also does not use the orthogonality of the
rotation matrix.

We would now like to assign grey values to the new rotated
image, i.e., the integer matrix rotatedimage[-N..N][-N..N][-
N..N] (notice that the output is also of the integer data-type,
and we ignore, for the moment, that the size of the rotated im-
age might be different from the given image). Figure 1 shows
the basis vectors when the space is rotated by an angleκ about
theZ axis.

xp

yp xp yp P(,)

xxp’ yyp’P’(,)

xxp’

yyp’
��

��

X

XX

Y

YY

κ

Fig. 1. Rotation of image space about theZ axis. The vector~xx is a unit
vector along the direction shown as XX. The grey value at the pointP ′ is the
same as the grey value at P.

To rotate the image, we have to rotate every point
(i, j, k), i, j, k = −N, . . . , N . This entailsO(N3) floating
point matrix multiplications as seen below which is linear in
the input size.

B. An intuitive method

A simple method to rotate the image is to obtain the point
v[1..3] (in the given image) associated with position(i, j, k)
in the rotated image as follows (for each grid position in the

2

new image, we look for the correct position in the old image to
obtain the gray value),

v =
[
i j k

]

~xxT

~yyT

~zzT

Here we obtain a1× 3 matrix in the matrix product of a1× 3
matrix with a3× 3 matrix.

Once we have the vectorv, we obtain the integer vector
trunc v[1..3] by truncating the values of the floating point vec-
tor v. Thus the final code may look like Algorithm 1 which
costs9N3 floating point multiplications.

Algorithm 1 Pseudo code for the intuitive method. trunc() is
the normal truncation operation.

1: Procedurerotate(xx, yy, zz : array [1..3] of integer)
2: for i := -N to N do
3: for j := -N to N do
4: for k := -N to N do
5: v[1] := i * xx[1] + j * yy[1] + k * zz[1];
6: v[2] := i * xx[2] + j * yy[2] + k * zz[2];
7: v[3] := i * xx[3] + j * yy[3] + k * zz[3];
8: trunc v[1] := trunc(v[1]);
9: trunc v[2] := trunc(v[2]);

10: trunc v[3] := trunc(v[3]);
11: rotatedimage[i][j][k] :=
12: image[truncv[1]][trunc v[2]][trunc v[3]];
13: end for
14: end for
15: end for
16: end Procedure

C. Drawbacks

Define transformindex to be the co-ordinates of the pointP
with respect to the coordinates(i, j, k) in the new (rotated) ba-
sis, i.e., truncv at(i, j, k). (This quantity need not be explicitly
computed, and may be expensive in terms of memory if explic-
itly stored.)

1) For any integer tuple(i, j, k), the vector trans-
form index[i][j][k] is again an integer vector. How-
ever the computations are performed using floating point
arithmetic. Floating point computations are expensive as
compared to integer computations, and hence computing
all the values of transformindex[i][j][k] would consume
a fair amount of time.

2) A more subtle drawback is that a lot of the computations
in Algorithm 1 are repetitive and therefore redundant –
as we shall see, a new value for a particular tuple can be
obtained from earlier computed values.

II. RESULTS ACHIEVED AND EARLIER WORK

In this document we present a method by which theO(N3)
floating point matrix multiplicationsof this problem can be re-
placed byO(N3) integer matrix additions. There are, there-
fore, twin rewards. Floating point calculations are replaced by

integer ones, and multiplications are replaced by additions. We
also guarantee that the resulting values are correct; no loss of
accuracy results in our process in going from one integer do-
main to another integer domain.

More generally, we observe that the rotated image is a digi-
tized image and hence the result of the floating point computa-
tions has to be truncated before the grey values are assigned to
the output image. This motivates us to explore the possibility of
obtaining the final result through largely integer computations
in a variety of situations when the net effect of the processing
pipeline is an integer.

