Fast image transforms using Diophantine methods

Sharat Chandran
A. K. Potty
M. Sohoni
Department of Computer Science & Engineering
Indian Institute of Technology,
Powai, Mumbai - 400 076. INDIA.
{sharat,apkp,sohop@cse.iitb.ac.in

Abstract— The formulation in this paper is somewhat general. It may be
Many image transformations in computer vision and graphics applied when we perform animation, and we have repeated use

involve a pipeline when an initial integer image is processed with ¢ tha rotation matrix in which case the right hand side repre-
floating point computations for purposes of symbolic information.

Traditionally, in the interests of time, the floating point compu- sents an arbitrary v_ector instead of one parallel to the C_artesian
tation is approximated by integer Computa’[ions where the inte- aXeS.. The fol:mulauon alSO doeS not use the Ol’thogonallty Of the
gerization process requires a guess of a integer. Examples of thisrotation matrix.
phenomenon include the discretization interval ofp and ¢ in the We would now like to assign grey values to the new rotated
accu_mulat_or array in classical Hoqghtransform, and in geometric image, i.e., the integer matrix rotatémage[-N..N][-N..N][-
manipulation of images (e.g. rotation, where a new grid is overlaid . . .
on the image). N..N] (nptlce that the output is also of th_e integer data—type,
The result of incorrect discretization is a poor quality visual im- ~ and we ignore, for the moment, that the size of the rotated im-
age, or worse, hampers measurements of critical parameters such age might be different from the given image). Figure 1 shows

as density or Iength in hlgh fldellty machine vision. Correction the basis vectors when the Space is rotated by an aj’@t@)ut
techniques include, at best, anti-aliasing methods, or more com- the 7 axis

monly, a “kludge” to cleanup. In this paper, we present a method
that uses the theory of basis reduction in Diophantine approxima- Y
tions; the method outperforms prior integer based computation
without sacrificing accuracy (subject to machine epsilon).

YY 1:’(XXp; ¥dp)

. INTRODUCTION e '
: N Yy Yp) P(xp,¥p)
A large number of problems in computer vision involve float- ' \

ing point computations in image manipulation. Typically, the ' |
input image is a quantized version of the original analog sig- \ !
nal and, therefore, stored as a byte imagetrakhsformation \ \
is applied to process the image; this process may result in in- ! |
termediatefloating point numbers However, the final image \ '
displayed or analyzed is similar to the input image — stored as \ \ -7 XX
a byte image. As an example, consider the following problem \ XXpr) -~~~

which we use as a motivation. ' e

A. An example

. Fig. 1. Rotation of image space about tHeaxis. The vectorz is a unit
A 3-dimensional image is available to us as an integer matgj¥ctor along the direction shown as XX. The grey value at the poiris the

image[—N..N|[-N..N][-N..N]. The locationmagel[i[j][k] ~Same as the grey value at P.

stores, for example, the grey value at the paint+ ji + k2,

wherer, i, Z are orthogonal unit vectors in 3-dimensional space To rotate the image, we have to rotate every point

parallel to ther, y, andz Cartesian axes respectively. (i,4,k),i,5,k = —N,...,N. This entailsO(N?) floating
Now consider a rotation (characterized by the maiidy,;) point matrix multiplications as seen below which is linear in

such that the orthonormal basis, y, z] goes to the new basisthe input size.

[#Z, Yy, Z%]). The new basis, in terms of the old basis is given as
B. An intuitive method

A simple method to rotate the image is to obtain the point
If, as assumed here;, = [1,0,0]%, thenz% is obtained from wv[1..3] (in the given image) associated with posititnj, k)
the first column of the rotation matrixZ,.;. in the rotated image as follows (for each grid position in the

[x?}: Yy z"fz] = Mo [f v Z]

new image, we look for the correct position in the old image tateger ones, and multiplications are replaced by additions. We

obtain the gray value), also guarantee that the resulting values are correct; no loss of
o accuracy results in our process in going from one integer do-
rr main to another integer domain.
v=1[i j Kk |yg" More generally, we observe that the rotated image is a digi-
T tized image and hence the result of the floating point computa-

tions has to be truncated before the grey values are assigned to

Here we obtain & x 3 matrix in the matrix product of & x 3 the output image. This motivates us to explore the possibility of
matrix with a3 x 3 matrix. obtaining the final result through largely integer computations

