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and Support Vector Machine

Aniruddha Joshi1, Rajshekhar2?, Sharat Chandran1, Sanjay Phadke3,
V.K.Jayaraman2, and B.D.Kulkarni∗∗2

1 Computer Science and Engg. Dept., IIT Bombay, Powai, Mumbai, India 400076
2 Chemical Engineering Division, National Chemical Laboratory, Pune, India 411008

3 Consultant, Jahangir Hospital, Pune, India 411001
** Corresponding author:bdk@ems.ncl.res.in

Abstract. We propose a novel hybrid Ḧolder-SVM detection algorithm for arrhythmia
classification. The Ḧolder exponents are computed efficiently using the wavelet transform
modulus maxima (WTMM) method.
The hybrid system performance is evaluated using the benchmark MIT-BIH arrhythmia
database. The implemented model classifies 160 of Normal sinus rhythm, 25 of Ventric-
ular bigeminy, 155 of Atrial fibrillation and 146 of Nodal (A-V junctional) rhythm with
96.94% accuracy. The distinct scaling properties of different types of heart rhythms may
be of clinical importance.

1 Introduction

Arrhythmia is a common term for any cardiac rhythm which deviates from normal sinus
rhythm. Characterization and classification of such arrhythmia signals is an important step
in developing devices for monitoring the health of individuals. Typical and abnormal signals
are shown in Fig. 1. Arrhythmias are of different kinds, and exhibit long-term non-stationary
patterns. Concepts and techniques including Fourier [1], wavelets [1], chaos parameters [2]
have been employed to extract information present in such physiologic time series. All these
methods exhibit different degrees of advantages and disadvantages, the main concern being
low specificity and accuracy.

Our interest is in the recently developed analytic tools based on nonlinear dynamics the-
ory and fractals. These are attractive because they have the ability to perform a reliable local
singularity analysis. For example, gait analysis [3] and localization of outliers [4] have been
performed using this approach. This approach offers a new and potentially promising avenue
for quantifying features of a range of physiologic signals that differ [5] in health and disease.

Features detected using such approaches exhibitlocal hidden information in time series
and thus are suitable for classification. Support vector machine (SVM) rigorously based on
statistical learning theory simultaneously minimizes the training and test errors. Apart from
that, SVM produces a unique globally optimal solution and hence is extensively used in diverse
applications including medical diagnosis.

In this work,we have developed a novel hybrid Hölder-SVM detection algorithmfor ar-
rhythmia classification. We first pre-process a rhythm data series to remove obvious noise
patterns. Next, we compute wavelet coefficients at selected scales and use them to compute
local Hölder exponents and subsequently pass selected points of the probability density curve
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Fig. 1. A normal consistentP-QRS-Trhythm is exhibited on the left. Abnormal rhythm for a patient in
every alternate beat appears on the right.

of these exponents as input features to a multi-class support vector machine for classification.
Experiments show the validity of our straightforward scheme.

The rest of the paper is organized as follows. In Section 2, we briefly describe the method-
ology for computation of the local singularities and provide a short introduction to SVM. Sec-
tion 3 highlights our approach for classification along with results achieved. We conclude with
some final remarks in Section 4.

2 Local Hölder Exponents

For a time seriesf , if there exists a polynomialPn of degreen < h and constantC, such that:

| f (x)−Pn(x−x0)| ≤C|x−x0|h (1)

the supremum of all exponentsh(x0) ∈ (n,n+1) is termed the Ḧolder exponent, which char-
acterizes the singularity strength. It is evident [3] that the Hölder exponent describes the local
regularity of the function (or distribution)f . The higher the value ofh, more regular is the
local behavior the functionf . Thus it characterizes the scaling of the function locally and the
distinct scaling behavior of different signals can be exploited to characterize and classify time
series.

The wavelet transformation (WT) i.e.Ws,x0( f ) provides a way to analyze the local behavior
of a signalf , which is a convolution product of the signal with the scaled(s) and translated(x0)
kernel. One of the main aspects of the WT is the ability to reveal the hierarchy of (singular)
features, including the scaling behavior. This is formalized by its relation [6] with the Hölder
exponent:

Ws,x0( f ) ∝ |s|h(x0), s→ 0 (2)

Fig. 2 shows an example of the WT and the Hölder exponents. We used the second deriva-
tive of the Gaussian function, i.e. Mexican hat, as the analyzing wavelet. This wavelet is also
extensively used by the other authors, since it possesses good localization capabilities in both
position and frequency.

Efficiency Considerations. As continuous WT in its original form is an extremely redundant
representation, Mallat and Hwang [7] have come up with an alternative approach called wavelet
transform modulus maxima (WTMM). Here, the computation of the hierarchical distribution
of local behavior, as explained above, can be effectively computed by considering the space-
scale partitions. The dependence of the scaling function on the momentsq can be captured
using WTMM tree as:

Z(s,q) = ∑
Ω(s)

|Ws,x0( f )|q ∝ sτ(q) (3)
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Fig. 2. Sample ECG waveform, its wavelet transform and the corresponding local Hölder exponents at
first scale.

whereZ(s,q) is the partition function andΩ(s) is the set of all maxima at the scales. The com-
putation of singularity strength and the transformation fromτ(q) to spectrum of singularities
D(h) is given by the Legendre transformation[8]:

h(q) = dτ(q)/dq; D[h(q)] = qh(q)− τ(q) (4)

Stable Computation. The WTMM based formalism developed by Muzy [6] as described
above provides global estimates of scaling properties of time series. Recently, it has been found
that even though such global estimates of scaling is often a required property, local analysis
may provide more useful information.

