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Abstract

We present a method to determine the 3D spatial locations of
joints of a human body from a monocular video sequence of a
Bharatanatyam dance. The proposed method uses domain specific
knowledge to track major joints of the human in motion from the
two dimensional input data. We then make use of various physical
and motion constraints regarding the human body to construct a
set of feasible 3D poses. A heuristic based method is used to find
an optimal sequence of feasible poses that represents the original
motion in the video.

1 Introduction

Markerless motion capture requires solutions to two problems:
a tracking problem of identifying and disambiguating individual
body parts from the rest of the image, and a reconstruction prob-
lem of estimating the 3D pose of the figure from 2D data. The
challenge in tracking is to deal with background clutter and ambi-
guities in image matching, while the challenge in reconstruction is
to compensate for the loss of 3D information that happens during
recording.

In our work, we have tried to develop motion capture techniques for
a specific domain of Bharatanatyam dance, a classical dance form
of India.

There are two major human motion tracking methods: multi-view
vision, where more than one camera are present, and monocular
vision where only a single camera is used. In this paper, we try to
tackle the harder problem of using only a single camera.

Tracking of the human body in a two-dimensional space is a quite
well studied topic. However, tracking of individual body parts re-
mains an ill-conditioned problem. Various hurdles haunting the
problem are irregular shape of human body, self-occlusion, clothes
and makeup, shadows, and a high number degrees of freedom
(DOFs). Because of these constraints, it is currently not possible
to track different human body parts from a video automatically in
a reliable manner. Hence the general problem remains largely un-
solved. However, it is possible to solve the problem for specific
applications using the domain specific knowledge. We develop a
semiautomatic method based on the uniformity of traditional dress
of Bharatanatyam to track the body parts using skin color detection.
The tracked data thus obtained is not always accurate and manual
intervention is required in some cases.

The main challenge in the reconstruction of articulated body mo-

tion is the large number of degrees of freedom to be recovered.
A realistic articulated motion of the human body usually has at
least 28 degrees of freedom. Search algorithms – deterministic or
stochastic – that search such a space without constraints, fall foul of
exponential computational complexity. This paper uses additional
constraints for solving the problem in realistic time. We make use
of constraints in the form of prior assumptions, motion estimation
techniques, and view constraint restriction to break down the prob-
lem to a tractable algorithm.

Since our input comprises of data from a single camera, there exist
fundamental ambiguities in the reconstruction of the 3D pose. The
well known reflective ambiguity under orthographic projection re-
sults in a pair of solutions for the rotation of a single link out of the
image plane. Once the actual length of each link is known, these
ambiguities reduce to twofoldforward-backward flippingambigu-
ities. The full model thus has2#links possible solutions. We try
to make use of simple inverse kinematics to systematically gener-
ate the complete set of such configurations and hence to investigate
the full set of associated cost minima. A dynamic programming
algorithm is proposed to traverse this configuration tree and pick
one of the most likely motions. Some more scene constraints are
introduced so as to prune inconsistent configuration and thereby
speeding up the search.

The rest of the paper is organized as follows. Section 2 summarizes
some of the major work in the area of motion capture. Section 3
looks at the tracking aspect of the problem. In section 4, we pro-
pose a graph based algorithm which is augmented with probabilistic
model for reconstructing 3D model from tracked data. We present
our results in Section 5. Section 6 concludes the paper with final
remarks.

2 Related Work

The previous work in the field of motion capture has been mainly
dependent on cues like markers or multiple views, while little work
has been done in the field of single view markerless motion capture.

Tracking which forms an important ingredient of our method has
been a well studied topic. Blob trackers, contour trackers and op-
tical flow based tracking methods are most widely used tracking
techniques. Blob trackers [Wren et al. 1996; Isard and MacCormick
2001] extract low level information like color and pixel intensity.
This information is subsequently grouped or interpreted according
to the higher level knowledge about the scene. Our approach is
similar to one used in [Wren et al. 1996]. The optical flow based



algorithms [Bregler and Malik 1998; Rehg and Kanade 1995] ex-
tract a dense velocity field from an image sequence assuming that
image intensity is conserved during the displacement. This conser-
vation law is expressed by a spatio-temporal differential equation
which is solved under additional constraints of different form. The
feature based techniques [Shi and Tomasi 1993; Chetverikov and
Verest’oy n. d.] extract local regions of interest (features) from the
images and identify the corresponding features in each image of the
sequence. Contour-based object tracking [Kass et al. 1987; M.Isard
and A.Blake 1998; Blake et al. n. d.] requires object detection only
once. Tracking is performed by finding the object contour given an
initial contour from the previous frame.