Examples of such situations, in which our methods are use-
ful, include the elimination of floating point computations in
generic image manipulations (that is, other than pure rotations),
in image compression in the JPEG computation of the Discrete
Cosine Transform (see, for example, [Nel93]), in the classic
computation of optical flow [Hor86], in edge relaxation as in
[Pra80], in the discretization of the accumulator array in classi-
cal Hough Transform [BB82], and, indeed, in a variety of situ-
ations.

There have been several methods for achieving fast rotations,
indeed, most of this knowledge is in textbooks and program-
ming folklore. A common technique is to rewrite the rotation
matrix to use shearing transforms [TQ97]. While this approach
is fast, it does not guarantee accuracy, as it involves floating
point computations. An alternative is to use the FFT approach
(for example, [CT99]) especially if the input is given in the
Fourier domain; however, now the floating point errors become
worse due to the process of performing computations in the fre-
quency domain, and then returning back to the time domain.

Conceptually, the Cordic algorithm [Vol59], [GM95] resem-
bles our approach because the attempt is made to perform exact
computation, as well as avoid floating point arithmetic. This
may be necessary when a hardware multiplier is unavailable
(e.g., in a microcontroller) or when we want to save the gates
required to implement one (e.g. in an FPGA). Cordic achieves
precision in theory only after an unbounded number of itera-
tions. In contrast, in theory our algorithm is provably conver-
gent in a small polynomial in the number of bits to represent
the biggest number as input (for example, the dimensions of an
input array); in practice, the algorithm converges in about 4 or
5 steps. Cordic is particularly tailored to rotations and relies on
specific trigonometric identities. Our work makes no assump-
tion on the floating point numbers with which the transformed
index is obtained; in this situation, Cordic cannot be applied.

Methods to achieve exact results include the techniques of
interval arithmetic (where the emphasis is to go beyond the ma-
chine epsilon), and rational arithmetic. However, all of these
methods sacrifice speed for accuracy. Our method is as accu-
rate as the intuitive method mentioned above, but is also fast.

Subsequent layout of this paper is as follows. In the next
section, we provide other attempts to give integer solutions, and
the pitfalls therein. In Section IV we present our proposal, and
finally the last section gives representative results.

III. I NTEGER SOLUTIONS

A representative scheme for the problem results in a solu-
tion that performs onlyO(N) floating point computations, and

3

O(N3) integer computations. Unfortunately, this widespread
method results in incorrect values.

A. Representative solution

In essence, the method involves pre-computing the vec-
tors

Dxx, Dyy, Dzz : array[-N..N] of array[1..3] of integer;
by the code fragment given in Algorithm 2.

Algorithm 2 Pseudo code for the integer solution that uses
O(N) floating point computations.

1: for loopVar := -Nto N do
2: p := D× loopVar;
3: Dxx[loopVar][1] := trunc(p× xx[1]);
4: Dxx[loopVar][2] := trunc(p× xx[2]);
5: Dxx[loopVar][3] := trunc(p× xx[3]);
6: Dyy[loopVar][1] := trunc(p× yy[1]);
7: Dyy[loopVar][2] := trunc(p× yy[2]);
8: Dyy[loopVar][3] := trunc(p× yy[3]);
9: Dzz[loopVar][1] := trunc(p× zz[1]);

10: Dzz[loopVar][2] := trunc(p× zz[2]);
11: Dzz[loopVar][3] := trunc(p× zz[3]);
12: end for

HereD is a suitably chosen integer (say 16). Thus, in effect,
Dxx, Dyy andDzz are approximations of the integral multiples
of the floating point vectorsxx, yy andzz as rational numbers,
with denominatorsD.

Computation of transformindex[i][j][k] is done using purely
integer calculations as follows:

iv[1] := (Dxx[i][1] + Dyy[j][1] + Dzz[k][1]) div D;
iv[2] := (Dxx[i][2] + Dyy[j][2] + Dzz[k][2]) div D;
iv[3] := (Dxx[i][3] + Dyy[j][3] + Dzz[k][3]) div D;
and rotatedimage[i][j][k] is computed using the following

code fragment:

rotatedimage[i][j][k] := image[iv[1]][iv[2]][iv[3]];
and is repeated for allO(N3) tuples.