Once we have the vectar, we obtain the integer vectorin g variety of situations when the net effect of the processing
trunc.v[1..3] by truncating the values of the floating point vecpjpeline is an integer.
tor v. Thus the final code may look like Algorithm 1 which Examples of such situations, in which our methods are use-
costs9N*? floating point multiplications. ful, include the elimination of floating point computations in
generic image manipulations (that is, other than pure rotations),
Algorithm 1 Pseudo code for the intuitive method. trunc() isn image compression in the JPEG computation of the Discrete

the normal truncation operation. Cosine Transform (see, for example, [Nel93]), in the classic
1: Procedurerotate (xx, yy, zz : array [1..3] of integer) computation of optical flow [Hor86], in edge relaxation as in
2. fori:=-NtoNdo [Pra80], in the discretization of the accumulator array in classi-
3 for j:=-Nto N do cal Hough Transform [BB82], and, indeed, in a variety of situ-
4 for k:=-Nto N do ations.
5: V[1] ;=i * xx[1] +] * yy[1] + k * zz[1]; There have been several methods for achieving fast rotations,
6: V[2] =i *xx[2] + | * yy[2] + k * zz[2]; indeed, most of this knowledge is in textbooks and program-
7: V[3] =i *xx[3] +j * yy[3] + k * zz[3]; ming folklore. A common technique is to rewrite the rotation
8 trunc.v[1] := trunc(v[1]); matrix to use shearing transforms [TQ97]. While this approach
9: trunc.v[2] := trunc(v[2]); is fast, it does not guarantee accuracy, as it involves floating
10: trunc.v[3] := trunc(v[3]); point computations. An alternative is to use the FFT approach
11 rotatedimageli][j][k] := (for example, [CT99]) especially if the input is given in the
12: image[truncv[1]][trunc_v[2]][trunc_v[3]]; Fourier domain; however, now the floating point errors become
13: end for worse due to the process of performing computations in the fre-
14 end for quency domain, and then returning back to the time domain.
15: end for Conceptually, the Cordic algorithm [Vol59], [GM95] resem-
16: end Procedure bles our approach because the attempt is made to perform exact

computation, as well as avoid floating point arithmetic. This

may be necessary when a hardware multiplier is unavailable
(e.g., in a microcontroller) or when we want to save the gates
required to implement one (e.g. in an FPGA). Cordic achieves

Define transformindex to be the co-ordinates of the poit ecision in theory only after an unbounded number of itera-
with respect to the coordinatés j, k) in the new (rotated) ba- jons 1y contrast, in theory our algorithm is provably conver-

sis, i.e., truncv at (i, j, k). (This quantity need not be explicitly gen¢ in 4 small polynomial in the number of bits to represent

computed, and may be expensive in terms of memory if expliftye piggest number as input (for example, the dimensions of an
itly stored.) input array); in practice, the algorithm converges in about 4 or
1) For any integer tuple(i,j,k), the vector trans- 5 steps. Cordic is particularly tailored to rotations and relies on
form._index[i][i](k] is again an integer vector. How- gpecific trigonometric identities. Our work makes no assump-
ever the computations are performed using floating poifin on the floating point numbers with which the transformed
arithmetic. Floating point computations are expensive ggjex is obtained:; in this situation, Cordic cannot be applied.
compared to integer computations, and hence computingviethods to achieve exact results include the techniques of
all the values of transforrmdex(i][j][k] would consume jnterval arithmetic (where the emphasis is to go beyond the ma-
a fair amount of time. chine epsilon), and rational arithmetic. However, all of these
2) A more subtle drawback is that a lot of the computationgethods sacrifice speed for accuracy. Our method is as accu-
in Algorithm 1 are repetitive and therefore redundant mte as the intuitive method mentioned above, but is also fast.
as we shall see, a new value for a particular tuple can besybsequent layout of this paper is as follows. In the next

