
Efficient Image Updates Using Light Fields∗

Biswarup Choudhury Aviral Pandey Sharat Chandran
Computer Science & Engg. Dept. Institute of Technology Computer Science & Engg. Dept.

IIT Bombay Banaras Hindu University IIT Bombay
Mumbai, India 400076 Varanasi, India 221005 Mumbai, India 400076

biswarup@cse.iitb.ac.in aviral.pandey@cse05.itbhu.org sharat@cse.iitb.ac.in

Abstract

The light field rendering method is an interesting varia-
tion on achieving realism. Once authentic imagery has been
acquired using a camera gantry, or a handheld camera, de-
tailed novel views can be synthetically generated from var-
ious viewpoints.

One common application of this technique is when a user
“walks” through a virtual world. In this situation, only a
subset of the previously stored light field is required, and
considerable computation burden is encountered in pro-
cessing the input light field to obtain this subset. In this
paper, we show that appropriate portions of the light field
can be cached at select “nodal points” that depend on the
camera walk. Once spartanly and quickly cached, scenes
can be rendered from any point on the walk efficiently.

1. Introduction

The traditional approach for “flying” through scenes is
by repeated rendering of a three-dimensional geometric
model. One well known problem with “geometry-based”
modeling is that it is very difficult to achieve photo-realism
due to the complex geometry and lighting effects present in
nature. A relatively newer approach is Image-Based Ren-
dering (IBR [2], [3]) which uses a confluence of methods
from computer graphics and vision. The IBR approach is
to generate novel views from virtual camera locations from
pre-acquired imagery. Synthetic realism is achieved, so to
speak, using real cameras.

Light Field Rendering (LFR) [5] (or Lumigraphs [4]) is
an example of IBR. The approach here is to store samples

∗An earlier version of this paper appeared in ICVGIP 2004 [8]

UV plane
ST plane

C

Figure 1. Two-Plane Parametrization

of the plenoptic function[1] which describes the directional
radiance distribution for every point in space. The subset
of this function in an occlusion-free space outside the scene
can be represented in the form of a four-dimensional func-
tion. The parameterization scheme is shown in Figure 1.
Every viewing ray, computed using a ray-shooting tech-
nique, from the novel camera locationC passing through the
scene is characterized by a pair of points(s, t) and(u, v) on
two planes. By accessing the previously acquired radiance
associated with this four tuple, we are able to generate the
view fromC. In order to view a scene from any point in sur-
rounding space, six light slabs are combined so that the six
viewpoint planes cover some box surrounding the scene.

1.1. Statement of the Problem

The beauty of LFR lies in re-sampling and combining the
pre-acquired imagery. In a typical walk-through situation, a
person is expected to walk along a trajectory in three space
and “suitably” sample the light field. The problem we pose
in this paper is“Given the light field on disk, and a walk
using a camera, how fast can the images seen by the camera
be updated?”

For best results in light field based IBR, we expect that
the size of the light field data-structure drastically increases
with the increase in the resolution and the density of ac-
quired images. As mentioned above, ray-shooting is per-
formed as an intermediate step of the rendering procedure,
a reportedly computationally intensive operation [9].

1.2. Contributions

For interactive rendering of the scene, one needs to store
the complete light field in volatile memory, whereas only a
subset of this is needed for a specific camera walk. Prior
methods do not effectively address this issue. In this paper,
we show how caching the light fieldsuitablefor the camera
walk, dramatically reduces the computational burden, this
is seen in Figure 10. Specifically,

• We compute the optimal location of a sparse set of
“nodal points.” The lightweight “light field” stored at
these nodes is enough to render the scene from any of
the infinite points – termedquerypoints – on the cam-
era path.

• The method in [9] uses homography to reduce the ray
shooting computational burden in producing the image
from one query point; multiple query points are treated
afresh since no notion of nodal points was required
therein. We use an alternative Taylor series method
for reducing the computational burden of ray shooting
queries; this is particularly applicable when the center
of projection of the camera moves along a plane paral-
lel to the UV and ST planes.