In the traditional form, the estimation of local singularity strengths and their spectra may
not be possible due to the fact that in real life data, the singularities are not isolated but densely
packed. This causes the logarithmic rate of increase or decrease of the corresponding wavelet
transform maximum line to fluctuate. But very recently, Struzik [9, 10] has provided a stable
methodology for estimating the local exponents, in which he has modeled the singularities as
if they were created through a multiplicative cascading process. This method has been success-
fully applied for classification of human gait [3].

The method[10, 3] is as explained below. The mean Hölder exponenth is given bylog[M(s)]=

hlog(s)+C, whereM(s) =
√

Z(s,2)
Z(s,0) . Employing the multiplicative cascade model, the approx-

imate local Ḧolder exponent̂h(x0,s) at the singularityx0 can now be evaluated as the slope:

ĥ(x0,s) =
log(|Ws,x0( f )|)− (hlog(s)+C)

log(s)− log(sN)
(5)

wheresN is the length of the entire wavelet maxima line tree, that is, the maximum available
scale that coincides with the sample lengthsN = N, andx0 belongs to the setΩ(s) of all wavelet
maxima at the scales that assume the valueWs,x0( f ). (In our calculations we useds=1 in the
WT.)

2.1 Support Vector Machines

The local Ḧolder exponents are appropriate as the most informative features for classification
using the support vector machines (SVM)[11]. SVM is being extensively used for several clas-
sification and regression applications. As the theory is well developed, we provide only the
basic ideas [12, 13] involved in binary classification.



1. Transform the input data into a higher dimensional feature space to enable linear classi-
fication; specifically define an appropriate kernel in the input space in place of the dot
product in the high dimensional feature space.

2. Maximize the margin of the linear hyperplane separating the instances belonging to the two
classes by solving the dual formulation of the convex quadratic programming problem to
obtain the unique global solution for the classifier.

For multi-class classification, we used popular One-Against-One method [14].

3 Results and Discussion

Data Set. The data set used was extracted from ECG recordings of MIT-BIH Arrhythmia
Database according to the beat and rhythm annotations. Each record of these rhythms is at least
10 seconds long. Here, the complete dataset includes 160 of Normal sinus rhythm(NSR), 25 of
Ventricular bigeminy (VB), 155 of Atrial fibrillation (AF) and 146 of Nodal (A-V junctional)
rhythm (NR) records. Out of the whole dataset,2/3rd of randomly selected data was used as
the training set and the remaining1/3rd was used as the testing set.

For each of the extracted rhythms, we computed the features to be used by SVM for classi-
fication in the following manner. First, we de-noised the data series using soft threshold wavelet
method [15]. Then we computed the wavelet coefficients using WTMM approach, which were
subsequently used for the computation of local Hölder exponents as explained in 2. We then
computed the probability density of these local Hölder exponents and then fitted this density
with Gaussian kernel. For all the rhythms belonging to different classes the local Hölder ex-
ponents were in the range [-0.5:1.5]. We divided this range into 12 equal sub-parts and chose
12 points (as shown in Fig. 3(a)) on the fitted probability density curve corresponding to the
mid-points of the 12 sub-ranges.

Binary Classification. We considered NSR as the ‘normal class’ and all other arrhythmias
as ‘arrhythmia class’. We employed LIBSVM [16] toolbox for the classification purpose and
used radial basis function (RBF) as the kernel. Selection of other SVM parameters was done
using cross-validation on training data. Using multiple runs of 5-fold cross validation with
chosen parameters, the overall accuracy of classifier model combinations ranged between 96%
to 98%, and which show average (and best respectively) classification for 96.3% (and 98.48%)
of normal class and 98.25%(and 98.89%) of arrhythmia class on the test set.

Multi-class Classification. For classification of four types of rhythms (for which the proba-
bility densities vary as shown in Fig. 3(b)), again, the parameters were tuned in the same way
as explained in binary classification. The results show overall 96.94% accuracy, and average
(and best respectively) classification for 95.98% (and 98.89%) of NSR, 82.05% (and 100%) of
VB, 98.51% (and 99.23%) of AF and 98.92% (and 99.20%) of NR rhythms.

The results for multi-class classification can be summarized as the confusion matrix of
four classes and sensitivity& specificity of each class as given in Table 1. We also used the
features derived from Fourier analysis, as mentioned in introduction, with SVM classification
for comparison with our method. Fourier analysis(by selecting best 300 features) gives average
correct classifications respectively 86.48%, 89.33%, 95.7% and 96.74% for the above four
classes. Ḧolder-SVM methodology was found to provide superior performance. An interesting
point to note is that in both the binary and multi-class classification, we used data provided by
both sensing leads. It was observed that even if we use just a single lead data, classification
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Fig. 3.probability density of local Ḧolder exponents.

Table 1.confusion matrix (avg.case)
NSR VB AF NR

NSR 31.93 0.70 0.51 0.11
VB 0.62 3.69 0.18 0
AF 0.84 0 31.75 0
NR 0.48 0 0.15 29.01

Sensitivity
Avg 96.04 82.11 97.42 97.9
Best 98.29 100 99.23 99.20

Specificity
Avg 97.1 99.27 98.75 99.84
Best 98.89 100 99.63 99.64

gives results with comparable accuracy. Arrhythmia being a disorder in the normal rhythm,
can thus be captured in any of the two leads.

4 Conclusion

In this study, it is demonstrated that support vector machine in conjunction with wavelet trans-
form modulus maxima based local singularity feature extraction provides an excellent com-
bination in arrhythmia classification. The recognition of the normal and different types of
rhythms representing the arrhythmias has been done with a good accuracy. These investiga-
tions show that the presented method may find practical application in the recognition of many
more types of arrhythmias.
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