C. Drawbacks

obtained from earlier computed values. section, we provide other attempts to give integer solutions, and
the pitfalls therein. In Section IV we present our proposal, and
Il. RESULTS ACHIEVED AND EARLIER WORK finally the last section gives representative results.
In this document we present a method by which ¢Hev?)
floating point matrix multiplicationsf this problem can be re- Il. INTEGER SOLUTIONS

placed byO(N?) integer matrix additions There are, there- A representative scheme for the problem results in a solu-
fore, twin rewards. Floating point calculations are replaced ipn that performs only)(N) floating point computations, and

O(N?) integer computations. Unfortunately, this widespreaand 2 yield the same integery = 16 in Section IlI-A andp

method results in incorrect values. changes with the loop variable index.
A. Representative solution C. Discussion
In essence, the method involves pre-computing the vec-Clearly, the vectoriv, differs from the ideal trans-
tors form_index[i][j][k] of Section I-C leading to some amount of
Dgy, Dy, D - array[-N..N] of array[1..3] of integer; distortion in the image (see Figure 3). This can be easily ver-
by the code fragment given in Algorithm 2. ified by computing the values for xx[1] = 0.846154, yy[1] =

0.714286, zz[1] = 0.600000. Table I illustrates some examples
Algorithm 2 Pseudo code for the integer solution that usdfor D = 16 and N=256). In other words, an incorreatesults

O(N) floating point computations. due to the compounded errors in the approximation®gf,
1: for loopVar := -Nto N do D,,, andD, .. This may be critical when, for instance, medi-
2. p:=D x loopVar; cal images are used in diagnostic applications, or in nano mea-
3. D,,[loopVar][1] := trunc(px xx[1]); surement applications, or even in common three-dimensional
4. D, [loopVar][2] := trunc(px xx[2]); rendering of animated scenes.
5. Dg.[loopVar][3] :=trunc(p x xx[3]);
6: Dy, lloopVar][1] := trunc(px yy[1]); L16XJ
7. DyylloopVar][2] := trunc(px yy[2]); 16
8. DyylloopVar][3] := trunc(px yy[3]);
9. D, [loopVar][1] := trunc(px zz[1]); \ L16iXJ

10: D, [loopVar][2] :=trunc(px zz[2]); | iX

|
|
|
|
Y

11: D, [loopVar][3] ;= trunc(px zz[3]); !

C e

Here D is a suitably chosen integer (say 16). Thus, in effect,
D, Dy, andD, . are approximations of the integral multipleqzig_ 3
of the floating point vectorsz, yy andzz as rational numbers,
with denominatordD.

Computation of transfornmdex[i][j][k] is done using purely
integer calculations as follows:

|16z

Error caused due to incorrect choicelof | -

L] but| B3|
is not close tg iz |.

| is very close to

V[1] := (Dao[il[1] + Dyy[il[1] + D..[K][1]) div D; . Leo[ilK =

(2] = (D.fil2] + Dyyfill2] + Da-[KI[2) div D; (3. k) by Algorithm 2 | by Algorithm 1

iV[3] = (Dzr[|][3] + Dyym[3] + Dzz[k][3]) div D; (0, 2, 1) Iold[l][*][*] Iold[z][*][*]

and rotatedmageli][jl[k] is computed using the following 1,2, 3) LuBIAM L[4
code fragment: - i i

rotatedimagel[i][jI[k] := image[iv[1]][iv[2]][iv[3]]; :

and is repeated for ald(N?) tuples.

The division byD above is integer division (performed using
shifts if D is a power of 2), and offsets the earlier multiplication
by D in computingD,,, Dy, andD. .