• The correctness of our scheme is shown using a math-
ematical characterization of the geometry of the light
field. Experimental results validate our scheme.

The rest of this paper is organized as follows. Section 2
develops the mathematical framework for the problem. In
Section 3, we give details of our approach and present our
algorithm. Sample results and analyses are given in Sec-
tion 4. We end with some concluding remarks in the last
section.

2. Our Approach

As in the original work [5], the field of view of the query
camera is expected to be identical to the cameras that gener-
ated the light field. Likewise, sheared perspective projection
[5] handles the problem of aligning the plane of projection
with the light-slab. Coming to the camera walk, in this sec-
tion we provide the mathematical basis for the location and
spacing of nodal points.

For brevity, we initially restrict the center of projection
of the camera to move along a plane parallel to the UV and

the ST plane. We later relax this condition and show that,
the mathematical framework still holds. For motivation,
consider a setup similar to the two slab setup where planes,
UV and ST are replaced by lines U and S. We call this as
the two-line setup. The query points lie on line C, which
in turn replaces the camera plane. We provide the complete
mathematical framework with respect to this setup.

2.1. Fixed Direction

The algorithms in this section tell us where to place nodal
points for a specific query pointq assuming a fixed direction
determined by some points. This condition is relaxed later.

Denote∆l to be the constant distanced[Gi, Gi+1] be-
tween two consecutive grid points on theUV plane, i.e.,
the distance between the acquired camera locations.

2.1.1. Fixed Direction Algorithm

Given q, Algorithm 2.1.1 computes nodal pointsN1 and
N2 (Figure 2). The radianceL[q], in the direction ofs, is
presumably cached at pointsN1 andN2. We need to make
use of this cache. Denoteassoc(p) , wherep is a point

q

N1’ N2’
G(1)G(0) G(2)

N2N1

U q’

s
S

C

Figure 2. N1 and N2, the nodal points for q are marked

such that d[q′N1
′] = d[q′N2

′] = ∆l
2 .

on C, to be the closest grid vertexG (on U) to the rayps.
Supposeassoc(q) isGi.

Algorithm 2.1.1: Fixed-Direction (q, s)

Shoot a ray fromq to s to obtainq′ on U.
Mark pointsN1

′ andN2
′ on U at a distanced = ∆l

2
apart on either side ofq′. This determines the nodal
pointsN1 andN2 on C.
if assoc (N1) isGi then
L[q] = L[N1]

else
L[q] = L[N2]

end if
In the two-dimensional case, givenq, our algorithm com-

putes four nodal pointsN1, N2, N3 andN4. Shoot the ray
from q to s for a givens to obtainq′ on UV. Now, mark four

points(q′.u±∆l
2 , q

′.v±∆l
2 , zuv), whereq′.u andq′.v repre-

sent the component ofq′ alongu andv respectively. These
four points correspond to four nodal points on the camera
COP (center of projection) plane. We useassoc of these
nodal points to determineL[q].

2.1.2. Comments

Notice that if the distanced in Algorithm 2.1.1 is more
than ∆l

2 , as in Figure 3, an incorrect value ofL[q] is com-
puted. Whend is as specified inAlgorithm 2.1.1, it is easy
to observe that eitherassoc(N1) = G1 or assoc(N2)
= G1; it cannot be the case thatassoc(N1) = G0 and
assoc(N2) = G2. A choice less than∆l2 might be suit-
able to maintain correctness, but will increase the number
of nodal points, and hence decrease our efficiency.

q

s

N2

q’

S

U

C
N1

G1G0

N2’N1’

G2

Figure 3. assoc(N1) is G0 and assoc(N2) is G2.

2.2. Changing the view direction

The results in this section assert that the nodal points may
be chosen by arbitrarily picking any direction and applying
Algorithm 2.1.1. That is, the selection of nodal points is
independent of the direction.