An extensive survey of human motion capture techniques has been
done by [Moeslund and Granum 2001], which has references to
more than 130 major publications in the field. Considerable amount
of work has already been carried out for motion capture system
involving multiple cameras. [Mikic et al. 2001] generates 3D voxel
data from multiple cameras placed at strategic locations to estimate
pose, whereas [Delamarre and Faugeras 1999][Mittal et al. 2003]
use silhouettes generated from multiple views to track an articulated
body in 3D.

[Moeslund and Granum 2000] augments silhouettes with human
body depth and collision constraints to estimate the pose of arms
only. [Holt et al. 1994] proposes a method for estimating 3D motion
of an articulated object. It divides the object into simpler parts,
estimate the motion of simplest part and then propagate the results
to the upper levels.

[David E.DiFranco 2001] introduces an interactive system which
combines constraints on 3D motion with input from a human oper-
ator to reconstruct sequences in 3D. They use an iterative batch al-
gorithm which estimates the maximum a posteriori trajectory based
on 2D measurements subject to a number of constraints, like kine-
matic constraints, joint angle limits, dynamic smoothing, and inter-
mediate frames specified by the user. [Park et al. 2002] makes use
of a motion library to resolve the depth ambiguity in recovering the
3D configurations from 2D features. [Bregler and Malik 1998] uses
exponential maps and twist motions to extract 3D human configu-
rations from a single-camera video sequence.

The weakness of kinematic constraint in monocular tracking can
be addressed by using dynamic models to constrain the motion,
and complex statistical methods to jointly represent the ambigu-
ity in registration and reconstruction. [Sidenbladh et al. 2000] uses
particle filtering with important sampling based on either a learned
walking model or a database of motion snippets, to focus search in
the neighborhood of known trajectory pathways. [Deutscher et al.
2000] proposes an annealing framework in a multiple camera set-
tings. During annealing, the search for parameters is driven by
noise proportional with their individual variances.

One of the most major work of recovering structure from mo-
tion is thefactorization methoddeveloped by [Tomasi and Kanade
1992]. However this method assumes orthography, and is appli-
cable only for rigid body. Considerable amount of subsequent
work has been done to extend factorization method to non rigid and
non-orthographic cases. [Bregler et al. 2000][Poelman and Kanade
1997][Costeira and Kanade 1995].

3 Tracking

In our work, we have tried to tackle the tracking problem for the do-
main of Bharatanatyam, a classical dance form of India. We make
use of specific information about the costume of the dancer.

The traditional dress worn by the dancer covers her entire body

Figure 1: Some examples of the traditional Bharatanatyam dress

except the face, forearms, and the feet. Fig. 1 shows a couple
of examples of such dress. One important feature of the dress is
the golden belt around the waist region. This belt is a part of the
traditional dress and is always present.

In our implementation, we also made some standard assumptions
such as only a single person, who is always in the view of camera,
is present in the scene. The background is almost static and the
camera is assumed to be stationary. There are no severe lighting
changes. These assumptions make the background subtraction easy.
The distance between camera and the dancer is large. Thus we are
justified in assuming the orthographic projection for reconstruction
phase. Further we discuss the human model used and selection and
tracking of key body features.

3.1 Human Model

We can use a modelless approach for tracking in which case the
tracking is done solely on the basis of shape and silhouettes, or we
can use a 2D or 3D human model. Advantages of using a human
model are that the state of the system at any point of time can be
easily stored and accessed, and also the incremental addition of in-
formation becomes easy.

Volumetric 3D model would be a weak model as we use monocular
video sequences. Using silhouettes makes it difficult to handle self-
occluding body parts, especially arms. Stick figure representation,
where the major joints are represented as points and the bones con-
necting them as lines, as shown in Fig. 2(a), can very well model
the human body in 3D. We can use manipulated 2D data to feed the
model. In our case, we are restricting our model to the upper part
of the body. Fig. 2(b) shows the model we use.