TABLE |
CORRESPONDING IMAGE POSITIONS AS COMPUTED BY REPRESENTATIVE
INTEGER SOLUTIONS AND THE CORRECT METHOD(ALGORITHM 1). A
STAR INDICATES A “DON’T CARE” VALUE. IT IS NOT COMPUTED HERE

. . . SIMPLY TO ILLUSTRATE THE ERROR IN ONE DIMENSION
B. Idea behind the representative solution

ip Note also the presence of floating point multiplications in the
q above preprocessin@(NN) code. It is possible to perforfi(1)
\ floating point multiplications (thereby, practically eliminating
I1X any floating point calculations) by storing, for instance, the in-
0 X / teger part ofD x zz[1]. In this case, the errors will be consid-

|
|
|
|
Y

erably higher.
UX J There are two arguments to the drawbacks mentioned:
« The image distortion resulting from the above is offset by
Fig. 2. We want to find such that 2 | = |iz| wherex is a number on the the be_nef'ts of speedy computation. .
real line. o As D increases, the error in the values is seen only for
large values of, j, andk. If D is 100000 in the above
As shown in Figure 2, the above method attempts to obtain example, then it is possible to verify that the above method
a fractiong such that for most integeiis< N, truncatingix and the real computations cannot differ.

The response to the second argument is that chodsirg Theorem 2:Letr, ro andrs be any given numbersy € Z,
10000 is valid only for the specific example in Table I. Further) < e < i and%l, %2 and%3 be their SDA approximations,
D should not be extremely large to avoid memory overflowshen?z € Z such that
finally, there is some amount of guesswork involved in deter- _ p1 P2 P3 o
mining D for different sized images. iry+jre +hry <z < T k;, i,k < N

The response to the first is more subtle. Other than the ob- 2)
vious problem of using incorrect values, there are various algo-

rithms in which “missing” a value is critical. For example, in ‘ or
volumetric visualization, when rays are shot and projected on; 2L + j@ + R <z<iry+jro+krs, i,5,k<N
to a plane, “missing” a voxel can lead to a completely different ¢ q q

, . i - 3)
voxel being projected on to the screen. A “red” color in an otlF i1 P s . . (.
erwise blue background can cause considerable visualizat rﬁOf' Smc_e?, '¢ and’g are the Simultaneous Diophantine

. q
discomforts ,&)pproxmatlons O%rl, ro andrg we have, from Theorem 1,
In_the next sec_tion we introduce a methqd by _which the ap- lqrs — pi| < e, i=1,2,3. (4)
proximation ofv, (i.e.,iv or transformindex[i][j][k]), is exactly . _
the same as that for the real valued computations shown in SecAssume, if possiblejz € Z such that for somé j, k < v
tion I-C, and the guesswork involved in determining the right
is eliminated. The extra penalty to be paid for this is not much D1 | .D2 D3 . .
. L . : == = <
in terms of running time, and in fact, paves the way to an even T K g SFsmtgnt krs

faster algorithm. or, ipy + jp2 + kps < z2q < iqry + jqra + kqrs

Subtracting, we get
IV. OUR PROPOSAL 9 9

Our proposed solution to the above problem is based on thes 24 — ip1 — jp2 — kps < i(gr1 — p1) + j(qr2 — p2) + k(grs — ps)
applications of the theory of basis reduction in Diophantine Eqn (4) = 0 < zq — ip1 — jp2 — kps < ie + je + ke
Approximation [GLS88]. We Qefine a new problem formqlly 0 < zq — ip1 — jps — kps < 3Ne
and show later that the solution to this problem results in a
method that completely eliminates floating point computations,
yet, maintains the desired accuracy. resulting in a contradiction that there exists an integer be-

tween 0 and 1. Henck: < Z satisfying Equation 3.

A. The problem ; Azsimilar argument implies thafiz € Z satisfying Equa-
ion 2.

The basic problem addressed by the above methods is the
following. Suppose we are given numbertsr, andrs and QED
an integerN. Is it possible to approximate,,r, andrs by
fractionsZz, 2 2= with the same denominater such that for B. Applying the approximations
all i, j, k inthe interval-N, ... N, We solve three SDA problems for the tu-
- e py ples (zz[l],yy[1], 22[1]), (wz[2],yy[2],22[2]), and
trunc(iry + jro + krg) = trunc(i— + ;=2 + k=) (1) (xz[3],yy[3],22[3]). Each SDA problem involves about
q q q 4 or 5 steps working on a matrix of sizex 4 of floating point