Lemma 2.2.1 The set of nodal points{N1, N2} for a given
point s on S, serves as the set of nodal points for all s.

Proof: For any query pointq, consider two directions cor-
responding tos1 ands2. LetN1 be any nodal point deter-
mined byAlgorithm 2.1.1 for q ands1. The lemma asserts
that nodal pointN1 serves as a nodal point forq ands2.
Figure 4 illustrates the idea.

The basic idea is to prove thatN ′1q
′ is equal to

N ′′1 q
′′. Applying similar triangles on∆[N1, S1, q] and

∆[N1, S2, q], this can easily be proved. ut

Next, we consider the lemma for the two-dimensional
case:

Lemma 2.2.2 Given a query point, nodal points may be de-
cided using any point(s, t) provided the camera planes are
parallel.

Proof: As in Figure 5, letN1, N2, N3, N4 be the nodal
points for query pointq as determined by Section 2.1.1. Let
Sa = (s1, t1, zs) be the intersection point of the query ray
from q on the ST plane, and letXa = (x1, y1, zu) be the
intersection point of that ray on the UV plane. Similarly,
defineSb andXb. The proof uses the relationships (equa-
tions 1 and 2) below, to prove equation 3.

SbN1 = SaN1 + (Sa − Sb) (1)

Sbq = Saq + (Sa − Sb) (2)

SbN1 = k(SbXb + (−∆l
2
,

∆l
2
, 0)) (3)

ut

2.3. The Power of Nodal Points.

Once nodal points are selected, there are a range of query
points for which these nodal points are valid, as stated be-
low.

Lemma 2.3.1 The nodal pointsN1, N2 of a query point
q1 are sufficient for determining the radiance of any query
point in the interval[N1, N2].

Proof: Consider any pointq2, betweenN1 andN2, and let
the nodal points as determined byAlgorithm 2.1.1, beN3

andN4. The lemma asserts that, forq2, the radiance values
stored atN1 andN2 are sufficient.

Without loss of generality, assumeq2 to be nearer toN2

thanN1. We observe that eitherd[N1
′, assoc(N3)] < ∆l

2

or d[N2
′, assoc(N3)] < ∆l

2 .

• Case 1: d[N1
′, assoc(N3)] < ∆l

2 (shown in Fig-
ure 6(a)) ⇒ assoc(N3) = assoc(N1). So
assoc(N2) = assoc(N4), i.e., L[N1] = L[N3],
L[N2] = L[N4]. Thus, the radiance ofq2 can be ob-
tained from the set [N1,N2].

N1 P1

N1’ N1’’

S2S1

U

S

C

S1, S2 : Points on S line

q’’q’

q P2
N1,N2: Nodal Points

Figure 4. The choice of nodal points is independent of

the direction. N1
′q′ is equal to N1

′′q′′.

S
S

C

N3, N4 : Nodal Points for q2
N1, N2 : Nodal Points for q1

U

N1 N3 q2 N4N2q1

G1 G3G2
q2’q1’ N2’ N4’N3’N1’

(a) assoc(N3) is closer toN1 thanN2. Notice that
assoc(N3) = assoc(N1).

N1 N3 q2 N4

S
S

U

C

q2’q1’

N2q1

G2G1 G3

S

U

C

N1, N2 : Nodal Points for q1
N3, N4 : Nodal Points for q2

N1’ N2’ N4’N3’

(b) assoc(N3) is closer toN2 than N1. Notice that
assoc(N3) = assoc(N2).

Figure 6. Power of Nodal Points

N1’

N4’

N2’

N3’

Xb
Xa

UV plane

Camera Plane
N2N1

N4 N3

ST plane intersections

N2’’

N3’’N4’’

N1’’

q

Sa(s1,t1,Zs)
Sb(s2,t2,Zs)

Figure 5. Choice of nodal points is independent of direc-

tion

• Case 2: d[N2
′, assoc(N3)] < ∆l

2 (Shown in Fig-
ure 6(b)) ⇒ assoc(N3) = assoc(N2). So,
L[N3] = L[N2]. Further,d[q2

′, assoc(N1)] > ∆l
2 and

d[q2
′, assoc(N4)] > ∆l

2 . So in this case,assoc(q2) =
assoc(N2). Thus, the radiance ofq2 can be obtained
fromN2.