The division byD above is integer division (performed using
shifts if D is a power of 2), and offsets the earlier multiplication
by D in computingDxx, Dyy andDzz.

B. Idea behind the representative solution

ix

p
q q

ip

0

ix
x

Fig. 2. We want to findp
q

such thatb ip
q
c = bixc wherex is a number on the

real line.

As shown in Figure 2, the above method attempts to obtain
a fraction p

q such that for most integersi < N , truncatingix

and ip
q yield the same integer.q = 16 in Section III-A andp

changes with the loop variable index.

C. Discussion

Clearly, the vector iv, differs from the ideal trans-
form index[i][j][k] of Section I-C leading to some amount of
distortion in the image (see Figure 3). This can be easily ver-
ified by computing the values for xx[1] = 0.846154, yy[1] =
0.714286, zz[1] = 0.600000. Table I illustrates some examples
(for D = 16 and N=256). In other words, an incorrectv results
due to the compounded errors in the approximations ofDxx,
Dyy, andDzz. This may be critical when, for instance, medi-
cal images are used in diagnostic applications, or in nano mea-
surement applications, or even in common three-dimensional
rendering of animated scenes.

16ix

16x
16

ix
16ix
16

0

ix
x

Fig. 3. Error caused due to incorrect choice ofD. b b16xc
16

c is very close to

bxc butb b16ixc
16

c
is not close tobixc.

(i, j, k)
Inew[i][j][k] ≡

by Algorithm 2 by Algorithm 1

(0, 2, 1) Iold[1][*][*] Iold[2][*][*]
(1, 2, 3) Iold[3][*][*] Iold[4][*][*]

...
...

...

TABLE I
CORRESPONDING IMAGE POSITIONS AS COMPUTED BY REPRESENTATIVE

INTEGER SOLUTIONS, AND THE CORRECT METHOD(ALGORITHM 1). A

STAR INDICATES A “ DON’ T CARE” VALUE . IT IS NOT COMPUTED HERE

SIMPLY TO ILLUSTRATE THE ERROR IN ONE DIMENSION.

Note also the presence of floating point multiplications in the
above preprocessingO(N) code. It is possible to performO(1)
floating point multiplications (thereby, practically eliminating
any floating point calculations) by storing, for instance, the in-
teger part ofD × xx[1]. In this case, the errors will be consid-
erably higher.

There are two arguments to the drawbacks mentioned:
• The image distortion resulting from the above is offset by

the benefits of speedy computation.
• As D increases, the error in the values is seen only for

large values ofi, j, andk. If D is 100000 in the above
example, then it is possible to verify that the above method
and the real computations cannot differ.

4

The response to the second argument is that choosingD =
10000 is valid only for the specific example in Table I. Further,
D should not be extremely large to avoid memory overflows;
finally, there is some amount of guesswork involved in deter-
miningD for different sized images.

The response to the first is more subtle. Other than the ob-
vious problem of using incorrect values, there are various algo-
rithms in which “missing” a value is critical. For example, in
volumetric visualization, when rays are shot and projected on
to a plane, “missing” a voxel can lead to a completely different
voxel being projected on to the screen. A “red” color in an oth-
erwise blue background can cause considerable visualization
discomforts.

In the next section we introduce a method by which the ap-
proximation ofv, (i.e.,iv or transformindex[i][j][k]), is exactly
the same as that for the real valued computations shown in Sec-
tion I-C, and the guesswork involved in determining the rightD
is eliminated. The extra penalty to be paid for this is not much
in terms of running time, and in fact, paves the way to an even
faster algorithm.