We term this as the problem of Simultaneous DiophantiﬁB‘mberS- Having obtained the rational simultaneous approx-
Approximation (SDA). There i an efficient procedure which ofnations 2zl 2ull 22l g — 1,2,3, the computation
input 1,79, 73, and N will output the rational approximation of iv[a] is accomplished completely in integer arithmetic as
with the above required property (see Theorem 2) — the tinf@lows.
taken by the algorithm is proportional to the number of bits We may optionally pre-compute and stdvg,,, D, andD,,
needed to expresd. Section IV-B shows why the result isas described in Algorithm 3.
interesting to us. But first, we need the following result: Now Dby Theorem 2, the vectoriv obtained

Theorem 1:There exists an algorithm that, given numbergy:
ai,...,a, and0 < e < 1, computes SDA approximation inte- iv[1] := (D,,[il[1] + D,,[jl[1] + D..[K|[1]) div q[1];
gerspi,pa, - - -, Pn, @nd an integeq such that V[2] := (Do [il[2] + Dy, lil[2] + D..[KI[2]) div q[2];

VI3] := (D 18] + Dy [iI13] + D-.[KIB]) div q[3];
matches, in the sense of Equation 1 the ideal vector trans-

0<2zq—1ip1 — jp2 —kp3s <1

1<qg< 2n(n+1)/46—n

and loig—pil <e (i=1,...,n) form_index{i][jI[k] (from Section I-C). At this point, if we ig-
nore the time for the SDA approximation, we have an algorithm
Proof : See [GLS88]. that use9) N integer multiplications in a preprocessing stage,

To show that the approximations found using Theorem 1 ag@d at run time usexN?3 integer divisions to fill the output ar-

indeed the approximations we are looking for, we present thgy of sizeN3. The preprocessing requires a memory storage
following theorem: of size9N.

Algorithm 3 Proposed pseudo code
1: SDApproximate the triples (xz[1],yy[1], z2[1]),
(zx[2], yy[2], 22[2]), (wx[3],yy[3],22[3]) to obtain
(pww[l] pyy[] pzz[]) [L (pwc[2] pyy[2] pzz[2]) Q[ZL

(pe[3], Pyy[3], p-=[3]) and q[3]. {see Algorithm 5
2. for loopVar :=-Nto N do

Algorithm 4 Eliminating integer division

3 DqglloopVar][1] :=loopVar *p,,[1]; 1: Procedure mapVoxel$p...., p,, : integer; comp : 1
4: D, .[loopVar][2] := loopVar * p,.[2]; . 3) P oz Puy, Pz e P
5 Dg.[loopVar][3] := loopVar * p,.[3]; 2. var residue : array[0 .. N][0 .. N] of integer;
6: DyylloopVar][1] := loopVar * p,,[1]; 3; begin
7 Dy,[loopvar][2] := loopVar * p,,, [2]; 4 transformindex[0][0][0][comp] := 0;
8: Dy,lloopVar][3] := loopVar * p,,[3]; 5. residue[0][0] :=
9: D, [loopVar][1] := loopVar *p..[1]; 6. fori:=1toNdo
10: D..[loopVar][2] := loopVar *p..[2]; 7: residue[i][0] := residuel[i - 1][0] +pu;
11: D, [loopVar][3] := loopVar *p..[3]; 8 if residueli][0] < q then
12: end for o transformindex(i][0][0][comp] :=
10: transformindex([i - 1][0][0][comp];
T L 11: else
C. Eliminating integer divisions 12: transformindex[i][0][0][comp] :=

We have seen in the previous section a technique by which:
we can reduce floating point multiplication to integer computar4:
tions. Here we note that the division by an integer still incurs b:
major cost. In this section we propose a method by which this:
cost can be eliminated. 17:

We observe that in our original problem, we rotaeery 18:
pointin the raster grid. We exploit the fact that the position iri9:
transformindex[i][j][k] is related to the positions in the neigh- 20:

boring cells. 21:
This is seen from the following equations (wherks instan- 22
tiated to 1, 2 or 3): 23:
transformindex[il[j]kl[a]l = (D..[il[al + D,llla] + 2%
D..[K][a]) div q[al]; 25:
transformindex[i][j][K][a] = 26:
transformindex[i][j][k - 1][a] + p..[a] div q[a]; 2r

Assuming without loss of generality that.[a] is less than 28:

gl[a], i.e., the numbet: which was approximated to obtain the

fraction %CE]“] is less than 1. Instead of computing the last diviél_
sion explicitly, we keep track of the numerator and denoming;,.
tor using the notion of a residue that can attain only two valuegs.