Thus the lemma asserts that, forq2, the radiance values
stored atN1 andN2 are sufficient. ut

Notice that, unlike in Figure 2, the nodal pointsN1 and
N2 arenotequidistant fromq2. Also note that the two cases
are not symmetrical.

Lemma 2.3.1 enables us to determine the radi-
ance at any query pointqi using the following algo-
rithm:

Algorithm 2.3: All-Directions (qi)

1. Determine nodal points boundingqi.

2. for all s ∈ Sdo
Shoot a ray from query pointqi to s.
Apply Algorithm 2.1.1 and output radi-
anceL[q], in the direction ofs.

3. end for
We denote the time taken for this operation ask2 (Sec-
tion 4.2).

2.3.1. Correctness ofAlgorithm 2.3

In either of the cases in Lemma 2.3.1, for any query point
qi lying in the region bounded by[Nk, Nk+1] (determined
in Algorithm 2.3: Step 1),

assoc(qi) =
{

assoc(Nk) or
assoc(Nk+1)

The result follows. ut

Nodal points on the plane also enable multiple query
points. Specifically,

Lemma 2.3.2 The nodal pointsN1, N2, N3 andN4 of a
query pointq1 on the camera plane are sufficient for de-
termining radiance at any query point in the rectangular
region bounded by these nodal points.

T

V

s j

N1 N2q

U

S

qi

1

L(q i) = L(q1) = L(N 1 | N 2) , for fixed s j

Figure 7.

Proof: The proof of this lemma is similar to that of 2.3.1.
Replacing the lines U, S and C by planes UV, ST and
Camera, we get four different cases, which asserts that
for determining the radiance at any query point the nodal
points bounding it are sufficient. For more information, see
[7]. ut

Finally, when the query point is placed away from the
plane containing nodal points we have,

Lemma 2.3.3 The nodal pointsN1, N2 of a query point
q1 are sufficient for determining the radiance of any query
pointqi along a directionsj , as long as the points[q1, qi, sj]
are collinear.

Proof: Without loss of generality, letqi be the query point
andsj denote a direction. From [1], and for the direction
sj , the radianceL[q1] = L[qi] sinceq1 is visible fromqj .
From Lemma 2.3.1,L[q1] can be obtained fromN1 andN2.
The result follows. ut

2.4. Ray Intersection

Algorithm 2.3 requires costly [9] ray intersections and
should be avoided. In this section we show how to avoid
ray intersection using the Taylor’s theorem. Specifically,
considerX1 = [Xc, Yc, Zc], which is center of projection
for a virtual camera, andI = (Ix, Iy, C1), which is a point
on the ST plane. Then a ray fromX1 to I, intersects UV
plane atg(X1) = [gx, gy, C2]. Moving the COP to the lo-
cationX2 = X1 + ∆X, the change in x co-ordinate of the
point of intersection with the UV plane is given by:

∆gx =
C2 − C1

Zc − C1
∆Xc +

(Ix −Xc)(C1 − C2)
(Zc − C1)2

∆Zc (4)

A similar equation is derived for∆gy. The error associated
with approximation is given byEgx ,

Egx = gx(X1 + ∆X)− gx(X1 + ∆X) (5)

where,gx(X1 + ∆X) is the Taylor’s estimate. From the
first order analysis

Egx =
2(Ix −Xc)(C1 − C2)

(C1 − Zc)2
∆Zc (6)

A similar equation is derived forEgy . If the camera motion
is on any arbitrary path in a plane parallel to the ST plane
(∆Zc = 0), then the errorEgx = 0, Egy = 0. Higher order
Taylor error also are zero. In addition, the computational
complexity involved in calculating the new UV intersection
point decreases substantially, as (4) reduces to

∆gx =
C2 − C1

Zc − C1
∆Xc (7)

which is independent of the direction of the ray. This im-
plies that a regular camera motion results in a regular shift
of intersection points. In other words, we avert expensive
ray intersection computations.