3.2 Key features

We mainly useskin color modelto locate important features. We
track the location of head, neck, shoulders, wrists, and belly to an
acceptable level of accuracy using this model. The position of el-
bows and shoulders are approximated by making use of anthropo-
metric information. It should be noted that the end effectors have
the highest priority. End effectors are the end points of human body
parts like arms, legs, etc. Examples are head, hands, and feet. The
reason for giving a high priority to the end effectors is that the con-
figuration of intermediate body parts can be approximately calcu-
lated from the end effector configuration, while the reverse is not
true.
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Figure 2: The human model used by us: Stick figure representation

3.3 Feature Tracking

We use the skin color model similar to the one used by [Feris et al.
2000] for obtaining skin color regions. After we get the skin re-
gions, we label the detected regions as the corresponding parts of
the body. Incidentally the golden belt around the waist of the dancer
closely resembles the skin color and is categorized as skin region.
The output of skin detection is post-processed by morphological
operations which produces the blobs of skin regions. If the cor-
responding body parts are well apart, these blobs would be sepa-
rated. Each of these blobs can then be approximated as an ellipse.
The endpoints of the major axis of each ellipse gives the endpoints
(joints) of the corresponding link.

Problem occurs when the blobs get broken or merged. Blobs may
break because of bad image processing, while they may merge be-
cause of proximity or occlusion. Broken blobs can be reunited
while fitting ellipses by making use of local proximity information.
Merged blobs can be separated by keeping track of orientation of
the merging ellipses. If the major axes of both the occluding el-
lipses coincide, it is very difficult to separate them apart. However,
this is a rare event in case of Bharatanatyam dance.

Using the above technique, we obtain the positions of head, neck,
elbows, wrists, and waist. However, the position of the shoulders
can not be obtained using this method. To locate the shoulders,
we use a simple heuristic. It is observed that in most of the cases,
except when the body is tilted, the position of the shoulders is ex-
actly above the waist region endpoints and in horizontal line with
the lower end of the neck. Using this heuristic, we can estimate
the position of shoulders too, thus filling the entire human model as
desired. The tracked data obtained by the above method is not very
accurate. Hence we also need some manual intervention. In addi-
tion, we make use of a fixed-lag Kalman smoother [Kalman 1960;
Welch and Bishop n. d.] to filter out the erroneous data.

4 Reconstruction

After we get the 2D positions of all the joints, the next task is to
estimate the 3D information that is lost during recording. Since we
assume orthography for input data, we make use of foreshortening
as a clue coupled with some additional heuristics to retrieve the lost
information.

To make the problem simpler and tractable, we make use of the
following assumptions.

1. The camera is stationary and calibrated.

2. The camera is sufficiently away from the subject such that we
can safely assume orthographic projection. In our test data,
the camera is placed at around 10 meters away from the sub-
ject.

3. The initial pose of the subject is also known.

4.1 Estimating absolute depths

In order to use foreshortening, we need to know the actual 3D
lengths of all the links. This can either be done manually or using
anthropometric data. We have tried to find the actual length from
the video sequence itself. It is based on the observation that given a
sufficiently long video sequence, each link will become parallel (or
nearly parallel) to the plane of screen at least once.We further en-
sure the consistency of our method by normalizing it with respect
to anthropometric data. For example, for left and right forearms,
we use maximum length of the two.

Once we have the true length of a link, potentially we can decom-
pose the orientation of the link to two possible cases. One endpoint
of the link will be displaced from its reference plane attached to
the other endpoint, by a relative value which is proportional to the
difference of their z-components. This difference, however, suffers
from orthographic reflective ambiguity. That is, the actual depth of
the link may be in positive or negative direction. In both the cases,
the 2D projection would exactly be the same as seen in figure 3.
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Figure 3: Reflective ambiguity under orthographic projection: Two
3D points can have same 2D projection

4.2 Pose generation

Since each of the links considered has two possible 3D configu-
rations for a given 2D configuration and since adjacent links are
joined, there are2#links permutations of the overall body configu-
ration. We have to explore all these possibilities for each frame.
Figure 4 shows the formulation of these2#links permutations. We
consider the neck as the root of the skeleton, which will not un-
dergo any change in configuration throughout. Left shoulder may
be in front or rear of the reference plane attached to the neck. Same
is the case with the right shoulder, making a total of four possibili-
ties considering only shoulders. At the lowest level of the tree, we
will have2#links leaves.

Of course, not all of these configurations are physically feasible.
We need to add constraints, which will allow only those poses
which are physically attainable by humans, in order to prune this
exponentially huge set of permutations. We use various kinds of
constraints viz. model, joint angle limit, and collision constraints.
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4.2.1 Model constraints

Model constraints enforce connectivity between adjacent links and
link length constancy. These constraints are very basic. To enforce
them, we have to use a 3D kinematic model which satisfies these
constraints. Using such 3D kinematic model for the given 2D mea-
surements itself will restrict the number of possible solutions to a
finite number.