(namely, 0 and 1). When the numerator exceeds q[a], residye

attains the value 1, and we reset the counter. The detailsggf:
this residue arithmetic is shown in Algorithm 4. (A tricky point
in this memoization technique is that in three dimensions,

need residue to be two dimensional in nature.) Algorithm §8;
uses abousN? elementary operations involving comparisonsg.

and cached additions. 20:
41

V. RESULTS AND CONCLUDING REMARKS 42:

43:

Many image transformations in computer vision involve g,.

transformindex]i - 1][0][0][comp] + 1
residue[i][0] := residueli][0] - q;
end if
end for
for i:=0toNdo
forj:=1toNdo
residuel[i][j] := residuel[i][j - 1] +pyy;
if residueli][j] < gthen
transformindex[i][j][0][comp] :=
transformindex[i][j - 1][0][comp];
else
transformindex{i][j][0][comp] :=
transformindex([i][j - 1][0][comp] + 1;
residueli][j] := residueli][j] - q;
end if
end for
end for
fori:=0toNdo
forj:=0toNdo
for k:=1to N do
residueli][j] := residuel[i][j] +p..;
if residuel[i][j] < g then
transformindex[i][j][k][comp] :=
transformindex{i][j][k - 1][comp];
else
transformindex([i][j][k][comp] :=
transformindex([i][j][k - 1][comp] + 1;
residueli][j] := residuel[i][j] - q;
end if
end for
end for
end for

pipeline when an initial integer image is processed with floaly. and Procedure

ing point computations for purposes of symbolic information:
Traditionally, in the interests of time, the floating point com-
putation is approximated by integer computation where the in-

tegerization process requires a guess of a magic integer. This

results in poor quality image (which is often “cleaned” using a
low pass filter).

for any reasonably sized image. If we cannot afford any ex-
tra space (other than the input and output volumetric images),
then the runtime cost increases3®? integer multiplication
operations. The computed answers are exact in any case.

In summary, our method is superior to a floating point based
method (employed in the interests of quality), or to a traditional
integer-based computations (employed in the interests of time).
We have also formally proved that our method is as exact as
the floating point based method (subject to machine epsilon in

Fig. 4. Result obtain using naive in- Fig. 5.

Results obtained using Al-

teger approximations (Algorithm 2) gorithm 4 is visibly different.

either case).

In this paper, we have shown a faster (than traditional) APPENDIXA: SOLVING SIMULTANEOUS DIOPHANTINE

method to solve a specific instance of a family of image related

EQUATIONS

computations, namely, that of three dimensional image rotation.-l-he algorithm to solve SDA ([GLS88]) is shown in Algo-

It is surprising to note that in the process, as we see below,
improve both speed and quality. We document our results for

Hfhm 5; an implementation of this will satisfy Equation 1.

here. Firstly, Figures 4 and 5 show the results obtained fruAl

gorithm 5 Approximate with error less than epsilon

[
using Algorithms 2 (a traditional method) and 4 (our proposed-
method) to rotate the 3D image of a skull by angles 1.0, 1.0 ané’
33 degrees about the X, Y and Z axes respectively. We observe
that the image obtained by Algorithm 2 is different from the 2:
correct image as also shown numerically as in Table I. This i%_
because of the error in the integerization in the calculation of
the position of the point in the rotated space. .