3. Caching Nodal Points

We now have the mathematical apparatus to select the
nodal points given a camera walk. For the sake of exposi-
tion, we consider two orthogonal cases.

• Case 1: Camera Walk on a plane parallel to theUV
plane.

Algorithm 3: 2D-Incremental-CameraWalk
(walk)

1. Starting from the initial position on the cam-
era path curve, mark nodal points at a distance
∆x = ∆l × R, whereR is the ratio of the
distance between the camera plane and the ST
plane, and the distance between the UV and ST
plane. For simplicity, the nodal points are se-
lected parallel to the u and v directions as shown
in Figure 8(a). A grid is thus created.

2. The light field is cached at four nodal points in
the grid enclosing the query point (The precise
computation of the light field at the nodal points
can take advantage of the methods suggested in
Section 2.4, instead of the original method [5].)

3. Apply Algorithm 2.3 to calculate the radiance
at any query point inside the initial cell.

4. As the walk exits a grid cell, update the nodal
points and go to Step 2.

5 6 7

8

9

10 12

11

1 3

42

Black dots are the nodal points
Dashed (green) Curve is the Camera Path

(a) 2D-Camera Walk: Incremental Nodal
Points along the camera walk

Black Dots represent nodal points
Thick curves are camera paths

2

1

14

4 6 8 10

9

11121315

3 5 7

(b) 2D-Camera Walk: Domain-based
Nodal Points

N1 N2 C0
C1

G3

s
p

U
G2G1G0 G G G G4 5 6 7

q 0
q

q
k

Canonical

Canonical
Canonical

Ck

S

1N3 N4

(c) 3D-Camera Walk: Incremental Nodal Points

Figure 8. Beauty of Nodal Points

If we are given several camera walks lying in a do-
main, an alternate, version of the algorithm is to pick
domain-based nodal points, as shown in Figure 8(b).
Any query, on any camera walk, or even at random, in
the rectangular region defined by the convex hull of the
nodal points can be answered efficiently.

• Case 2: Camera Walk along any arbitrary path in
3-dimension.
For brevity, we again consider a setup similar to the
two slab setup where planes (UV and ST) are replaced
by lines U and S as in Section 2 (Figure 8(c)). We now
have an arbitrary camera walk in the 3D coordinate
frame. The incremental algorithm is as follows:

Algorithm: 3D-Incremental-CameraWalk (walk)

1. Compute nodal pointsNi andNi+1 on the line
(termedCanonicalci) parallel to U usingAlgo-
rithm 2.1.1.

2. Cache light field at these nodal points as in
Step 2 ofAlgorithm 3.

3. Compute intervalIj on Canonicalci defined
by the intersections of the two line segments
from the two corners of S toqj on walk . If
Ij ∈ [Ni, Ni+1], useAlgorithm 2.3 to calcu-
late L[qj] (Lemma 2.3.3). Incrementj, go to
Step 3.

4. Otherwise, incrementi and go to Step 1.

The two cases described above paves the way for the al-
gorithm for the camera walk. For variety, we describe a
domain based algorithm.

3.1. The Algorithm

Algorithm 3.1: All-CameraWalk

1. Determineq0 the point on the arbitrary camera walk
corresponding to the minimumz coordinate (Fig-
ure 9).

2. Determine the plane (termedCanonicalc) parallel to
the UV plane atq0.

3. Determine the convex hull (the dotted-dashed quadri-
lateral in Figure 9) of the path.

4. Determine tangent lines from the two corners of S to
the convex hull and thus points of intersections with
Canonicalc.

5. Determine nodal points onCanonicalc using Step 1
of Algorithm 3 in the interval defined by the points.

6. For a query pointqi on the camera walk,

• For a pointsj on S, determineq
′

i, the intersec-
tion of the rayqisj with Canonicalc.