4.2.2 Joint Angle Limits

Each joint of the human body has a minimum and a maximum limit
of angle of bend that is possible to achieve as demonstrated by Fig.
5. For instance, it is not possible to bend the arm at the elbow joint
below 10 degrees. However, such a pose might have been repre-
sented in some of the permutations. This is taken care of by joint
angle limits. All poses, which have at least one joint whose an-
gle crosses either the maximum or the minimum limit, are marked
invalid and are not considered for further processing.

Invalid Pose

Shoulder

Elbow

Reference Plane
FRONTREAR

Figure 5: Some poses may be invalid because of physical infeasi-
bilites

4.2.3 Collision Constraints

Because of solid nature of the body, one part of the body cannot
penetrate through another part. Collision constraints ensure this be-
havior by checking whether any link collides with any other link.
To enforce these constraints, the stick figure model is not enough;
we need to represent each of the link by a 3D structure like a cylin-
der or an ellipsoid.

Using the above constraints, we find all invalid poses and remove
them from any further processing. In our experiments, we found
that almost 70% of the2#links poses were invalidated by joint angle
and collision constraints. Hence, though the complexity of the al-
gorithm will be exponential, the main time-consuming processing
will be done on only a limited number of cases.

4.3 Graph Formulation

All the processes done till now work on individual frames and will
produce a set of all possible valid poses for each frame. However,
if we want to establish a valid 3D pose sequence for some time
duration, it is necessary to consider the temporal dimension of the
input. Given a valid posex in frame i and a valid posey in frame
i + 1, it is not always possible for a person to change body pose
from x to y within the time duration of one frame. We formulate
this problem as a graph problem, since it is very easy to visualize
a pose as a node and a transition between two poses as an edge
between corresponding nodes.

We form the graph in the following way. The graph basically has
a layered structure with each frame being represented by a layer.
Each valid pose at each frame is represented as a node in the cor-
responding layer. Edges are established between nodesA andB in
adjacent layers, if it is possible to change pose fromA in first frame
to B in next frame. Each of the edge carries a weight which repre-
sents some metric of the transformation between the poses. Various
metrics that are possible are change in angles, change in depth, and
angular velocity.

Now our problem reduces to finding a minimum weight path from
a node in first layer to a node in the last layer. This can be done
using standard dynamic programming techniques like Viterbi algo-
rithm[Viterbi 1967].

4.3.1 Calculating weights

Whenever the body moves, there is change in configuration of some
joints. This change may be in orientation, angle, velocity, acceler-
ation, or any combination of them. When the body moves swiftly,
these changes should not be sudden. We are exploiting an interest-
ing observation that the motion involved during the snippet where
a link crosses its reference plane is generally smooth. Hence we
can assume acceleration associated with that link to be nearly zero
during this time interval.

4.3.2 Change in Velocity

During the movement, each joint angle has some angular velocity
associated with it. For smooth motion, these velocities should not
change drastically. i.e. the acceleration should be as small as pos-
sible. Thus we can use sum of accelerations as a merit to weigh the
edges of the graph.

Let A(φk) denote the position vector of jointA at framek. AB(φk)
denote the vector from jointA to joint B on a segmentAB, all
in body configurationφk. Assume the interval between two con-
secutive frames is∆t. Then the relative translation velocity of the
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Figure 6: Graph used to represent the poses and their transitions

segmentAB from body configurationφk in framek to another body
configurationφk+1 in framek+1 is defined as

VAB(φk,φk+1) = {[B(φk+1)−B(φk)]−[A(φk+1)−A(φk)]}
∆t

= [AB(φk+1)−AB(φk)]
∆t

The relative angular velocity and acceleration of segmentAB are
defined as

ωAB(φk,φk+1) = AB×VAB(φk,φk+1) (1)

and

αAB(φk,φk+1,φk+2) = |ωAB(φk+1,φk+2)−ωAB(φk,φk+1)|
δ t (2)

respectively. A smooth angular motion of a body segment dur-
ing walking indicates a nearly zero angular acceleration. An
angular acceleration function associated with body configuration
φk,φk+1,φk+2 can be defined as

fk(φk,φk+1,φk+2) = ∑
AB
|αAB(φk,φk+1,φk+2)| (3)

where the summation is taken over all body segments and the mag-
nitudes of angular accelerations are used for simplicity. Our aim is
to minimize this measure of angular accelerations.

However, this increases the complexity of the algorithm very much.
Since in this case we have to consider all possible transitions be-
tween adjacent frames to calculate acceleration.

4.4 Velocity based estimation

Instead of calculating the absolute difference between two quanti-
ties (depths or angles) of two poses, we can use the known velocity
at one frame to estimate the position of each of the joint in the next
frame.