IV. OUR PROPOSAL

Our proposed solution to the above problem is based on the
applications of the theory of basis reduction in Diophantine
Approximation [GLS88]. We define a new problem formally
and show later that the solution to this problem results in a
method that completely eliminates floating point computations,
yet, maintains the desired accuracy.

A. The problem

The basic problem addressed by the above methods is the
following. Suppose we are given numbersr1, r2 and r3 and
an integerN . Is it possible to approximater1, r2 and r3 by
fractionspx

q ,
py

q , pz

q with the same denominatorq, such that for
all i, j, k in the interval−N, . . . , N ,

trunc(ir1 + jr2 + kr3) = trunc(i
px

q
+ j

py

q
+ k

pz

q
) (1)

We term this as the problem of Simultaneous Diophantine
Approximation (SDA). There is an efficient procedure which on
input r1, r2, r3, andN will output the rational approximation
with the above required property (see Theorem 2) — the time
taken by the algorithm is proportional to the number of bits
needed to expressN . Section IV-B shows why the result is
interesting to us. But first, we need the following result:

Theorem 1:There exists an algorithm that, given numbers
α1, . . . , αn and0 < ε < 1, computes SDA approximation inte-
gersp1, p2, . . . , pn, and an integerq such that

1 ≤ q ≤ 2n(n+1)/4ε−n

and |αiq − pi| < ε (i = 1, . . . , n)

Proof : See [GLS88].
To show that the approximations found using Theorem 1 are

indeed the approximations we are looking for, we present the
following theorem:

Theorem 2:Let r1, r2 andr3 be any given numbers,N ∈ Z,
0 < ε < 1

3N and p1
q , p2

q and p3
q be their SDA approximations,

then@z ∈ Z such that

ir1 + jr2 + kr3 < z ≤ i
p1

q
+ j

p2

q
+ k

p3

q
, i, j, k ≤ N

(2)

or

i
p1

q
+ j

p2

q
+ k

p3

q
< z ≤ ir1 + jr2 + kr3, i, j, k ≤ N

(3)
Proof : Sincep1

q , p2
q and p3

q are the Simultaneous Diophantine
Approximations ofr1, r2 andr3 we have, from Theorem 1,

|qri − pi| < ε, i = 1, 2, 3. (4)

Assume, if possible,∃z ∈ Z such that for somei, j, k ≤ N

∴ i
p1

q
+ j

p2

q
+ k

p3

q
< z ≤ ir1 + jr2 + kr3

or, ip1 + jp2 + kp3 < zq ≤ iqr1 + jqr2 + kqr3

Subtracting, we get

0 < zq − ip1 − jp2 − kp3 ≤ i(qr1 − p1) + j(qr2 − p2) + k(qr3 − p3)
Eqn (4) ⇒ 0 < zq − ip1 − jp2 − kp3 < iε + jε + kε

0 < zq − ip1 − jp2 − kp3 < 3Nε

0 < zq − ip1 − jp2 − kp3 < 1

resulting in a contradiction that there exists an integer be-
tween 0 and 1. Hence@z ∈ Z satisfying Equation 3.

A similar argument implies that@z ∈ Z satisfying Equa-
tion 2.

Q.E.D

B. Applying the approximations

We solve three SDA problems for the tu-
ples (xx[1], yy[1], zz[1]), (xx[2], yy[2], zz[2]), and
(xx[3], yy[3], zz[3]). Each SDA problem involves about
4 or 5 steps working on a matrix of size4× 4 of floating point
numbers. Having obtained the rational simultaneous approx-
imations pxx[a]

q[a] ,
pyy[a]
q[a] , pzz [a]

q[a] , a = 1, 2, 3, the computation
of iv[a] is accomplished completely in integer arithmetic as
follows.