• UseAlgorithm 2.1.1.

The domain-based algorithm described above is useful
when there are a number of camera walks, or random query
points in the region bounded by the domain. The incremen-
tal algorithm, on the other hand, is more suitable when we
want to conserve memory for the nodal points.

3.2. Quadrilinear Versus Nearest Neighbor Approx-
imation

Once nodal points are known, nearest neighbor approxi-
mation or quadrilinear interpolation can be used. In gener-
ating views using the nearest neighbor approximation, four
nodal points will suffice for all information that is needed
for intermediate query points. For quadrilinear interpola-
tion 16 nodal points are needed to provide information (ra-
diance) for a query point.

4. Sample Results

In this section, we first provide evidence that the results
obtained by the use of our method matches those obtained
by the implementation given in [5]. Later we show that our
method requires less resources.

q
0

s
p s i

U

S

G2G1G0 G G G G G3 4 5 6 7

CanonicalC
N3 N4

L(q L(q

qi

q’
i N5 N6N1 N2

ii) = = L(N3| N4) , for si)

Figure 9. Domain-based Nodal Points

4.1. Buddha and Dragon

Figure 11 shows results obtained using our method
from Section 3. The images are identical to those
generated using [5], as returned bydiff in Unix.
The virtual camera viewpoint was (for example in Fig-
ure 11(g)) at(0, 0, 3) and the nodal points were situated
at(±0.09375,±0.09375, 3.00000), where the origin was at
the center of the ST plane. The input images were those
obtained using32× 32 cameras.

Identical behavior is observed when we render the
dragon (Figure 12); the light field for this was acquired us-
ing 8×8 cameras. Here the virtual camera was (for example
in Figure 12(g)) located at(0.03, 0.02, 2.00) and the nodal
points at(±0.5,±0.5, 2).

4.2. Computational Advantage

We now proceed to show the computational advantage
when a camera walk is introduced. As discussed earlier, ad-
vantages arise due to nodal light field caching, and avoiding
ray intersection calculations. Letn be the number of query
points, andp the number of nodal points. Denotek1 to be
the time taken for ray intersection computations in the orig-
inal method [5] for one query; if we use homography (from
[9]), then this value is negligible.

When the input light field is densely sampled, and is at a
high resolution, it may or may not be possible to place the
light field in memory. We penalize access to the light field

(a) Experiments performed with 32MB
RAM. The time taken by the proposed
method is considerably lesser than the
original method.

(b) Experiments performed with 1GB
RAM. Time taken by our approach is
comparable. However, our approach uses
only a very tiny fraction (2%) of the sys-
tem memory.

(c) Number of disk accesses. Our ap-
proach performs significantly better.

Figure 10. All results are for 100 query points.

(for both methods) by the factort in the following equa-
tion. In Algorithm 3: 2D-Incremental-CameraWalk, the
expected gain is

n(t+ k1)
(p(t+ k1) + nk2)

(8)

If the light field does not fit in memory,t represents disk
access time. Thereforet � k1, and the gain is approxi-
matelynp .

4.2.1. Resource Usage

For the purpose of comparison, and to hand an advantage to
the original light field implementation, we have chosen not
to use the optimization in Section 2.4 in the experiments.
Nevertheless, the results are worth noting. Our time results
are based on an Intel Pentium IV 2.4GHz Linux based com-
puter with 1 GB memory.

1. To simulate low RAM situations, we used only 32 MB
of the 1 GB available and rendered Buddha on vari-
ous camera paths located at different distances from
the original camera gantry.

We note that there is considerable gain as seen in fig-
ure 10(a), where the real time taken by the two ap-
proaches is plotted with respect to the z co-ordinate
of COP. The average value ofp for n = 100 is ap-
proximately19, so the time gain is approximately5.26,
which is what theoretically equation 8 promises.