Aest(φk+1) = A(φk)+VA∆t (4)

Now, we find the difference between the estimated values and the
observed values. This gives us an estimate of error function at each
frame. This error function is used as weights for edges.

e= A(φk+1)−Aest(φk+1) (5)

4.5 Bayesian Inference

We use probabilistic methods to determine the most likely solu-
tion. A rather simple motion model, which potentially needs to be
improved, is used in this paper. We represent our state parame-
ters for each nodei in framek asθik = (xik,yik,zik,vxik,vyik,vzik),
where(xik,yik,zik) is the vertex location in the Euclidean space and
(vxik,vyik,vzik) are the instantaneous velocities of the vertex point
in x,y, and z axis respectively. i.eθik = (I(φk),VI (φk)). The state
of each link is represented as augmentation of the state parameter
of its two end points, i.e. for a link connecting two nodesa and
b, its state can be represented as(θak,θbk). Though higher order
information such as acceleration can be augmented into the state
space and thus making the model more robust, we are discarding
them for the sake of simplicity. Image measurements are given by
zik = (xik,yik).

We are making a claim that human motion model can be approxi-
mated to be a HMM. We define three distributions. The priorP(θ0)
represents any initial knowledge we have about the probability of
a particular pose. The likelihood,P(z|θ), describe how well the
hypothesized state parameters,θ , agree with the observed image
measurements,z, Finally, the posterior distribution,P(θ |z), gives
the probability thatΘ is the current state, give the image measure-
ments,Z.

We make use of MAP (Maximum a posteriori) estimation tech-
niques. In this case, the best estimate is the estimate which agrees
most closely with both the measurements and our prior knowledge,
thus maximizing the posterior distribution: MAP

θ̂MAP = arg maxθ P(θ |z)

Given the observation sequenceZn = {z1,z2, · · · ,zN} whereN is
the total number of frames, we adopt as our estimate the state tran-
sition sequencêΘN = {θ̂0, θ̂1, · · · , θ̂N}.
The conditional probabilityp(ΘN|YN) is given by

p(ΘN|ZN) =
p(ΘN,ZN)

p(Zn)

wherep(ΘN,ZN) is the unconditional probabilities of occurrence.

Sincep(ZN) is a positive constant, onceZN is know we can maxi-
mize p(ΘN,ZN) in place ofp(ΘN|ZN)

We havep(ΘN,ZN) = ∏N
k=1 pθk−1θk

p(zk |θk) wherepθk−1θk
encodes

the probability of state transition fromθk−1 to θk andp(zk |θk) de-
fines the concurrence of current observation with our estimates. The
distributionpθk−1θk

has a meanAest(φk)(4).

The approach we suggest is not able to solve the problem com-
pletely, and does produce incorrect results when the motion is
highly complex and irregular. The fundamental defect in our
method is that we are assuming each link to be independent to each
other, which is not quiet true with respect to articulated motion.
One potential solution is to modify the state space so as to glob-
ally represent the motion rather than of each individual link. But no
longer will we be able to solve the above equations in a close space,
since we will have a highly non-linear model. Hence, methods like
particle filter need to be employed to solve the problem.



5 Results

We present some of the results obtained by us, in this section.
The first row of Fig. 7 shows some sample input frames. The
skin regions are extracted and largest blobs are retained which are
labeled to corresponding body parts, as seen in the second row.
Ellipses are fitted around each of these regions as can be seen in the
third row. The major axes of these ellipses give the joint locations.
Using these joint locations, the stick-figure representation of the
body is made. The fourth row shows the stick-figures. These
figures are in 2D. The reconstruction step outlined in the paper
estimates 3D coordinates for each of the joint creating a 3D model.
The last row of the figure shows the same frames from a different
viewpoint to confirm its 3-dimensionality.

6 Final Remarks

We have presented a computer vision based method to use the do-
main specific knowledge to obtain 3D configuration of a human
body from monocular video sequence. We have implemented the
system only for the upper body. However similar concepts hold
for the entire body. The cues required for tracking the lower limbs
may be different. Especially, it is difficult to obtain the position of
knees because of loose-fitting dress. The reconstruction algorithm
remains the same for the full body motion capture, though its run-
ning time may increase heavily because of non-linear nature of the
algorithm.
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(a) A few selected frames from the original video sequence

(b) The blobs of skin color, color coded for easy identification

(c) An ellipse is fitted around each blob of skin color region

(d) Stick figure model fitted to the human body based on ellipses

(e) The model as viewed from a different orientation (left side). Note that the last frame produces partially incorrect result.

Figure 7: Some sample results of our implementation