We may optionally pre-compute and storeDxx, Dyy andDzz

as described in Algorithm 3.
Now by Theorem 2, the vector iv obtained

by:

iv[1] := (Dxx[i][1] + Dyy[j][1] + Dzz[k][1]) div q[1];
iv[2] := (Dxx[i][2] + Dyy[j][2] + Dzz[k][2]) div q[2];
iv[3] := (Dxx[i][3] + Dyy[j][3] + Dzz[k][3]) div q[3];

matches, in the sense of Equation 1 the ideal vector trans-
form index[i][j][k] (from Section I-C). At this point, if we ig-
nore the time for the SDA approximation, we have an algorithm
that uses9N integer multiplications in a preprocessing stage,
and at run time uses3N3 integer divisions to fill the output ar-
ray of sizeN3. The preprocessing requires a memory storage
of size9N .

5

Algorithm 3 Proposed pseudo code

1: SDApproximate the triples (xx[1], yy[1], zz[1]),
(xx[2], yy[2], zz[2]), (xx[3], yy[3], zz[3]) to obtain
(pxx[1], pyy[1], pzz[1]), q[1], (pxx[2], pyy[2], pzz[2]), q[2],
(pxx[3], pyy[3], pzz[3]) and q[3].{see Algorithm 5}

2: for loopVar := -Nto N do
3: Dxx[loopVar][1] := loopVar * pxx[1];
4: Dxx[loopVar][2] := loopVar * pxx[2];
5: Dxx[loopVar][3] := loopVar * pxx[3];
6: Dyy[loopVar][1] := loopVar * pyy[1];
7: Dyy[loopVar][2] := loopVar * pyy[2];
8: Dyy[loopVar][3] := loopVar * pyy[3];
9: Dzz[loopVar][1] := loopVar * pzz[1];

10: Dzz[loopVar][2] := loopVar * pzz[2];
11: Dzz[loopVar][3] := loopVar * pzz[3];
12: end for

C. Eliminating integer divisions

We have seen in the previous section a technique by which
we can reduce floating point multiplication to integer computa-
tions. Here we note that the division by an integer still incurs a
major cost. In this section we propose a method by which this
cost can be eliminated.

We observe that in our original problem, we rotateevery
point in the raster grid. We exploit the fact that the position in
transformindex[i][j][k] is related to the positions in the neigh-
boring cells.

This is seen from the following equations (wherea is instan-
tiated to 1, 2 or 3):

transformindex[i][j][k][a] = (Dxx[i][a] + Dyy[j][a] +
Dzz[k][a]) div q[a];
transformindex[i][j][k][a] =

transformindex[i][j][k - 1][a] + pzz[a] div q[a];

Assuming without loss of generality thatpzz[a] is less than
q[a], i.e., the numberx which was approximated to obtain the
fraction pzz [a]

q[a] is less than 1. Instead of computing the last divi-
sion explicitly, we keep track of the numerator and denomina-
tor using the notion of a residue that can attain only two values
(namely, 0 and 1). When the numerator exceeds q[a], residue
attains the value 1, and we reset the counter. The details of
this residue arithmetic is shown in Algorithm 4. (A tricky point
in this memoization technique is that in three dimensions, we
need residue to be two dimensional in nature.) Algorithm 4
uses about3N3 elementary operations involving comparisons
and cached additions.

V. RESULTS AND CONCLUDING REMARKS

Many image transformations in computer vision involve a
pipeline when an initial integer image is processed with float-
ing point computations for purposes of symbolic information.
Traditionally, in the interests of time, the floating point com-
putation is approximated by integer computation where the in-
tegerization process requires a guess of a magic integer. This
results in poor quality image (which is often “cleaned” using a
low pass filter).