To eliminate errors in the discretization process, slow float-G:
ing point computations may be adopted; our method shows thét
speed need not be sacrificed for quality. We implemented Al-’
gorithms 1, 2 and 4. These algorithms were compared for thelr
performance on various platforms (using the same compile{g'_
and the results are shown (fof = 256) in Table 1. 11:

The experiments aréeliberately stacked against our ap- .’
proach because most of the microprocessors used have halrd—
ware floating point processors. The strength of our algorithms'

Procedure SDApproximatga[l..n], € :
integer)

]

B* := GramSchmidtOrthogonalizBj);
4. loop

real; p[l..n], q:

«

Inxn .
27n(n+1)/4€n+1 ’

01><n

let » := BB*T {B* is orthogona}
forj:=1tondo
fori:=1toj-1do
Bj := Bj -round (u;;)B;;
end for
end for
if 3j such that| BY, | + p;41,;B;]1> < || B; || then
swapB; andB;1;
adjustB* accordingly;

. . : L : I
is seen that despite this, our proposed method wins in all cases. cise .
- . : break;
The win is especially handsome on the Intel 386 processor end if
(which does not have the floating point co-processor). ' n(n41)/4, . —(n+1)
) . . 17 q:=2 € By i1
It has been realized early on that even if sampling theory co?é_ — B) + qa ’
siderations are employed in the discretization process, imagée p:=Tg
: L S : J??Z end loop
rotation causes aliasing. Anti-aliasing techniques [FC97] ca
. L : 20: end Procedure
for the value of an image pixel in the rotated image to be ob-
tained from a number of samples in the original image. Our al-
gorithm, as described in this paper, uses only one sample value
in the original image; a better solution would be to use the near REFERENCES

neighbors of this sample. This requires a minor modificatigeas2]
if we use Algorithm 3, and a less trivial modification to Algo-
rithm 4, since we compute the coordinates of the sample CBCr-ngl
rectly and exactly. Specifically, the equations in Section IV-B
will be modified to include thé values of the neighbors. [FCo7]
In analyzing the costs of our algorithm, we note that there at§ sgg;
is a preprocessing cost of obtaining SDA approximations. The
cost of this is about 30 operations on a matrix with 16 floati
point numbers. This cost is insignificant when compared to the
run time cost of rotating a large volumetric image. Specifically,
at run time, if we can afford N space for storing intermediate Horg6]
values, andV? space for storing a binary residue matrix, th@velos]
runtime costs us abodtV? integer operations involving addi-
tions and comparisons. This cost (which is linear since we nebfe!
to read the volumetric array) dominates the preprocessing time

95]

Dana H. Ballard and Christopher M. BrownComputer Vision
Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1982.

R. Cox and R. Tong. Two- and three-dimensional image rotation
using the fft.IEEE Transactions on Image Processi8gl297-1299,
1999.

M. Fleury and A. Clark. Sampling concerns in scanline algorithms.
IEEE Transactions on Medical Imagingj6:349-361, 1997.

Martin Grotschel, Laszlo Lovasz, and Alexander Schrijv&eo-
metric Algorithms and Combinatorial OptimizatioBpringer-Verlag
Berlin Heidelberg, 1988.

I. Ghosh and B. Majumdar. VIsi implemtnation of an efficient asic
architecture for real time rotation of digital imagefternational
Journal of Pattern Recognition and Artificial Intelligenc®:449—
462, 1995.

B. K. P. Horn.Robot Vision MIT Press, Cambridge, 1986.

Mark Nelson.The Data Compression Book! & T Publishing, Inc.,
1993.

J. M. Prager. Extracting and labeling boundary segments in natural
scenes|EEE Transactions in Pattern Analysis and Machine Intelli-
gence 2(1):16-27, January 1980.

Processor Time to executg user instructjons % gain of 4
Algorithm 1 | Algorithm 2 | Algorithm 4 over 1
Pentium 100 32.34s 14.65s 11.78s 174.53%
Pentium 60 48.71s 57.30s 22.90s 112.70%
Alpha 233 26.33s 53.22s 19.56s 34.61%
SGI R5000 29.13s 28.36s 9.88s 194.83%
Sun 4m 24.79s 10.63s 15.06s 64.60%
Intel 386 20.99s 4.80s 4.58s 358.29%
*N =64
TABLE Il

COMPARISON OF THE PERFORMANCE OF THE ALGORITHMS ON
DIFFERENT MACHINES

[TQ97] Tommaso Toffoli and Jason Quick. Three-dimensional rotations
by three shearsGraphical models and image processing: GMIP
59(2):89-95, 1997.

[VoI59] J. Volder. The CORDIC trignometric computing techniquiRE
Transactions on Electronics and ComputifC-8:330-334, 1959.