2. When the memory is sufficiently large to accommo-
date the huge light field, Figure 10(b) shows that the
time taken by our method is comparable to the origi-
nal method. This indicates that computing and going
to the nodal cache is not very expensive. However, the
total memory that we used was even less than 2% of
the memory requirement of method in [5]. This is due

to the fact that the method in [5] usesu × v × r units
of memory for au × v camera gantry with an image
resolution ofr.

3. To quantify disk access, we rendered Buddha on
various camera paths located at different distances
from the original camera gantry. Starting at
(−1.5,−1.5, zCord) and going to(1.5, 1.5, zCord),
the virtual camera was made to follow different zig-
zag paths at different values of z co-ordinate denoted
zCord. The query points were chosen randomly along
these paths. In the experiments on the Buddha image,
the origin of the co-ordinate system was located at the
center of the ST plane. Figure 10(c) shows the rela-
tive gain in terms of disk accesses. The graph shows
the number of accesses to the disk storage required by
various techniques when the nearest neighbor approx-
imation is used, atz = 3, 4, 6, 8, 12, wherez is the
distance of the COP from the ST plane.

As a point to note, when the value ofz increases, the
number of nodal points required for the same camera
path decreases and so we get a quantitative difference
in the number of disk accesses.

5. Final remarks

In virtual reality and in gaming applications, the light
field is useful because no information about the geometry
or surface properties is needed. However, there are some
disadvantages.

In this paper, we have looked at the problem of reduc-
ing the computational burden in dealing with the rich and
densely sampled light field when a user walks through a
virtual world. We have achieved this by recognizing that in-
stead of considering the complete light field, it is enough to
consider a sparse set of nodal points. The number of nodal

points, and the distance between them have been character-
ized to ensure that the rendering of the scene is identical to
what may have been done without the cache. The proofs of
these characterizations have also been given.

Our description does not explicitly deal with decompres-
sion issues (indeed, in the first stage [5] of rendering, the
entire light field is decompressed as it is read into memory
from disk.) However, there is not any conceptual blockade
in applying the general caching strategy and the mathemat-
ical elements even in this case.

References

[1] E. H. Adelson and J. R. Bergen.Computational Model-
ing of Vision Processing, chapter The Plenoptic Func-
tion and the Elements of Early Vision. MIT Press, 1991.

[2] D. Burschka, G. D. Hager, Z. Dodds, M. Jgersand,
D. Cobzas, and K. Yerex. Recent methods for image-
based modeling and rendering. InProceedings of the
IEEE Virtual Reality 2003, page 299. IEEE Computer
Society, 2003.

[3] P. Debevec and S. Gortler. Image-based modeling and
rendering. InIn SIGGRAPH 98 Course Notes. ACM
SIGGRAPH, Addison Wesley, July, 1998.

[4] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Co-
hen. The Lumigraph.Computer Graphics, 30(Annual
Conference Series):43–54, 1996.

[5] M. Levoy and P. Hanrahan. Light field rendering. In
Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, pages 31–
42. ACM Press, 1996.

[6] P. J. Narayanan. Image based rendering: A critical
look. In Second Indian Conference on Computer Vi-
sion, Graphics and Image Processing ICVGIP, pages
216–222, 1998.

[7] A. Pandey, B. Choudhury, and S. Chandran. Light Field
Based CameraWalk. http://www.cse.iitb.
ac.in/˜biswarup/research/icvgip2004/ .

[8] A. Pandey, B. Choudhury, and S. Chandran. Efficient
light field based camerawalk. InFourth Indian Con-
ference on Computer Vision, Graphics and Image Pro-
cessing ICVGIP, pages 302–307, 2004.

[9] P. Sharma, A. Parashar, S. Banerjee, and P. Kalra. An
uncalibrated lightfield acquisition system. InThird In-
dian Conference on Computer Vision, Graphics and Im-
age Processing ICVGIP, pages 25–30, 2002.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 11. Rendered images of Buddha on a camera walk using our method

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 12. Rendered images of Dragon on a camera walk using our method