Algorithm 4 Eliminating integer division
1: ProceduremapVoxels(pxx, pyy, pzz, q : integer; comp : 1

.. 3)
2: var residue : array[0 .. N][0 .. N] of integer;
3: begin
4: transformindex[0][0][0][comp] := 0;
5: residue[0][0] := 0;
6: for i := 1 to N do
7: residue[i][0] := residue[i - 1][0] +pxx;
8: if residue[i][0]< q then
9: transformindex[i][0][0][comp] :=

10: transformindex[i - 1][0][0][comp];
11: else
12: transformindex[i][0][0][comp] :=
13: transformindex[i - 1][0][0][comp] + 1;
14: residue[i][0] := residue[i][0] - q;
15: end if
16: end for
17: for i := 0 to N do
18: for j := 1 to N do
19: residue[i][j] := residue[i][j - 1] +pyy;
20: if residue[i][j] < q then
21: transformindex[i][j][0][comp] :=
22: transformindex[i][j - 1][0][comp];
23: else
24: transformindex[i][j][0][comp] :=
25: transformindex[i][j - 1][0][comp] + 1;
26: residue[i][j] := residue[i][j] - q;
27: end if
28: end for
29: end for
30: for i := 0 to N do
31: for j := 0 to N do
32: for k := 1 to N do
33: residue[i][j] := residue[i][j] +pzz;
34: if residue[i][j] < q then
35: transformindex[i][j][k][comp] :=
36: transformindex[i][j][k - 1][comp];
37: else
38: transformindex[i][j][k][comp] :=
39: transformindex[i][j][k - 1][comp] + 1;
40: residue[i][j] := residue[i][j] - q;
41: end if
42: end for
43: end for
44: end for
45: end Procedure

6

 ��

Fig. 4. Result obtain using naive in-
teger approximations (Algorithm 2)

 ��

Fig. 5. Results obtained using Al-
gorithm 4 is visibly different.

In this paper, we have shown a faster (than traditional)
method to solve a specific instance of a family of image related
computations, namely, that of three dimensional image rotation.
It is surprising to note that in the process, as we see below, we
improveboth speed and quality. We document our results for
here. Firstly, Figures 4 and 5 show the results obtained from
using Algorithms 2 (a traditional method) and 4 (our proposed
method) to rotate the 3D image of a skull by angles 1.0, 1.0 and
33 degrees about the X, Y and Z axes respectively. We observe
that the image obtained by Algorithm 2 is different from the
correct image as also shown numerically as in Table I. This is
because of the error in the integerization in the calculation of
the position of the point in the rotated space.

To eliminate errors in the discretization process, slow float-
ing point computations may be adopted; our method shows that
speed need not be sacrificed for quality. We implemented Al-
gorithms 1, 2 and 4. These algorithms were compared for their
performance on various platforms (using the same compiler)
and the results are shown (forN = 256) in Table II.

The experiments aredeliberately stacked against our ap-
proach because most of the microprocessors used have hard-
ware floating point processors. The strength of our algorithms
is seen that despite this, our proposed method wins in all cases.
The win is especially handsome on the Intel 386 processor
(which does not have the floating point co-processor).

It has been realized early on that even if sampling theory con-
siderations are employed in the discretization process, image
rotation causes aliasing. Anti-aliasing techniques [FC97] call
for the value of an image pixel in the rotated image to be ob-
tained from a number of samples in the original image. Our al-
gorithm, as described in this paper, uses only one sample value
in the original image; a better solution would be to use the near
neighbors of this sample. This requires a minor modification
if we use Algorithm 3, and a less trivial modification to Algo-
rithm 4, since we compute the coordinates of the sample cor-
rectly and exactly. Specifically, the equations in Section IV-B
will be modified to include theD values of the neighbors.

In analyzing the costs of our algorithm, we note that there are
is a preprocessing cost of obtaining SDA approximations. The
cost of this is about 30 operations on a matrix with 16 floating
point numbers. This cost is insignificant when compared to the
run time cost of rotating a large volumetric image. Specifically,
at run time, if we can afford9N space for storing intermediate
values, andN2 space for storing a binary residue matrix, the
runtime costs us about3N3 integer operations involving addi-
tions and comparisons. This cost (which is linear since we need
to read the volumetric array) dominates the preprocessing time

for any reasonably sized image. If we cannot afford any ex-
tra space (other than the input and output volumetric images),
then the runtime cost increases to3N3 integer multiplication
operations. The computed answers are exact in any case.

In summary, our method is superior to a floating point based
method (employed in the interests of quality), or to a traditional
integer-based computations (employed in the interests of time).
We have also formally proved that our method is as exact as
the floating point based method (subject to machine epsilon in
either case).

APPENDIX A: SOLVING SIMULTANEOUS DIOPHANTINE

EQUATIONS

The algorithm to solve SDA ([GLS88]) is shown in Algo-
rithm 5; an implementation of this will satisfy Equation 1.

Algorithm 5 Approximate with error less than epsilon
1: Procedure SDApproximate(α[1..n], ε : real; p[1..n], q :

integer)

2: B :=

[
In×n α
01×n 2−n(n+1)/4εn+1

]
;

3: B∗ := GramSchmidtOrthogonalize(B);
4: loop
5: let µ := BB∗T {B∗ is orthogonal}
6: for j := 1 to n do
7: for i := 1 to j - 1 do
8: Bj := Bj - round (µji)Bi;
9: end for

10: end for
11: if ∃j such that‖B∗

j+1 +µj+1,jB
∗
j ‖2 < 3

4‖B∗
j ‖2 then

12: swapBj andBj+1;
13: adjustB∗ accordingly;
14: else
15: break;
16: end if
17: q := 2n(n+1)/4ε−(n+1)B1,n+1

18: p := B1 + qα
19: end loop
20: end Procedure

REFERENCES

[BB82] Dana H. Ballard and Christopher M. Brown.Computer Vision.
Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1982.

[CT99] R. Cox and R. Tong. Two- and three-dimensional image rotation
using the fft.IEEE Transactions on Image Processing, 8:1297–1299,
1999.

[FC97] M. Fleury and A. Clark. Sampling concerns in scanline algorithms.
IEEE Transactions on Medical Imaging, 16:349–361, 1997.

[GLS88] Martin Grotschel, Laszlo Lovasz, and Alexander Schrijver.Geo-
metric Algorithms and Combinatorial Optimization. Springer-Verlag
Berlin Heidelberg, 1988.

[GM95] I. Ghosh and B. Majumdar. Vlsi implemtnation of an efficient asic
architecture for real time rotation of digital images.International
Journal of Pattern Recognition and Artificial Intelligence, 9:449–
462, 1995.

[Hor86] B. K. P. Horn.Robot Vision. MIT Press, Cambridge, 1986.
[Nel93] Mark Nelson.The Data Compression Book. M & T Publishing, Inc.,

1993.
[Pra80] J. M. Prager. Extracting and labeling boundary segments in natural

scenes.IEEE Transactions in Pattern Analysis and Machine Intelli-
gence, 2(1):16–27, January 1980.

7

Processor
Time to execute user instructions % gain of 4

over 1Algorithm 1 Algorithm 2 Algorithm 4

Pentium 100 32.34s 14.65s 11.78s 174.53%
Pentium 60 48.71s 57.30s 22.90s 112.70%
Alpha 233 26.33s 53.22s 19.56s 34.61%
SGI R5000 29.13s 28.36s 9.88s 194.83%

Sun 4m 24.79s 10.63s 15.06s 64.60%
Intel 386∗ 20.99s 4.80s 4.58s 358.29%

∗N = 64

TABLE II
COMPARISON OF THE PERFORMANCE OF THE ALGORITHMS ON

DIFFERENT MACHINES.

[TQ97] Tommaso Toffoli and Jason Quick. Three-dimensional rotations
by three shears.Graphical models and image processing: GMIP,
59(2):89–95, 1997.

[Vol59] J. Volder. The CORDIC trignometric computing technique.IRE
Transactions on Electronics and Computing, EC-8:330–334, 1959.

